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Abstract

We describe a new approach to disambiguat-
ing semantic frames evoked by lexical predi-
cates previously unseen in a lexicon or anno-
tated data. Our approach makes use of large
amounts of unlabeled data in a graph-based
semi-supervised learning framework. We con-
struct a large graph where vertices correspond
to potential predicates and use label propa-
gation to learn possible semantic frames for
new ones. The label-propagated graph is used
within a frame-semantic parser and, for un-
known predicates, results in over 15% abso-
lute improvement in frame identification ac-
curacy and over 13% absolute improvement
in full frame-semantic parsing F1 score on a
blind test set, over a state-of-the-art supervised
baseline.

1 Introduction

Frame-semantic parsing aims to extract a shallow se-
mantic structure from text, as shown in Figure 1.
The FrameNet lexicon (Fillmore et al., 2003) is
a rich linguistic resource containing expert knowl-
edge about lexical and predicate-argument seman-
tics. The lexicon suggests an analysis based on the
theory of frame semantics (Fillmore, 1982). Recent
approaches to frame-semantic parsing have broadly
focused on the use of two statistical classifiers cor-
responding to the aforementioned subtasks: the first
one to identify the most suitable semantic frame for
a marked lexical predicate (target, henceforth) in a
sentence, and the second for performing semantic
role labeling (SRL) given the frame.

The FrameNet lexicon, its exemplar sentences
containing instantiations of semantic frames, and
full-text annotations provide supervision for learn-
ing frame-semantic parsers. Yet these annotations
lack coverage, including only 9,300 annotated tar-
get types. Recent papers have tried to address the
coverage problem. Johansson and Nugues (2007)
used WordNet (Fellbaum, 1998) to expand the list of
targets that can evoke frames and trained classifiers
to identify the best-suited frame for the newly cre-
ated targets. In past work, we described an approach
where latent variables were used in a probabilistic
model to predict frames for unseen targets (Das et
al., 2010a).1 Relatedly, for the argument identifica-
tion subtask, Matsubayashi et al. (2009) proposed
a technique for generalization of semantic roles to
overcome data sparseness. Unseen targets continue
to present a major obstacle to domain-general se-
mantic analysis.

In this paper, we address the problem of idenfi-
fying the semantic frames for targets unseen either
in FrameNet (including the exemplar sentences) or
the collection of full-text annotations released along
with the lexicon. Using a standard model for the ar-
gument identification stage (Das et al., 2010a), our
proposed method improves overall frame-semantic
parsing, especially for unseen targets. To better han-
dle these unseen targets, we adopt a graph-based
semi-supervised learning stategy (§4). We construct
a large graph over potential targets, most of which

1Notwithstanding state-of-the-art results, that approach was
only able to identify the correct frame for 1.9% of unseen tar-
gets in the test data available at that time. That system achieves
about 23% on the test set used in this paper.
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Figure 1: An example sentence from the PropBank section of the full-text annotations released as part of FrameNet
1.5. Each row under the sentence correponds to a semantic frame and its set of corresponding arguments. Thick lines
indicate targets that evoke frames; thin solid/dotted lines with labels indicate arguments. N m under “bells” is short
for the Noise maker role of the NOISE MAKERS frame.

are drawn from unannotated data, and a fraction
of which come from seen FrameNet annotations.
Next, we perform label propagation on the graph,
which is initialized by frame distributions over the
seen targets. The resulting smoothed graph con-
sists of posterior distributions over semantic frames
for each target in the graph, thus increasing cover-
age. These distributions are then evaluated within
a frame-semantic parser (§5). Considering unseen
targets in test data (although few because the test
data is also drawn from the training domain), sig-
nificant absolute improvements of 15.7% and 13.7%
are observed for frame identification and full frame-
semantic parsing, respectively, indicating improved
coverage for hitherto unobserved predicates (§6).

2 Background

Before going into the details of our model, we pro-
vide some background on two topics relevant to
this paper: frame-semantic parsing and graph-based
learning applied to natural language tasks.

