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Abstract

We present a novel pruning method for
context-free parsing that increases efficiency
by disallowing phrase-level unary productions
in CKY chart cells spanning a single word.
Our work is orthogonal to recent work on
“closing” chart cells, which has focused on
multi-word constituents, leaving span-1 chart
cells unpruned. We show that a simple dis-
criminative classifier can learn with high ac-
curacy which span-1 chart cells to close to
phrase-level unary productions. Eliminating
these unary productions from the search can
have a large impact on downstream process-
ing, depending on implementation details of
the search. We apply our method to four pars-
ing architectures and demonstrate how it is
complementary to the cell-closing paradigm,
as well as other pruning methods such as
coarse-to-fine, agenda, and beam-search prun-
ing.

1 Introduction

While there have been great advances in the statis-
tical modeling of hierarchical syntactic structure in
the past 15 years, exact inference with such models
remains very costly and most rich syntactic mod-
eling approaches resort to heavy pruning, pipelin-
ing, or both. Graph-based pruning methods such
as best-first and beam-search have both be used
within context-free parsers to increase their effi-
ciency. Pipeline systems make use of simpler mod-
els to reduce the search space of the full model. For
example, the well-known Charniak parser (Char-
niak, 2000) uses a simple grammar to prune the
search space for a richer model in a second pass.

Roark and Hollingshead (2008; 2009) have re-
cently shown that using a finite-state tagger to close
cells within the CKY chart can reduce the worst-case
and average-case complexity of context-free pars-
ing, without reducing accuracy. In their work, word
positions are classified as beginning and/or ending
multi-word constituents, and all chart cells not con-
forming to these constraints can be pruned. Zhang
et al. (2010) and Bodenstab et al. (2011) both ex-
tend this approach by classifying chart cells with a
finer granularity. Pruning based on constituent span
is straightforwardly applicable to all parsing archi-
tectures, yet the methods mentioned above only con-
sider spans of length two or greater. Lexical and
unary productions spanning a single word are never
pruned, and these can, in many cases, contribute sig-
nificantly to the parsing effort.

In this paper, we investigate complementary
methods to prune chart cells with finite-state pre-
processing. Informally, we use a tagger to re-
strict the number of unary productions with non-
terminals on the right-hand side that can be included
in cells spanning a single word. We term these sin-
gle word constituents (SWCs) (see Section 2 for a
formal definition). Disallowing SWCs alters span-1
cell population from potentially containing all non-
terminals to just pre-terminal part-of-speech (POS)
non-terminals. In practice, this decreases the num-
ber of active states in span-1 chart cells by 70%,
significantly reducing the number of allowable con-
stituents in larger spans. Span-1 chart cells are also
the most frequently queried cells in the CKY algo-
rithm. The search over possible midpoints will al-
ways include two cells spanning a single word – one
as the first left child and one as the last right child. It
is therefore critical that the number of active states
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(a) Original tree (b) Transformed tree (c) Dynamic programming chart

Figure 1: Example parse structure in (a) the original Penn treebank format and (b) after standard transformations have been
applied. The black cells in (c) indicate CKY chart cells containing a single-word constituent from the transformed tree.

in these cells be minimized so that the number of
grammar access requests is also minimized. Note,
however, that some methods of grammar access –
such as scanning through the rules of a grammar and
looking for matches in the chart – achieve less of a
speedup from diminished cell population than oth-
ers, something we investigate in this paper.

Importantly, our method is orthogonal to prior
work on tagging chart constraints and we expect ef-
ficiency gains to be additive. In what follows, we
will demonstrate that a finite-state tagger can learn,
with high accuracy, which span-1 chart cells can be
closed to SWCs, and how such pruning can increase
the efficiency of context-free parsing.

2 Grammar and Parsing Preliminaries

Given a probabilistic context-free grammar (PCFG)
defined as the tuple (V, T, S†, P, ρ) where V is the
set of non-terminals, T is the set of terminals, S† is a
special start symbol, P is the set of grammar produc-
tions, and ρ is a mapping of grammar productions to
probabilities, we divide the set of non-terminals V
into two disjoint subsets VPOS and VPHR such that
VPOS contains all pre-terminal part-of-speech tags
and VPHR contains all phrase-level non-terminals.
We define a single word constituent (SWC) unary
production as any production A→B ∈ P such that
A ∈ VPHR and A spans (derives) a single word. An
example SWC unary production, VP→ VBP, can be
seen in Figure 1b. Note that ROOT → SBAR and
RB → “quickly” in Figure 1b are also unary pro-
ductions, but by definition they are not SWC unary
productions.

