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Abstract

Virtual instructors can be used in several ap-
plications, ranging from trainers in simulated
worlds to non player characters for virtual
games. In this paper we present a novel
algorithm for rapidly prototyping virtual in-
structors from human-human corpora without
manual annotation. Automatically prototyp-
ing full-fledged dialogue systems from cor-
pora is far from being a reality nowadays. Our
algorithm is restricted in that only the virtual
instructor can perform speech acts while the
user responses are limited to physical actions
in the virtual world. We evaluate a virtual in-
structor, generated using this algorithm, with
human users. We compare our results both
with human instructors and rule-based virtual
instructors hand-coded for the same task.

1 Introduction

Virtual human characters constitute a promising
contribution to many fields, including simulation,
training and interactive games (Kenny et al., 2007;
Jan et al., 2009). The ability to communicate using
natural language is important for believable and ef-
fective virtual humans. Such ability has to be good
enough to engage the trainee or the gamer in the ac-
tivity. Nowadays, most conversational systems oper-
ate on a dialogue-act level and require extensive an-
notation efforts in order to be fit for their task (Rieser
and Lemon, 2010). Semantic annotation and rule
authoring have long been known as bottlenecks for
developing conversational systems for new domains.

In this paper, we present novel a algorithm for
generating virtual instructors from automatically an-

notated human-human corpora. Our algorithm,
when given a task-based corpus situated in a virtual
world, generates an instructor that robustly helps a
user achieve a given task in the virtual world of the
corpus. There are two main approaches toward au-
tomatically producing dialogue utterances. One is
the selection approach, in which the task is to pick
the appropriate output from a corpus of possible out-
puts. The other is the generation approach, in which
the output is dynamically assembled using some
composition procedure, e.g. grammar rules. The se-
lection approach to generation has only been used
in conversational systems that are not task-oriented
such as negotiating agents (Gandhe and Traum,
2007), question answering characters (Kenny et al.,
2007), and virtual patients (Leuski et al., 2006). Our
algorithm can be seen as a novel way of doing robust
generation by selection and interaction management
for task-oriented systems.

In the next section we introduce the corpora used
in this paper. Section 3 presents the two phases of
our algorithm, namely automatic annotation and di-
alogue management through selection. In Section 4
we present a fragment of an interaction with a vir-
tual instructor generated using the corpus and the
algorithm introduced in the previous sections. We
evaluate the virtual instructor in interactions with
human subjects using objective as well as subjec-
tive metrics. We present the results of the evaluation
in Section 5. We compare our results with both hu-
man and rule-based virtual instructors hand-coded
for the same task. Finally, Section 6 concludes the
paper proposing an improved virtual instructor de-
signed as a result of our error analysis.
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2 The GIVE corpus

The Challenge on Generating Instructions in Vir-
tual Environments (GIVE; Koller et al. (2010)) is
a shared task in which Natural Language Gener-
ation systems must generate real-time instructions
that guide a user in a virtual world. In this paper, we
use the GIVE-2 Corpus (Gargett et al., 2010), a cor-
pus of human instruction giving in virtual environ-
ments. We use the English part of the corpus which
consists of 63 American English written discourses
in which one subject guided another in a treasure
hunting task in 3 different 3D worlds.

The task setup involved pairs of human partners,
each of whom played one of two different roles. The
“direction follower” (DF) moved about in the vir-
tual world with the goal of completing a treasure
hunting task, but had no knowledge of the map of
the world or the specific behavior of objects within
that world (such as, which buttons to press to open
doors). The other partner acted as the “direction
giver” (DG), who was given complete knowledge of
the world and had to give instructions to the DF to
guide him/her to accomplish the task.

The GIVE-2 corpus is a multimodal corpus which
consists of all the instructions uttered by the DG, and
all the object manipulations done by the DF with the
corresponding timestamp. Furthermore, the DF’s
position and orientation is logged every 200 mil-
liseconds, making it possible to extract information
about his/her movements.

3 The unsupervised conversational model

Our algorithm consists of two phases: an annotation
phase and a selection phase. The annotation phase
is performed only once and consists of automatically
associating the DG instruction to the DF reaction.
The selection phase is performed every time the vir-
tual instructor generates an instruction and consists
of picking out from the annotated corpus the most
appropriate instruction at a given point.

3.1 The automatic annotation

The basic idea of the annotation is straightforward:
associate each utterance with its corresponding re-
action. We assume that a reaction captures the se-
mantics of its associated instruction. Defining re-
action involves two subtle issues, namely boundary

determination and discretization. We discuss these
issues in turn and then give a formal definition of
reaction.