2.1 Frame-semantic Parsing

Gildea and Jurafsky (2002) pioneered SRL, and
since then there has been much applied research
on predicate-argument semantics. Early work on
frame-semantic role labeling made use of the ex-
emplar sentences in the FrameNet corpus, each of
which is annotated for a single frame and its argu-
ments (Thompson et al., 2003; Fleischman et al.,
2003; Shi and Mihalcea, 2004; Erk and Padó, 2006,
inter alia). Most of this work was done on an older,
smaller version of FrameNet. Recently, since the re-
lease of full-text annotations in SemEval’07 (Baker
et al., 2007), there has been work on identifying
multiple frames and their corresponding sets of ar-

guments in a sentence. The LTH system of Jo-
hansson and Nugues (2007) performed the best in
the SemEval’07 shared task on frame-semantic pars-
ing. Our probabilistic frame-semantic parser out-
performs LTH on that task and dataset (Das et al.,
2010a). The current paper builds on those proba-
bilistic models to improve coverage on unseen pred-
icates.2

Expert resources have limited coverage, and
FrameNet is no exception. Automatic induction of
semantic resources has been a major effort in re-
cent years (Snow et al., 2006; Ponzetto and Strube,
2007, inter alia). In the domain of frame semantics,
previous work has sought to extend the coverage
of FrameNet by exploiting resources like VerbNet,
WordNet, or Wikipedia (Shi and Mihalcea, 2005;
Giuglea and Moschitti, 2006; Pennacchiotti et al.,
2008; Tonelli and Giuliano, 2009), and projecting
entries and annotations within and across languages
(Boas, 2002; Fung and Chen, 2004; Padó and La-
pata, 2005). Although these approaches have in-
creased coverage to various degrees, they rely on
other lexicons and resources created by experts.
Fürstenau and Lapata (2009) proposed the use of un-
labeled data to improve coverage, but their work was
limited to verbs. Bejan (2009) used self-training to
improve frame identification and reported improve-
ments, but did not explicitly model unknown tar-
gets. In contrast, we use statistics gathered from
large volumes of unlabeled data to improve the cov-
erage of a frame-semantic parser on several syntactic
categories, in a novel framework that makes use of
graph-based semi-supervised learning.

2SEMAFOR, the system presented by Das et al. (2010a) is
publicly available at http://www.ark.cs.cmu.edu/
SEMAFOR and has been extended in this work.
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2.2 Graph-based Semi-Supervised Learning

In graph-based semi-supervised learning, one con-
structs a graph whose vertices are labeled and unla-
beled examples. Weighted edges in the graph, con-
necting pairs of examples/vertices, encode the de-
gree to which they are expected to have the same
label (Zhu et al., 2003). Variants of label propaga-
tion are used to transfer labels from the labeled to the
unlabeled examples. There are several instances of
the use of graph-based methods for natural language
tasks. Most relevant to our work an approach to
word-sense disambiguation due to Niu et al. (2005).
Their formulation was transductive, so that the test
data was part of the constructed graph, and they did
not consider predicate-argument analysis. In con-
trast, we make use of the smoothed graph during in-
ference in a probabilistic setting, in turn using it for
the full frame-semantic parsing task. Recently, Sub-
ramanya et al. (2010) proposed the use of a graph
over substructures of an underlying sequence model,
and used a smoothed graph for domain adaptation of
part-of-speech taggers. Subramanya et al.’s model
was extended by Das and Petrov (2011) to induce
part-of-speech dictionaries for unsupervised learn-
ing of taggers. Our semi-supervised learning setting
is similar to these two lines of work and, like them,
we use the graph to arrive at better final structures, in
an inductive setting (i.e., where a parametric model
is learned and then separately applied to test data,
following most NLP research).

3 Approach Overview

Our overall approach to handling unobserved targets
consists of four distinct stages. Before going into the
details of each stage individually, we provide their
overview here:

Graph Construction: A graph consisting of ver-
tices corresponding to targets is constructed us-
ing a combination of frame similarity (for ob-
served targets) and distributional similarity as
edge weights. This stage also determines a
fixed set of nearest neighbors for each vertex
in the graph.

Label Propagation: The observed targets (a small
subset of the vertices) are initialized with
empirical frame distributions extracted from

FrameNet annotations. Label propagation re-
sults in a distribution of frames for each vertex
in the graph.

Supervised Learning: Frame identification and ar-
gument identification models are trained fol-
lowing Das et al. (2010a). The graph is used
to define the set of candidate frames for unseen
targets.