One implementation detail necessary to leverage
the benefits of sparsely populated chart cells is the

grammar access method used by the inner loop of
the CKY algorithm.1 In bottom-up CKY parsing,
to extend derivations of adjacent substrings into new
constituents spanning the combined string, one can
either iterate over all binary productions in the gram-
mar and test if the new derivation is valid (gram-
mar loop), or one can take the cross-product of ac-
tive states in the cells spanning the substrings and
poll the grammar for possible derivations (cross-
product). With the cross-product approach, fewer
active states in either child cell leads to fewer gram-
mar access operations. Thus, pruning constituents
in lower cells directly affects the overall efficiency
of parsing. On the other hand, with the grammar
loop method there is a constant number of gram-
mar access operations (i.e., the number of grammar
rules) and the number of active states in each child
cell has no impact on efficiency. Therefore, with
the grammar loop implementation of the CYK algo-
rithm, pruning techniques such as unary constraints
will have very little impact on the final run-time effi-
ciency of the parser. We will report results in Section
5 with parsers using both approaches.

3 Treebank Unary Productions

In this section, we discuss the use of unary produc-
tions both in the Penn WSJ treebank (Marcus et al.,
1999) and during parsing by analyzing their func-
tion and frequency. All statistics reported here are
computed from sections 2-21 of the treebank.

A common pre-processing step in treebank pars-
ing is to transform the original WSJ treebank be-
fore training and evaluation. There is some flex-

1Some familiarity with the CKY algorithm is assumed. For
details on the algorithm, see Roark and Sproat (2007).
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Orig. Trans.
Empty nodes 48,895 0
Multi-Word Const. unaries 1,225 36,608
SWC unaries 98,467 105,973
Lexical unaries 950,028 950,028
Pct words with SWC unary 10.4% 11.2%

Table 1: Unary production counts from sections 2-21 of the
original and transformed WSJ treebank. All multisets are dis-
joint. Lexical unary count is identical to word count.

ibility in this process, but most pre-processing ef-
forts include (1) affixing a ROOT unary production
to the root symbol of the original tree, (2) removal
of empty nodes, and (3) striping functional tags and
cross-referencing annotations. See Figure 1 for an
example. Additional transforms include (4) remov-
ing X→ X unary productions for all non-terminals
X, (5) collapsing unary chains to a single (possibly
composite) unary production (Klein and Manning,
2001), (6) introducing new categories such as AUX

(Charniak, 1997), and (7) collapsing of categories
such as PRT and ADVP (Collins, 1997). For this
paper we only apply transforms 1-3 and otherwise
leave the treebank in its original form. We also note
that ROOT unaries are a special case that do not af-
fect search, and we choose to ignore them for the
remainder of this paper.

These tree transformations have a large impact
on the number and type of unary productions in
the treebank. Table 1 displays the absolute counts
of unaries in the treebank before and after process-
ing. Multi-word constituent unary productions in the
original treebank are rare and used primarily to mark
quantifier phrases as noun phrases. But due to the
removal of empty nodes, the transformed treebank
contains many more unary productions that span
multiple words, such as S → VP, where the noun
phrase was left unspecified in the original clause.

The number of SWC unaries is relatively un-
changed after processing the original treebank, but
note that only 11.2% of words in the transformed
treebank are covered by SWCs. This implies that
we are unnecessarily adding SWC productions to al-
most 90% of span-1 chart cells during search. One
may argue that an unsmoothed grammar will nat-
urally disallow most SWC productions since they
are never observed in the training data, for example

Mk2 Mk2+S Latent
|VPOS| 45 45 582
|VPHR| 26 26 275
SWC grammar rules 159 1,170 91,858

Active VPOS states 2.5 45 75
Active VPHR states 5.9 26 152

Table 2: Grammar statistics and averaged span-1 active state
counts for exhaustive parsing of section 24 using a Markov
order-2 (Mk2), a smoothed Markov order-2 (Mk2+S), and the
Berkeley latent variable (Latent) grammars.

