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Abstract
In this paper, we argue that ordering prenom-
inal modifiers – typically pursued as a su-
pervised modeling task – is particularly well-
suited to semi-supervised approaches. By
relying on automatic parses to extract noun
phrases, we can scale up the training data
by orders of magnitude. This minimizes
the predominant issue of data sparsity that
has informed most previous approaches. We
compare several recent approaches, and find
improvements from additional training data
across the board; however, none outperform
a simple n-gram model.

1 Introduction
In any given noun phrase (NP), an arbitrary num-
ber of nominal modifiers may be used. The order of
these modifiers affects how natural or fluent a phrase
sounds. Determining a natural ordering is a key task
in the surface realization stage of a natural language
generation (NLG) system, where the adjectives and
other modifiers chosen to identify a referent must be
ordered before a final string is produced. For ex-
ample, consider the alternation between the phrases
“big red ball” and “red big ball”. The phrase “big
red ball” provides a basic ordering of the words big
and red. The reverse ordering, in “red big ball”,
sounds strange, a phrase that would only occur in
marked situations. There is no consensus on the ex-
act qualities that affect a modifier’s position, but it is
clear that some modifier orderings sound more natu-
ral than others, even if all are strictly speaking gram-
matical.

Determining methods for ordering modifiers
prenominally and investigating the factors underly-
ing modifier ordering have been areas of consider-
able research, including work in natural language

processing (Shaw and Hatzivassiloglou, 1999; Mal-
ouf, 2000; Mitchell, 2009; Dunlop et al., 2010), lin-
guistics (Whorf, 1945; Vendler, 1968), and psychol-
ogy (Martin, 1969; Danks and Glucksberg, 1971).
A central issue in work on modifier ordering is how
to order modifiers that are unobserved during sys-
tem development. English has upwards of 200,000
words, with over 50,000 words in the vocabulary of
an educated adult (Aitchison, 2003). Up to a quar-
ter of these words may be adjectives, which poses a
significant problem for any system that attempts to
categorize English adjectives in ways that are useful
for an ordering task. Extensive in-context observa-
tion of adjectives and other modifiers is required to
adequately characterize their behavior.

Developers of automatic modifier ordering sys-
tems have thus spent considerable effort attempting
to make reliable predictions despite sparse data, and
have largely limited their systems to order modifier
pairs instead of full modifier strings. Conventional
wisdom has been that direct evidence methods such
as simple n-gram modeling are insufficient for cap-
turing such a complex and productive process.

Recent approaches have therefore utilized in-
creasingly sophisticated data-driven approaches.
Most recently, Dunlop et al. (2010) used both dis-
criminative and generative methods for estimat-
ing class-based language models with multiple-
sequence alignments (MSA). Training on manually
curated syntactic corpora, they showed excellent in-
domain performance relative to prior systems, and
decent cross-domain generalization.

However, following a purely supervised training
approach for this task is unduly limiting and leads
to conventional assumptions that are not borne out
in practice, such as the inapplicability of simple n-236



gram models. NP segmentation is one of the most
reliable annotations that automatic parsers can now
produce, and may be applied to essentially arbitrary
amounts of unlabeled data. This yields orders-of-
magnitude larger training sets, so that methods that
are sensitive to sparse data and/or are domain spe-
cific can be trained on sufficient data.

In this paper, we compare an n-gram language
model and a hidden Markov model (HMM) con-
structed using expectation maximization (EM) with
several recent ordering approaches, and demonstrate
superior performance of the n-gram model across
different domains, particularly as the training data
size is scaled up. This paper presents two important
results: 1) N-gram modeling performs better than
previously believed for this task, and in fact sur-
passes current class-based systems.1 2) Automatic
parsers can effectively provide essentially unlimited
training data for learning modifier ordering prefer-
ences. Our results point the way to larger scale data-
driven approaches to this and related tasks.

2 Related Work
In one of the earliest automatic prenominal mod-
ifier ordering systems, Shaw and Hatzivassiloglou
(1999) ordered pairs of modifiers, including adjec-
tives, nouns (“baseball field”); gerunds, (“running
man”); and participles (“heated debate”). They
described a direct evidence method, a transitivity
method, and a clustering method for ordering these
different kinds of modifiers, with the transitivity
technique returning the highest accuracy of 90.67%
on a medical text. However, when testing across
domains, their accuracy dropped to 56%, not much
higher than random guessing.