Parsing: The frame identification model of
Das et al. disambiguated among only those
frames associated with a seen target in the
annotated data. For an unseen target, all frames
in the FrameNet lexicon were considered (a
large number). The current work replaces that
strategy, considering only the top M frames in
the distribution produced by label propagation.
This strategy results in large improvements
in frame identification for the unseen targets
and makes inference much faster. Argument
identification is done exactly like Das et al.
(2010a).

4 Semi-Supervised Learning

We perform semi-supervised learning by construct-
ing a graph of vertices representing a large number
of targets, and learn frame distributions for those
which were not observed in FrameNet annotations.

4.1 Graph Construction

We construct a graph with targets as vertices. For
us, each target corresponds to a lemmatized word
or phrase appended with a coarse POS tag, and it
resembles the lexical units in the FrameNet lexicon.
For example, two targets corresponding to the same
lemma would look like boast.N and boast.V. Here,
the first target is a noun, while the second is a verb.
An example multiword target is chemical weapon.N.

We use two resources for graph construction.
First, we take all the words and phrases present in
the dependency-based thesaurus constructed using
syntactic cooccurrence statistics (Lin, 1998).3 To
construct this resource, a corpus containing 64 mil-
lion words was parsed with a fast dependency parser
(Lin, 1993; Lin, 1994), and syntactic contexts were
used to find similar lexical items for a given word
3This resource is available at http://webdocs.cs.
ualberta.ca/˜lindek/Downloads/sim.tgz
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Figure 2: Excerpt from a graph
over targets. Green targets are
observed in the FrameNet data.
Above/below them are shown the
most frequently observed frame
that these targets evoke. The black
targets are unobserved and label
propagation produces a distribution
over most likely frames that they
could evoke.

or phrase. Lin separately treated nouns, verbs and
adjectives/adverbs and the thesaurus contains three
parts for each of these categories. For each item in
the thesaurus, 200 nearest neighbors are listed with a
symmetric similarity score between 0 and 1. We pro-
cessed this thesaurus in two ways: first, we lower-
cased and lemmatized each word/phrase and merged
entries which shared the same lemma; second, we
separated the adjectives and adverbs into two lists
from Lin’s original list by scanning a POS-tagged
version of the Gigaword corpus (Graff, 2003) and
categorizing each item into an adjective or an ad-
verb depending on which category the item associ-
ated with more often in the data. The second step
was necessary because FrameNet treats adjectives
and adverbs separately. At the end of this processing
step, we were left with 61,702 units—approximately
six times more than the targets found in FrameNet
annotations—each labeled with one of 4 coarse tags.
We considered only the top 20 most similar targets
for each target, and noted Lin’s similarity between
two targets t and u, which we call simDL(t, u).

The second component of graph construction
comes from FrameNet itself. We scanned the exem-
plar sentences in FrameNet 1.54 and the training sec-
tion of the full-text annotations that we use to train
the probabilistic frame parser (see §6.1), and gath-
ered a distribution over frames for each target. For
a pair of targets t and u, we measured the Euclidean
distance5 between their frame distributions. This
distance was next converted to a similarity score,
namely, simFN (t, u) between 0 and 1 by subtract-
ing each one from the maximum distance found in

4http://framenet.icsi.berkeley.edu
5This could have been replaced by an entropic distance metric
like KL- or JS-divergence, but we leave that exploration to fu-
ture work.

the whole data, followed by normalization. Like
simDL(t, u), this score is symmetric. This resulted
in 9,263 targets, and again for each, we considered
the 20 most similar targets. Finally, the overall sim-
ilarity between two given targets t and u was com-
puted as:

sim(t, u) = α · simFN (t, u) + (1−α) · simDL(t, u)

Note that this score is symmetric because its two
components are symmetric. The intuition behind
taking a linear combination of the two types of sim-
ilarity functions is as follows. We hope that distri-
butionally similar targets would have the same se-
mantic frames because ideally, lexical units evoking
the same set of frames appear in similar syntactic
contexts. We would also like to involve the anno-
tated data in graph construction so that it can elim-
inate some noise in the automatically constructed
thesaurus.6 Let K(t) denote the K most similar tar-
gets to target t, under the score sim. We link vertices
t and u in the graph with edge weight wtu, defined
as:

wtu =

{
sim(t, u) if t ∈ K(u) or u ∈ K(t)

0 otherwise
(1)

The hyperparameters α and K are tuned by cross-
validation (§6.3).