VP → DT. This is true to some extent, but gram-
mars induced from the WSJ treebank are notorious
for over-generation. In addition, state-of-the-art ac-
curacy in context-free parsing is often achieved by
smoothing the grammar, so that rewrites from any
one non-terminal to another are permissible, albeit
with low probability.

To empirically evaluate the impact of SWCs on
span-1 chart cells, we parse the development set
(section 24) with three different grammars induced
from sections 2-21. Table 2 lists averaged counts
of active Viterbi states (derivations with probabil-
ity greater than zero) from span-1 cells within the
dynamic programming chart, as well as relevant
grammar statistics. Note that these counts are ex-
tracted from exhaustive parsing – no pruning has
been applied. We notice two points of interest.
First, although |VPOS| > |VPHR|, for the unsmoothed
grammars more phrase-level states are active within
the span-1 cells than states derived from POS tags.
When parsing with the Markov order-2 grammar,
70% of active states are non-terminals from VPHR,
and with the latent-variable grammar, 67% (152 of
227). This is due to the highly generative nature
of SWC productions. Second, although using a
smoothed grammar maximizes the number of active
states, the unsmoothed grammars still provide many
possible derivations per word.

Given the infrequent use of SWCs in the treebank,
and the search-space explosion incurred by includ-
ing them in exhaustive search, it is clear that restrict-
ing SWCs in contexts where they are unlikely to oc-
cur has the potential for large efficiency gains. In the
next section, we discuss how to learn such contexts
via a finite-state tagger.
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4 Tagging Unary Constraints

To automatically predict if word wi from sentence
w can be spanned by an SWC production, we train a
binary classifier from supervised data using sections
2-21 of the Penn WSJ Treebank for training, section
00 as heldout, and section 24 as development. The
class labels of all words in the training data are ex-
tracted from the treebank, where wi ∈ U if wi is
observed with a SWC production and wi ∈ U other-
wise. We train a log linear model with the averaged
perceptron algorithm (Collins, 2002) using unigram
word and POS-tag2 features from a five word win-
dow. We also trained models with bi-gram and tri-
gram features, but tagging accuracy did not improve.

Because the classifier output is imposing hard
constraints on the search space of the parser, we
may want to choose a tagger operating point that fa-
vors precision over recall to avoid over-constraining
the downstream parser. To compare the tradeoff be-
tween possible precision/recall values, we apply the
softmax activation function to the perceptron output
to obtain the posterior probability of wi ∈ U :

P (U |wi, θ) = (1 + exp(−f(wi) · θ))−1 (1)

where θ is a vector of model parameters and f(·) is a
feature function. The threshold 0.5 simply chooses
the most likely class, but to increase precision we
can move this threshold to favor U over U . To tune
this value on a per-sentence basis, we follow meth-
ods similar to Roark & Hollingshead (2009) and
rank each word position with respect to its poste-
rior probability. If the total number of words wi

with P (U |wi, θ) < 0.5 is k, we decrease the thresh-
old value from 0.5 until λk words have been moved
from class U to U , where λ is a tuning parameter be-
tween 0 and 1. Although the threshold 0.5 produces
tagging precision and recall of 98.7% and 99.4%
respectively, we can adjust λ to increase precision
as high as 99.7%, while recall drops to a tolerable
82.1%. Similar methods are used to replicate cell-
closing constraints, which are combined with unary
constraints in the next section.

2POS-tags were provided by a separately trained tagger.

5 Experiments and Results

To evaluate the effectiveness of unary constraints,
we apply our technique to four parsers: an exhaus-
tive CKY chart parser (Cocke and Schwartz, 1970);
the Charniak parser (Charniak, 2000), which uses
agenda-based two-level coarse-to-fine pruning; the
Berkeley parser (Petrov and Klein, 2007a), a multi-
level coarse-to-fine parser; and the BUBS parser
(Bodenstab et al., 2011), a single-pass beam-search
parser with a figure-of-merit constituent ranking
function. The Berkeley and BUBS parsers both
parse with the Berkeley latent-variable grammar
(Petrov and Klein, 2007b), while the Charniak
parser uses a lexicalized grammar, and the exhaus-
tive CKY algorithm is run with a simple Markov
order-2 grammar. All grammars are induced from
the same data: sections 2-21 of the WSJ treebank.