We define the boundaries of a reaction as follows.
A reaction rk to an instruction uk begins right af-
ter the instruction uk is uttered and ends right before
the next instruction uk+1 is uttered. In the follow-
ing example, instruction 1 corresponds to the reac-
tion 〈2, 3, 4〉, instruction 5 corresponds to 〈6〉, and
instruction 7 to 〈8〉.

DG(1): hit the red you see in the far room
DF(2): [enters the far room]
DF(3): [pushes the red button]
DF(4): [turns right]
DG(5): hit far side green
DF(6): [moves next to the wrong green]
DG(7): no
DF(8): [moves to the right green and pushes it]

As the example shows, our definition of bound-
aries is not always semantically correct. For in-
stance, it can be argued that it includes too much
because 4 is not strictly part of the semantics of 1.
Furthermore, misinterpreted instructions (as 5) and
corrections (e.g., 7) result in clearly inappropriate
instruction-reaction associations. Since we want to
avoid any manual annotation, we decided to use this
naive definition of boundaries anyway. We discuss
in Section 5 the impact that inappropriate associa-
tions have on the performance of a virtual instructor.

The second issue that we address here is dis-
cretization of the reaction. It is well known that there
is not a unique way to discretize an action into sub-
actions. For example, we could decompose action 2
into ‘enter the room’ or into ‘get close to the door
and pass the door’. Our algorithm is not dependent
on a particular discretization. However, the same
discretization mechanism used for annotation has to
be used during selection, for the dialogue manager
to work properly. For selection (i.e., in order to de-
cide what to say next) any virtual instructor needs
to have a planner and a planning domain represen-
tation, i.e., a specification of how the virtual world
works and a way to represent the state of the virtual
world. Therefore, we decided to use them in order
to discretize the reaction.

Now we are ready to define reaction formally. Let
Sk be the state of the virtual world when uttering in-
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struction uk, Sk+1 be the state of the world when
uttering the next utterance uk+1 and D be the plan-
ning domain representation. The reaction to uk is
defined as the sequence of actions returned by the
planner with Sk as initial state, Sk+1 as goal state
and D as planning domain.

The annotation of the corpus then consists of au-
tomatically associating each utterance to its (dis-
cretized) reaction.

3.2 Selecting what to say next
In this section we describe how the selection phase is
performed every time the virtual instructor generates
an instruction.

The instruction selection algorithm consists in
finding in the corpus the set of candidate utterances
C for the current task plan P ; P being the se-
quence of actions returned by the same planner and
planning domain used for discretization. We define
C = {U ∈ Corpus | U.Reaction is a prefix of P}.
In other words, an utterance U belongs to C if the
first actions of the current plan P exactly match the
reaction associated to the utterance. All the utter-
ances that pass this test are considered paraphrases
and hence suitable in the current context.

While P does not change, the virtual instructor
iterates through the set C, verbalizing a different ut-
terance at fixed time intervals (e.g., every 3 seconds).
In other words, the virtual instructor offers alterna-
tive paraphrases of the intended instruction. When
P changes as a result of the actions of the DF, C is
recalculated.

It is important to notice that the discretization
used for annotation and selection directly impacts
the behavior of the virtual instructor. It is crucial
then to find an appropriate granularity of the dis-
cretization. If the granularity is too coarse, many
instructions in the corpus will have an empty asso-
ciated reaction. For instance, in the absence of the
representation of the user orientation in the planning
domain (as is the case for the virtual instructor we
evaluate in Section 5), instructions like “turn left”
and “turn right” will have empty reactions making
them indistinguishable during selection. However,
if the granularity is too fine the user may get into sit-
uations that do not occur in the corpus, causing the
selection algorithm to return an empty set of candi-
date utterances. It is the responsibility of the virtual

instructor developer to find a granularity sufficient
to capture the diversity of the instructions he wants
to distinguish during selection.

4 A virtual instructor for a virtual world

We implemented an English virtual instructor for
one of the worlds used in the corpus collection we
presented in Section 2. The English fragment of the
corpus that we used has 21 interactions and a total
of 1136 instructions. Games consisted on average
of 54.2 instructions from the human DG, and took
about 543 seconds on average for the human DF to
complete the task.