Malouf (2000) continued this work, ordering
prenominal adjective pairs in the BNC. He aban-
doned a bigram model, finding it achieved only
75.57% prediction accuracy, and instead pursued
statistical and machine learning techniques that are
more robust to data sparsity. Malouf achieved an
accuracy of 91.85% by combining three systems.
However, it is not clear whether the proposed or-
dering approaches extend to other kinds of modi-
fiers, such as gerund verbs and nouns, and he did
not present analysis of cross-domain generalization.

1But note that these approaches may still be useful, e.g.,
when the goal is to construct general modifier classes.

Dataset 2 mods 3 mods 4 mods
WSJ 02-21 auto 10,070 1,333 129
WSJ 02-21 manu 9,976 1,311 129
NYT 1,616,497 191,787 18,183

Table 1: Multi-modifier noun phrases in training data

Dataset 2 mods 3 mods 4 mods
WSJ 22-24 1,366 152 20
SWBD 1,376 143 19
Brown 1,428 101 9

Table 2: Multi-modifier noun phrases in testing data

Later, Mitchell (2009) focused on creating a class-
based model for modifier ordering. Her system
mapped each modifier to a class based on the fre-
quency with which it occurs in different prenominal
positions, and ordered unseen sequences based on
these classes. Dunlop et al. (2010) used a Multiple
Sequence Alignment (MSA) approach to order mod-
ifiers, achieving the highest accuracy to date across
different domains. In contrast to earlier work, both
systems order full modifier strings.

Below, we evaluate these most recent systems,
scaling up the training data by several orders of mag-
nitude. Our results indicate that an n-gram model
outperforms previous systems, and generalizes quite
well across different domains.

3 Corpora
Following Dunlop et al. (2010), we use the Wall St.
Journal (WSJ), Switchboard (SWBD) and Brown
corpus sections of the Penn Treebank (Marcus et al.,
1993) as our supervised training and testing base-
lines. For semi-supervised training, we automati-
cally parse sections 02-21 of the WSJ treebank using
cross-validation methods, and scale up the amount
of data used by parsing the New York Times (NYT)
section of the Gigaword (Graff and Cieri, 2003) cor-
pus using the Berkeley Parser (Petrov and Klein,
2007; Petrov, 2010).

Table 1 lists the NP length distributions for each
training corpus. The WSJ training corpus yields just
under 5,100 distinct modifier types (without normal-
izing for capitalization), while the NYT data yields
105,364. Note that the number of NPs extracted
from the manual and automatic parses of the WSJ
are quite close. We find that the overlap between the
two groups is well over 90%, suggesting that extract-237



ing NPs from a large, automatically parsed corpus
will provide phrases comparable to manually anno-
tated NPs.

We evaluate across a variety of domains, includ-
ing (1) the WSJ sections 22-24, and sections com-
mensurate in size of (2) the SWBD corpus and (3)
the Brown corpus. Table 2 lists the NP length distri-
butions for each test corpus.

4 Methods

In this section, we present two novel prenominal
modifier ordering approaches: a 5-gram model and
an EM-trained HMM. In both systems, modifiers
that occur only once in the training data are given the
Berkeley parser OOV class labels (Petrov, 2010).

In Section 5, we compare these approaches to the
one-class system described in Mitchell (2010) and
the discriminative MSA described in Dunlop et al.
(2010). We refer the interested reader to those pa-
pers for the details of their learning algorithms.

4.1 N-Gram Modeling

We used the SRILM toolkit (Stolcke, 2002) to build
unpruned 5-gram models using interpolated mod-
ified Kneser-Ney smoothing (Chen and Goodman,
1998). In the testing phase, each possible permuta-
tion is assigned a probability by the model, and the
highest probability sequence is chosen.