Figure 2 contrasts the merit of unary constraints
on the three high-accuracy parsers, and several inter-
esting comparisons emerge. First, as recall is traded
for precision within the tagger, each parser reacts
quite differently to the imposed constraints. We ap-
ply constraints to the Berkeley parser during the ini-
tial coarse-pass search, which is simply an exhaus-
tive CKY search with a coarse grammar. Applying
unary and cell-closing constraints at this point in the
coarse-to-fine pipeline speeds up the initial coarse-
pass significantly, which accounted for almost half
of the total parse time in the Berkeley parser. In ad-
dition, all subsequent fine-pass searches also bene-
fit from additional pruning as their search is guided
by the remaining constituents of the previous pass,
which is the intersection of standard coarse-to-fine
pruning and our imposed constraints.

We apply constraints to the Charniak parser dur-
ing the first-pass agenda-based search. Because an
agenda-based search operates at a constituent level
instead of a cell/span level, applying unary con-
straints alters the search frontier instead of reduc-
ing the absolute number of constituents placed in the
chart. We jointly tune lambda and the internal search
parameters of the Charniak parser until accuracy de-
grades.

Application of constraints to the CKY and BUBS
parsers is straightforward as they are both single
pass parsers – any constituent violating the con-
straints is pruned. We also note that the CKY and

679



Figure 2: Development set results applying unary constraints
at multiple values of λ to three parsers.

BUBS parsers both employ the cross-product gram-
mar access method discussed in Section 2, while
the Berkeley parser uses the grammar loop method.
This grammar access difference dampens the benefit
of unary constraints for the Berkeley parser.3

Referring back to Figure 2, we see that both speed
and accuracy increase in all but the Berkeley parser.
Although it is unusual that pruning leads to higher
accuracy during search, it is not unexpected here as
our finite-state tagger makes use of lexical relation-
ships that the PCFG does not. By leveraging this
new information to constrain the search space, we
are indirectly improving the quality of the model.

Finally, there is an obvious operating point for
each parser at which the unary constraints are too
severe and accuracy deteriorates rapidly. For test
conditions, we set the tuning parameter λ based on
the development set results to prune as much of the
search space as possible before reaching this degra-
dation point.

Using lambda-values optimized for each parser,
we parse the unseen section 23 test data and present
results in Table 3. We see that in all cases, unary
constraints improve the efficiency of parsing without
significant accuracy loss. As one might expect, ex-
haustive CKY parsing benefits the most from unary
constraints since no other pruning is applied. But
even heavily pruned parsers using graph-based and
pipelining techniques still see substantial speedups

3The Berkeley parser does maintain meta-information about
where non-terminals have been placed in the chart, giving it
some of the advantages of cross-product grammar access.

Parser F-score Seconds Speedup
CKY 72.2 1,358

+ UC (λ=0.2) 72.6 1,125 1.2x
+ CC 74.3 380 3.6x
+ CC + UC 74.6 249 5.5x

BUBS 88.4 586
+ UC (λ=0.2) 88.5 486 1.2x
+ CC 88.7 349 1.7x
+ CC + UC 88.7 283 2.1x

Charniak 89.7 1,116
+ UC (λ=0.2) 89.7 900 1.2x
+ CC 89.7 716 1.6x
+ CC + UC 89.6 679 1.6x

Berkeley 90.2 564
+ UC (λ=0.4) 90.1 495 1.1x
+ CC 90.2 320 1.8x
+ CC + UC 90.2 289 2.0x

Table 3: Test set results applying unary constraints (UC) and
cell-closing (CC) constraints (Roark and Hollingshead, 2008)
to various parsers.

with the additional application of unary constraints.
Furthermore, unary constraints consistently provide
an additive efficiency gain when combined with cell-
closing constraints.

6 Conclusion

We have presented a new method to constrain
context-free chart parsing and have shown it to be or-
thogonal to many forms of graph-based and pipeline
pruning methods. In addition, our method parallels
the cell closing paradigm and is an elegant com-
plement to recent work, providing a finite-state tag-
ging framework to potentially constrain all areas of
the search space – both multi-word and single-word
constituents.
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