4.2 Label Propagation
First, we softly label those vertices of the con-
structed graph for which frame distributions are
available from the FrameNet data (the same distri-
butions that are used to compute simFN ). Thus, ini-
tially, a small fraction of the vertices in the graph
6In future work, one might consider learning a similarity metric
from the annotated data, so as to exactly suit the frame identi-
fication task.
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have soft frame labels on them. Figure 2 shows an
excerpt from a constructed graph. For simplicity,
only the most probable frames under the empirical
distribution for the observed targets are shown; we
actually label each vertex with the full empirical dis-
tribution over frames for the corresponding observed
target in the data. The dotted lines demarcate parts
of the graph that associate with different frames. La-
bel propagation helps propagate the initial soft labels
throughout the graph. To this end, we use a vari-
ant of the quadratic cost criterion of Bengio et al.
(2006), also used by Subramanya et al. (2010) and
Das and Petrov (2011).7

Let V denote the set of all vertices in the graph,
Vl ⊂ V be the set of known targets and F denote the
set of all frames. Let N (t) denote the set of neigh-
bors of vertex t ∈ V . Let q = {q1, q2, . . . , q|V |}
be the set of frame distributions, one per vertex. For
each known target t ∈ Vl, we have an initial frame
distribution rt. For every edge in the graph, weights
are defined as in Eq. 1. We find q by solving:

arg minq

∑
t∈Vl
‖rt − qt‖2

+ µ
∑

t∈V,u∈N (t)wtu‖qt − qu‖2

+ ν
∑

t∈V ‖qt − 1
|F|‖

2

s.t. ∀t ∈ V,
∑

f∈F qt(f) = 1

∀t ∈ V, f ∈ F , qt(f) ≥ 0
(2)

We use a squared loss to penalize various pairs of
distributions over frames: ‖a−b‖2 =

∑
f∈F (a(f)−

b(f))2. The first term in Eq. 2 requires that, for
known targets, we stay close to the initial frame dis-
tributions. The second term is the graph smooth-
ness regularizer, which encourages the distributions
of similar nodes (large wtu) to be similar. The fi-
nal term is a regularizer encouraging all distributions
to be uniform to the extent allowed by the first two
terms. (If an unlabeled vertex does not have a path
to any labeled vertex, this term ensures that its con-
verged marginal will be uniform over all frames.) µ
and ν are hyperparameters whose choice we discuss
in §6.3.

Note that Eq. 2 is convex in q. While it is possible
to derive a closed form solution for this objective
7Instead of a quadratic cost, an entropic distance measure could
have been used, e.g., KL-divergence, considered by Subra-
manya and Bilmes (2009). We do not explore that direction
in the current paper.

function, it would require the inversion of a |V |×|V |
matrix. Hence, like Subramanya et al. (2010), we
employ an iterative method with updates defined as:

γt(f) ← rt(f)1{t ∈ Vl} (3)

+ µ
∑

u∈N (t)

wtuq(m−1)
u (f) +

ν

|F|

κt ← 1{t ∈ Vl}+ ν + µ
∑

u∈N (t)

wtu (4)

q
(m)
t (f) ← γt(f)/κt (5)

Here, 1{·} is an indicator function. The iterative
procedure starts with a uniform distribution for each
q

(0)
t . For all our experiments, we run 10 iterations

of the updates. The final distribution of frames for a
target t is denoted by q∗t .

5 Learning and Inference for
Frame-Semantic Parsing

In this section, we briefly review learning and infer-
ence techniques used in the frame-semantic parser,
which are largely similar to Das et al. (2010a), ex-
cept the handling of unknown targets. Note that in
all our experiments, we assume that the targets are
marked in a given sentence of which we want to ex-
tract a frame-semantic analysis. Therefore, unlike
the systems presented in SemEval’07, we do not de-
fine a target identification module.

5.1 Frame Identification
For a given sentence x with frame-evoking targets
t, let ti denote the ith target (a word sequence). We
seek a list f = 〈f1, . . . , fm〉 of frames, one per tar-
get. LetL be the set of targets found in the FrameNet
annotations. Let Lf ⊆ L be the subset of these tar-
gets annotated as evoking a particular frame f .