On Figures 1 to 4 we show an excerpt of an in-
teraction between the system and a real user that we
collected during the evaluation. The figures show a
2D map from top view and the 3D in-game view. In
Figure 1, the user, represented by a blue character,
has just entered the upper left room. He has to push
the button close to the chair. The first candidate ut-
terance selected is “red closest to the chair in front of
you”. Notice that the referring expression uniquely
identifies the target object using the spatial proxim-
ity of the target to the chair. This referring expres-
sion is generated without any reasoning on the tar-
get distractors, just by considering the current state
of the task plan and the user position.

Figure 1: “red closest to the chair in front of you”

After receiving the instruction the user gets closer
to the button as shown in Figure 2. As a result of the
new user position, a new task plan exists, the set of
candidate utterances is recalculated and the system
selects a new utterance, namely “the closet one”.

The generation of the ellipsis of the button or the
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Figure 2: “the closet one”

Figure 3: “good”

Figure 4: “exit the way you entered”

chair is a direct consequence of the utterances nor-
mally said in the corpus at this stage of the task plan
(that is, when the user is about to manipulate this ob-
ject). From the point of view of referring expression

algorithms, the referring expression may not be op-
timal because it is over-specified (a pronoun would
be preferred as in “click it”), Furthermore, the in-
struction contains a spelling error (‘closet’ instead
of ‘closest’). In spite of this non optimality, the in-
struction led our user to execute the intended reac-
tion, namely pushing the button.

Right after the user clicks on the button (Figure 3),
the system selects an utterance corresponding to the
new task plan. The player position stayed the same
so the only change in the plan is that the button no
longer needs to be pushed. In this task state, DGs
usually give acknowledgements and this then what
our selection algorithm selects: “good”.

After receiving the acknowledgement, the user
turns around and walks forward, and the next action
in the plan is to leave the room (Figure 4). The sys-
tem selects the utterance “exit the way you entered”
which refers to the previous interaction. Again, the
system keeps no representation of the past actions
of the user, but such utterances are the ones that are
found at this stage of the task plan.

5 Evaluation and error analysis

In this section we present the results of the evalu-
ation we carried out on the virtual instructor pre-
sented in Section 4 which was generated using the
dialogue model algorithm introduced in Section 3.

We collected data from 13 subjects. The partici-
pants were mostly graduate students; 7 female and
6 male. They were not English native speakers but
rated their English skills as near-native or very good.

The evaluation contains both objective measures
which we discuss in Section 5.1 and subjective mea-
sures which we discuss in Section 5.2.

5.1 Objective metrics

The objective metrics we extracted from the logs of
interaction are summarized in Table 1. The table
compares our results with both human instructors
and the three rule-based virtual instructors that were
top rated in the GIVE-2 Challenge. Their results cor-
respond to those published in (Koller et al., 2010)
which were collected not in a laboratory but con-
necting the systems to users over the Internet. These
hand-coded systems are called NA, NM and Saar.
We refer to our system as OUR.
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Human NA Saar NM OUR
Task success 100% 47% 40% 30% 70%
Canceled 0% 24% n/a 35% 7%
Lost 0% 29% n/a 35% 23%
Time (sec) 543 344 467 435 692
Mouse actions 12 17 17 18 14
Utterances 53 224 244 244 194

Table 1: Results for the objective metrics

In the table we show the percentage of games that
users completed successfully with the different in-
structors. Unsuccessful games can be either can-
celed or lost. To ensure comparability, time until
task completion, number of instructions received by
users, and mouse actions are only counted on suc-
cessfully completed games.

In terms of task success, our system performs bet-
ter than all hand-coded systems. We duly notice that,
for the GIVE Challenge in particular (and proba-
bly for human evaluations in general) the success
rates in the laboratory tend to be higher than the suc-
cess rate online (this is also the case for completion
times) (Koller et al., 2009).

In any case, our results are preliminary given the
amount of subjects that we tested (13 versus around
290 for GIVE-2), but they are indeed encouraging.
In particular, our system helped users to identify bet-
ter the objects that they needed to manipulate in the
virtual world, as shown by the low number of mouse
actions required to complete the task (a high number
indicates that the user must have manipulated wrong
objects). This correlates with the subjective evalu-
ation of referring expression quality (see next sec-
tion).

We performed a detailed analysis of the instruc-
tions uttered by our system that were unsuccessful,
that is, all the instructions that did not cause the in-
tended reaction as annotated in the corpus. From the
2081 instructions uttered in the 13 interactions, 1304
(63%) of them were successful and 777 (37%) were
unsuccessful.