We explored building n-gram models based on
entire observed sequences (sentences) and on ex-
tracted multiple modifier NPs. As shown in Table
3, we found a very large (12% absolute) accuracy
improvement in a model trained with just NP se-
quences. This is likely due to several factors, in-
cluding the role of the begin string symbol <s>,
which helps to capture word preferences for occur-
ring first in a modifier sequence; also the behav-
ior of modifiers when they occur in NPs may dif-
fer from how they behave in other contexts. Note
that the full-sentence n-gram model performs sim-
ilarly to Malouf’s bigram model; although the re-
sults are not directly comparable, this may explain
the common impression that n-gram modeling is not
effective for modifier ordering. We find that syntac-
tic annotations are critical for this task; all n-gram
results presented in the rest of the paper are trained
on extracted NPs.

Training data for n-gram model Accuracy
Full sentences 75.9
Extracted multi-modifier NPs 88.1

Table 3: Modifier ordering accuracy on WSJ sections 22-
24, trained on sections 2-21

4.2 Hidden Markov Model

Mitchell’s single-class system and Dunlop et. al’s
MSA approach both group tokens into position clus-
ters. The success of these systems suggests that a
position-specific class-based HMM might perform
well on this task. We use EM (Dempster et al., 1977)
to learn the parameterizations of such an HMM.

The model is defined in terms of state transition
probabilities P(c′ | c), i.e., the probability of transi-
tioning from a state labeled c to a state labeled c′;
and state observation probabilities P(w | c), i.e.,
the probability of emitting word w from a particu-
lar class c. Since the classes are predicting an or-
dering, we include hard constraints on class tran-
sitions. Specifically, we forbid a transition from a
class closer to the head noun to one farther away.
More formally, if the subscript of a class indicates
its distance from the head, then for any i, j, P(ci |
cj) = 0 if i ≥ j; i.e., ci is stipulated to never occur
closer to the head than cj .

We established 8 classes and an HMM Markov
order of 1 (along with start and end states) based
on performance on a held-out set (section 00 of the
WSJ treebank). We initialize the model with a uni-
form distribution over allowed transition and emis-
sion probabilities, and use add-δ regularization in
the M-step of EM at each iteration. We empirically
determined δ smoothing values of 0.1 for emissions
and 500 for transitions. Rather than training to full
convergence of the corpus likelihood, we stop train-
ing when there is no improvement in ordering accu-
racy on the held-out dataset for five iterations, and
output the best scoring model.

Because of the constraints on transition probabil-
ities, straightforward application of EM leads to the
transition probabilities strongly skewing the learn-
ing of emission probabilities. We thus followed a
generalized EM procedure (Neal and Hinton, 1998),
updating only emission probabilities until no more
improvement is achieved, and then training both
emission and transition probabilities. Often, we238



WSJ Accuracy SWBD Accuracy Brown Accuracy
Training data Ngr 1-cl HMM MSA Ngr 1-cl HMM MSA Ngr 1-cl HMM MSA
WSJ manual 88.1 65.7 87.1 87.1 72.9 44.7 71.3 71.8 67.1 31.9 69.2 71.5

auto 87.8 64.6 86.7 87.2 72.5 41.6 71.5 71.9 67.4 31.3 69.4 70.6
NYT 10% 90.3 75.3 87.4 88.2 84.2 71.1 81.8 83.2 81.7 62.1 79.5 80.4

20% 91.8 77.2 87.9 89.3 85.2 72.2 80.9 83.1 82.2 65.9 78.9 82.1
50% 92.3 78.9 89.7 90.7 86.3 73.5 82.2 83.9 83.1 67.8 80.2 81.6
all 92.4 80.2 89.3 92.1 86.4 74.5 81.4 83.4 82.3 69.3 79.3 82.0

NYT+WSJ auto 93.7 81.1 89.7 92.2 86.3 74.5 81.3 83.4 82.3 69.3 79.3 81.8
Table 4: Results on WSJ sections 22-24, Switchboard test set, and Brown test set for n-gram model (Ngr), Mitchell’s
single-class system (1-cl), HMM and MSA systems, under various training conditions.

find no improvement with the inclusion of transition
probabilities, and they are left uniform. In this case,
test ordering is determined by the class label alone.