The set of candidate frames Fi for ti is defined to
include every frame f such that ti ∈ Lf . If ti 6∈ L
(in other words, ti is unseen), then Das et al. (2010a)
considered all frames F in FrameNet as candidates.
Instead, in our work, we check whether ti ∈ V ,
where V are the vertices of the constructed graph,
and set:

Fi = {f : f ∈M -best frames under q∗ti} (6)

The integer M is set using cross-validation (§6.3).
If ti 6∈ V , then all frames F are considered as Fi.
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The frame prediction rule uses a probabilistic model
over frames for a target:

fi ← arg maxf∈Fi

∑
`∈Lf

p(f, ` | ti,x) (7)

Note that a latent variable ` ∈ Lf is used, which
is marginalized out. Broadly, lexical semantic re-
lationships between the “prototype” variable ` (be-
longing to the set of seen targets for a frame f ) and
the target ti are used as features for frame identifi-
cation, but since ` is unobserved, it is summed out
both during inference and training. A conditional
log-linear model is used to model this probability:
for f ∈ Fi and ` ∈ Lf , pθ(f, ` | ti,x) =

expθ>g(f, `, ti,x)∑
f ′∈Fi

∑
`′∈Lf ′ expθ>g(f ′, `′, ti,x)

(8)

where θ are the model weights, and g is a vector-
valued feature function. This discriminative formu-
lation is very flexible, allowing for a variety of (pos-
sibly overlapping) features; e.g., a feature might re-
late a frame f to a prototype `, represent a lexical-
semantic relationship between ` and ti, or encode
part of the syntax of the sentence (Das et al., 2010b).

Given some training data, which is of the form〈
〈x(j), t(j), f (j),A(j)〉

〉N
j=1

(where N is the number
of sentences in the data and A is the set of argu-
ment in a sentence), we discriminatively train the
frame identification model by maximizing the fol-
lowing log-likelihood:8

max
θ

N∑
j=1

mj∑
i=1

log
∑

`∈L
f
(j)
i

pθ(f
(j)
i , ` | t(j)i ,x(j)) (9)

This non-convex objective function is locally op-
timized using a distributed implementation of L-
BFGS (Liu and Nocedal, 1989).9

5.2 Argument Identification

Given a sentence x = 〈x1, . . . , xn〉, the set of tar-
gets t = 〈t1, . . . , tm〉, and a list of evoked frames

8We found no benefit from using an L2 regularizer.
9While training, in the partition function of the log-linear
model, all framesF in FrameNet are summed up for a target ti

instead of only Fi (as in Eq. 8), to learn interactions between
the latent variables and different sentential contexts.

f = 〈f1, . . . , fm〉 corresponding to each target, ar-
gument identification or SRL is the task of choos-
ing which of each fi’s roles are filled, and by which
parts of x. We directly adopt the model of Das et
al. (2010a) for the argument identification stage and
briefly describe it here.

Let Rfi
= {r1, . . . , r|Rfi

|} denote frame fi’s
roles observed in FrameNet annotations. A set S of
spans that are candidates for filling any role r ∈ Rfi

are identified in the sentence. In principle, S could
contain any subsequence of x, but we consider only
the set of contiguous spans that (a) contain a sin-
gle word or (b) comprise a valid subtree of a word
and all its descendants in a dependency parse. The
empty span is also included in S, since some roles
are not explicitly filled. During training, if an argu-
ment is not a valid subtree of the dependency parse
(this happens due to parse errors), we add its span
to S. Let Ai denote the mapping of roles in Rfi

to
spans in S. The model makes a prediction for each
Ai(rk) (for all roles rk ∈ Rfi

):

Ai(rk)← arg maxs∈S p(s | rk, fi, ti,x) (10)

A conditional log-linear model over spans for each
role of each evoked frame is defined as:

pψ(Ai(rk) = s | fi, ti,x) = (11)

expψ>h(s, rk, fi, ti,x)∑
s′∈S expψ>h(s′, rk, fi, ti,x)