Given the limitations of the annotation discussed
in Section 3.1 (wrong annotation of correction ut-
terances and no representation of user orientation)
we classified the unsuccessful utterances using lexi-
cal cues into 1) correction (‘no’,‘don’t’,‘keep’, etc.),
2) orientation instruction (‘left’, ‘straight’, ‘behind’,

etc.) and 3) other. We found that 25% of the unsuc-
cessful utterances are of type 1, 40% are type 2, 34%
are type 3 (1% corresponds to the default utterance
“go” that our system utters when the set of candidate
utterances is empty). Frequently, these errors led to
contradictions confusing the player and significantly
affecting the completion time of the task as shown in
Table 1. In Section 6 we propose an improved virtual
instructor designed as a result of this error analysis.

5.2 Subjective metrics
The subjective measures were obtained from re-
sponses to the GIVE-2 questionnaire that was pre-
sented to users after each game. It asked users to rate
different statements about the system using a contin-
uous slider. The slider position was translated to a
number between -100 and 100. As done in GIVE-
2, for negative statements, we report the reversed
scores, so that in Tables 2 and 3 greater numbers
are always better. In this section we compare our re-
sults with the systems NA, Saar and NM as we did
in Section 5.1, we cannot compare against human in-
structors because these subjective metrics were not
collected in (Gargett et al., 2010).

The GIVE-2 Challenge questionnaire includes
twenty-two subjective metrics. Metrics Q1 to Q13
and Q22 assess the effectiveness and reliability of
instructions. For almost all of these metrics we got
similar or slightly lower results than those obtained
by the three hand-coded systems, except for three
metrics which we show in Table 2. We suspect that
the low results obtained for Q5 and Q22 relate to
the unsuccessful utterances identified and discussed
in Section 5.1. The high unexpected result in Q6 is
probably correlated with the low number of mouse
actions mentioned in Section 5.1.

NA Saar NM OUR
Q5: I was confused about which direction to go in

29 5 9 -12
Q6: I had no difficulty with identifying the objects the
system described for me

18 20 13 40
Q22: I felt I could trust the system’s instructions

37 21 23 0

Table 2: Results for the subjective measures assessing the
efficiency and effectiveness of the instructions

Metrics Q14 to Q20 are intended to assess the nat-
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uralness of the instructions, as well as the immer-
sion and engagement of the interaction. As Table 3
shows, in spite of the unsuccessful utterances, our
system is rated as more natural and more engaging
(in general) than the best systems that competed in
the GIVE-2 Challenge.

NA Saar NM OUR
Q14: The system’s instructions sounded robotic

-4 5 -1 28
Q15: The system’s instructions were repetitive

-31 -26 -28 -8
Q16: I really wanted to find that trophy

-11 -7 -8 7
Q17: I lost track of time while solving the task

-16 -11 -18 16
Q18: I enjoyed solving the task

-8 -5 -4 4
Q19: Interacting with the system was really annoying

8 -2 -2 4
Q20: I would recommend this game to a friend

-30 -25 -24 -28

Table 3: Results for the subjective measures assessing the
naturalness and engagement of the instructions

6 Conclusions and future work

In this paper we presented a novel algorithm for
rapidly prototyping virtual instructors from human-
human corpora without manual annotation. Using
our algorithm and the GIVE corpus we have gener-
ated a virtual instructor1 for a game-like virtual en-
vironment. We obtained encouraging results in the
evaluation with human users that we did on the vir-
tual instructor. Our system outperforms rule-based
virtual instructors hand-coded for the same task both
in terms of objective and subjective metrics. It is
important to mention that the GIVE-2 hand-coded
systems do not need a corpus but are tightly linked
to the GIVE task. Our algorithm requires human-
human corpora collected on the target task and en-
vironment, but it is independent of the particular in-
struction giving task. For instance, it could be used
for implementing game tutorials, real world naviga-
tion systems or task-based language teaching.

In the near future we plan to build a new version
of the system that improves based on the error anal-
ysis that we did. For instance, we plan to change

1Demo at cs.famaf.unc.edu.ar/˜luciana/give-OUR

our discretization mechanism in order to take orien-
tation into account. This is supported by our algo-
rithm although we may need to enlarge the corpus
we used so as not to increase the number of situa-
tions in which the system does not find anything to
say. Finally, if we could identify corrections auto-
matically, as suggested in (Raux and Nakano, 2010),
we could get another increase in performance, be-
cause we would be able to treat them as corrections
and not as instructions as we do now.

In sum, this paper presents a novel way of au-
tomatically prototyping task-oriented virtual agents
from corpora who are able to effectively and natu-
rally help a user complete a task in a virtual world.
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