5 Empirical results

Several measures have been used to evaluate the
accuracy of a system’s modifier ordering, includ-
ing both type/token accuracy, pairwise accuracy, and
full string accuracy. We evaluate full string ordering
accuracy over all tokens in the evaluation set. For
every NP, if the model’s highest-scoring ordering is
identical to the actual observed order, it is correct;
otherwise, it is incorrect. We report the percentage
of orders correctly predicted.

We evaluate under a variety of training conditions,
on WSJ sections 22-24, as well as the testing sec-
tions from the Switchboard and Brown corpus por-
tions of the Penn Treebank. We perform no domain-
specific tuning, so the results on the Switchboard
and Brown corpora demonstrate cross-domain appli-
cability of the approaches.

5.1 Manual parses versus automatic parses

We begin by comparing the NPs extracted from
manual parses to those extracted from automatic
parses. We parsed Wall Street Journal sections 02
through 21 using cross-validation to ensure that the
parses are as errorful as when sentences have never
been observed by training.

Table 4 compares models trained on these two
training corpora, as evaluated on the manually-
annotated test set. No system’s accuracy degrades
greatly when using automatic parses, indicating that
we can likely derive useful training data by automat-
ically parsing a large, unlabeled training corpus.

5.2 Semi-supervised models

We now evaluate performance of the models on the
scaled up training data. Using the Berkeley parser,
we parsed 169 million words of NYT text from the
English Gigaword corpus (Graff and Cieri, 2003),
extracted the multiple modifier NPs, and trained our
various models on this data. Rows 3-6 of Table
4 show the accuracy on WSJ sections 22-24 after
training on 10%, 20%, 50% and 100% of this data.
Note that this represents approximately 150 times
the amount of training data as the original treebank
training data. Even with just 10% of this data (a
15-fold increase in the training data), we see across
the board improvements. Using all of the NYT data
results in approximately 5% absolute performance
increase for the n-gram and MSA models, yielding
roughly commensurate performance, over 92% ac-
curacy. Although we do not have space to present
the results in this paper, we found further improve-
ments (over 1% absolute, statistically significant) by
combining the four models, indicating a continued
benefit of the other models, even if none of them
best the n-gram individually.

Based on these results, this task is clearly
amenable to semi-supervised learning approaches.
All systems show large accuracy improvements.
Further, contrary to conventional wisdom, n-gram
models are very competitive with recent high-
accuracy frameworks. Additionally, n-gram models
appear to be domain sensitive, as evidenced by the
last row of Table 4, which presents results when the
1.8 million NPs in the NYT corpus are augmented
with just 11 thousand NPs from the WSJ (auto) col-
lection. The n-gram model still outperforms the
other systems, but improves by well over a percent,
while the class-based HMM and MSA approaches239



are relatively static. (The single-class system shows
some domain sensitivity, improving nearly a point.)

5.3 Cross-domain evaluation

With respect to cross-domain applicability, we see
that, as with the WSJ evaluation, the MSA and n-
gram approaches are roughly commensurate on the
Brown corpus; but the n-gram model shows a greater
advantage on the Switchboard test set when trained
on the NYT data. Perhaps this is due to higher re-
liance on conventionalized collocations in the spo-
ken language of Switchboard. Finally, it is clear
that the addition of the WSJ data to the NYT data
yields improvements only for the specific newswire
domain — none of the results change much for these
two new domains when the WSJ data is included
(last row of the table).

We note that the improvements observed when
scaling the training corpus with in-domain data per-
sist when applied to very diverse domains. Interest-
ingly, n-gram models, which may have been consid-
ered unlikely to generalize well to other domains,
maintain their superior performance in each trial.

6 Discussion
In this paper, we demonstrated the efficacy of scal-
ing up training data for prenominal modifier or-
dering using automatic parses. We presented two
novel systems for ordering prenominal modifiers,
and demonstrated that with sufficient data, a simple
n-gram model outperforms position-specific models,
such as an EM-trained HMM and the MSA approach
of Dunlop et al. (2010). The accuracy achieved by
the n-gram model is particularly interesting, since
such models have previously been considered inef-
fective for this task. This does not obviate the need
for a class based model — modifier classes may in-
form linguistic research, and system combination
still yields large improvements — but points to new
data-rich methods for learning such models.
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