This model is trained by optimizing:

max
ψ

N∑
j=1

mj∑
i=1

|R
f
(j)
i

|∑
k=1

log pψ(A(j)
i (rk) | f

(j)
i , t

(j)
i ,x(j))

This objective function is convex, and we globally
optimize it using the distributed implementation of
L-BFGS. We regularize by including − 1

10‖ψ‖
2
2 in

the objective (the strength is not tuned). Naı̈ve pre-
diction of roles using Equation 10 may result in
overlap among arguments filling different roles of a
frame, since the argument identification model fills
each role independently of the others. We want
to enforce the constraint that two roles of a sin-
gle frame cannot be filled by overlapping spans.
Hence, illegal overlap is disallowed using a 10,000-
hypothesis beam search.
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UNKNOWN TARGETS ALL TARGETS

Model Exact
Match

Partial
Match

Exact
Match

Partial
Match

SEMAFOR 23.08 46.62 82.97 90.51
Self-training 18.88 42.67 82.45 90.19

LinGraph 36.36 59.47 83.40 90.93
FullGraph 39.86 62.35∗ 83.51 91.02∗

Table 1: Frame identification results in percentage accu-
racy on 4,458 test targets. Bold scores indicate significant
improvements relative to SEMAFOR and (∗) denotes sig-
nificant improvements over LinGraph (p < 0.05).

6 Experiments and Results

Before presenting our experiments and results, we
will describe the datasets used in our experiments,
and the various baseline models considered.

6.1 Data

We make use of the FrameNet 1.5 lexicon released
in 2010. This lexicon is a superset of previous ver-
sions of FrameNet. It contains 154,607 exemplar
sentences with one marked target and frame-role an-
notations. 78 documents with full-text annotations
with multiple frames per sentence were also released
(a superset of the SemEval’07 dataset). We ran-
domly selected 55 of these documents for training
and treated the 23 remaining ones as our test set.
After scanning the exemplar sentences and the train-
ing data, we arrived at a set of 877 frames, 1,068
roles,10 and 9,263 targets. Our training split of
the full-text annotations contained 3,256 sentences
with 19,582 frame annotatations with correspond-
ing roles, while the test set contained 2,420 sen-
tences with 4,458 annotations (the test set contained
fewer annotated targets per sentence). We also di-
vide the 55 training documents into 5 parts for cross-
validation (see §6.3). The raw sentences in all the
training and test documents were preprocessed us-
ing MXPOST (Ratnaparkhi, 1996) and the MST de-
pendency parser (McDonald et al., 2005) following
Das et al. (2010a). In this work we assume the
frame-evoking targets have been correctly identified
in training and test data.

10Note that the number of listed roles in the lexicon is nearly
9,000, but their number in actual annotations is a lot fewer.

6.2 Baselines
We compare our model with three baselines. The
first baseline is the purely supervised model of Das
et al. (2010a) trained on the training split of 55
documents. Note that this is the strongest baseline
available for this task;11 we refer to this model as
“SEMAFOR.”

The second baseline is a semi-supervised self-
trained system, where we used SEMAFOR to label
70,000 sentences from the Gigaword corpus with
frame-semantic parses. For finding targets in a raw
sentence, we used a relaxed target identification
scheme, where we marked every target seen in the
lexicon and all other words which were not prepo-
sitions, particles, proper nouns, foreign words and
Wh-words as potential frame evoking units. This
was done so as to find unseen targets and get frame
annotations with SEMAFOR on them. We appended
these automatic annotations to the training data, re-
sulting in 711,401 frame annotations, more than 36
times the supervised data. These data were next used
to train a frame identification model (§5.1).12 This
setup is very similar to Bejan (2009) who used self-
training to improve frame identification. We refer to
this model as “Self-training.”

The third baseline uses a graph constructed only
with Lin’s thesaurus, without using supervised data.
In other words, we followed the same scheme as in
§4.1 but with the hyperparameter α = 0. Next, la-
bel propagation was run on this graph (and hyper-
parameters tuned using cross validation). The poste-
rior distribution of frames over targets was next used
for frame identification (Eq. 6-7), with SEMAFOR
as the trained model. This model, which is very sim-
ilar to our full model, is referred to as “LinGraph.”

“FullGraph” refers to our full system.

6.3 Experimental Setup
We used five-fold cross-validation to tune the hy-
perparameters α, K, µ, and M in our model. The
11We do not compare our model with other systems, e.g. the

ones submitted to SemEval’07 shared task, because SE-
MAFOR outperforms them significantly (Das et al., 2010a)
on the previous version of the data. Moreover, we trained our
models on the new FrameNet 1.5 data, and training code for
the SemEval’07 systems was not readily available.

12Note that we only self-train the frame identification model and
not the argument identification model, which is fixed through-
out.
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UNKNOWN TARGETS ALL TARGETS

Model Exact Match Partial Match Exact Match Partial Match
P R F1 P R F1 P R F1 P R F1

SEMAFOR 19.59 16.48 17.90 33.03 27.80 30.19 66.15 61.64 63.82 70.68 65.86 68.18
Self-training 15.44 13.00 14.11 29.08 24.47 26.58 65.78 61.30 63.46 70.39 65.59 67.90
LinGraph 29.74 24.88 27.09 44.08 36.88 40.16 66.43 61.89 64.08 70.97 66.13 68.46
FullGraph 35.27∗ 28.84∗ 31.74∗ 48.81∗ 39.91∗ 43.92∗ 66.59∗ 62.01∗ 64.22∗ 71.11∗ 66.22∗ 68.58∗

Table 2: Full frame-semantic parsing precision, recall and F1 score on 2,420 test sentences. Bold scores indicate
significant improvements relative to SEMAFOR and (∗) denotes significant improvements over LinGraph (p < 0.05).

uniform regularization hyperparameter ν for graph
construction was set to 10−6 and not tuned. For
each cross-validation split, four folds were used to
train a frame identification model, construct a graph,
run label propagation and then the model was tested
on the fifth fold. This was done for all hyperpa-
rameter settings, which were α ∈ {0.2, 0.5, 0.8},
K ∈ {5, 10, 15, 20}, µ ∈ {0.01, 0.1, 0.3, 0.5, 1.0}
and M ∈ {2, 3, 5, 10}. The joint setting which per-
formed the best across five-folds was α = 0.2,K =
10, µ = 1.0,M = 2. Similar tuning was also done
for the baseline LinGraph, where α was set to 0,
and rest of the hyperparameters were tuned (the se-
lected hyperparameters were K = 10, µ = 0.1 and
M = 2). With the chosen set of hyperparameters,
the test set was used to measure final performance.

The standard evaluation script from the Se-
mEval’07 task calculates precision, recall, and F1-
score for frames and arguments; it also provides a
score that gives partial credit for hypothesizing a
frame related to the correct one in the FrameNet lex-
icon. We present precision, recall, and F1-measure
microaveraged across the test documents, report
labels-only matching scores (spans must match ex-
actly), and do not use named entity labels. This eval-
uation scheme follows Das et al. (2010a). Statistical
significance is measured using a reimplementation
of Dan Bikel’s parsing evaluation comparator.13

6.4 Results

Tables 1 and 2 present results for frame identifica-
tion and full frame-semantic parsing respectively.
They also separately tabulate the results achieved
for unknown targets. Our full model, denoted by
“FullGraph,” outperforms all the baselines for both
tasks. Note that the Self-training model even falls

13http://www.cis.upenn.edu/˜dbikel/
software.html#comparator

short of the supervised baseline SEMAFOR, unlike
what was observed by Bejan (2009) for the frame
identification task. The model using a graph con-
structed solely from the thesaurus (LinGraph) out-
performs both the supervised and the self-training
baselines for all tasks, but falls short of the graph
constructed using the similarity metric that is a lin-
ear combination of distributional similarity and su-
pervised frame similarity. This indicates that a graph
constructed with some knowledge of the supervised
data is more powerful.

For unknown targets, the gains of our approach
are impressive: 15.7% absolute accuracy improve-
ment over SEMAFOR for frame identification, and
13.7% absolute F1 improvement over SEMAFOR
for full frame-semantic parsing (both significant).
When all the test targets are considered, the gains
are still significant, resulting in 5.4% relative error
reduction over SEMAFOR for frame identification,
and 1.3% relative error reduction over SEMAFOR
for full-frame semantic parsing.

Although these improvements may seem modest,
this is because only 3.2% of the test set targets are
unseen in training. We expect that further gains
would be realized in different text domains, where
FrameNet coverage is presumably weaker than in
news data. A semi-supervised strategy like ours is
attractive in such a setting, and future work might
explore such an application.

Our approach also makes decoding much faster.
For the unknown component of the test set, SE-
MAFOR takes a total 111 seconds to find the best
set of frames, while the FullGraph model takes only
19 seconds to do so, thus bringing disambiguation
time down by a factor of nearly 6. This is be-
cause our model now disambiguates between only
M = 2 frames instead of the full set of 877 frames
in FrameNet. For the full test set too, the speedup
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t = discrepancy.N t = contribution.N t = print.V t = mislead.V
f q∗t (f) f q∗t (f) f q∗t (f) f q∗t (f)
∗SIMILARITY 0.076 ∗GIVING 0.167 ∗TEXT CREATION 0.081 EXPERIENCER OBJ 0.152
NATURAL FEATURES 0.066 MONEY 0.046 SENDING 0.054 ∗PREVARICATION 0.130
PREVARICATION 0.012 COMMITMENT 0.046 DISPERSAL 0.054 MANIPULATE INTO DOING 0.046
QUARRELING 0.007 ASSISTANCE 0.040 READING 0.042 COMPLIANCE 0.041
DUPLICATION 0.007 EARNINGS AND LOSSES 0.024 STATEMENT 0.028 EVIDENCE 0.038

Table 3: Top 5 frames according to the graph posterior distribution q∗t (f) for four targets: discrepancy.N, contri-
bution.N, print.V and mislead.V. None of these targets were present in the supervised FrameNet data. ∗ marks the
correct frame, according to the test data. EXPERIENCER OBJ is described in FrameNet as “Some phenomenon (the
Stimulus) provokes a particular emotion in an Experiencer.”

is noticeable, as SEMAFOR takes 131 seconds for
frame identification, while the FullGraph model only
takes 39 seconds.

6.5 Discussion

The following is an example from our test set show-
ing SEMAFOR’s output (for one target):

REASON
Discrepancies

discrepancy.N
between North Korean de-

clarations and IAEA inspection findingsAction
indicate that North Korea might have re-
processed enough plutonium for one or
two nuclear weapons.

Note that the model identifies an incorrect frame
REASON for the target discrepancy.N, in turn identi-
fying the wrong semantic role Action for the under-
lined argument. On the other hand, the FullGraph
model exactly identifies the right semantic frame,
SIMILARITY, as well as the correct role, Entities. This
improvement can be easily explained. The excerpt
from our constructed graph in Figure 2 shows the
same target discrepancy.N in black, conveying that
it did not belong to the supervised data. However,
it is connected to the target difference.N drawn from
annotated data, which evokes the frame SIMILARITY.
Thus, after label propagation, we expect the frame
SIMILARITY to receive high probability for the target
discrepancy.N.

Table 3 shows the top 5 frames that are assigned
the highest posterior probabilities in the distribu-
tion q∗t for four hand-selected test targets absent in
supervised data, including discrepancy.N. For all
of them, the FullGraph model identifies the correct
frames for all four words in the test data by rank-
ing these frames in the top M = 2. LinGraph

also gets all four correct, Self-training only gets
print.V/TEXT CREATION, and SEMAFOR gets none.

Across unknown targets, on average the M = 2
most common frames in the posterior distribution
q∗t found by FullGraph have q(∗)

t (f) = 7
877 , or

seven times the average across all frames. This sug-
gests that the graph propagation method is confi-
dent only in predicting the top few frames out of
the whole possible set. Moreover, the automatically
selected number of frames to extract per unknown
target, M = 2, suggests that only a few meaningful
frames were assigned to unknown predicates. This
matches the nature of FrameNet data, where the av-
erage frame ambiguity for a target type is 1.20.

7 Conclusion

We have presented a semi-supervised strategy to
improve the coverage of a frame-semantic pars-
ing model. We showed that graph-based label
propagation and resulting smoothed frame distri-
butions over unseen targets significantly improved
the coverage of a state-of-the-art semantic frame
disambiguation model to previously unseen pred-
icates, also improving the quality of full frame-
semantic parses. The improved parser is available at
http://www.ark.cs.cmu.edu/SEMAFOR.
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