
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 1109–1116,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

Ordering Prenominal Modifiers with a Reranking Approach

Jenny Liu
MIT CSAIL

jyliu@csail.mit.edu

Aria Haghighi
MIT CSAIL

me@aria42.com

Abstract

In this work, we present a novel approach
to the generation task of ordering prenomi-
nal modifiers. We take a maximum entropy
reranking approach to the problem which ad-
mits arbitrary features on a permutation of
modifiers, exploiting hundreds of thousands of
features in total. We compare our error rates to
the state-of-the-art and to a strong Google n-
gram count baseline. We attain a maximum
error reduction of 69.8% and average error re-
duction across all test sets of 59.1% compared
to the state-of-the-art and a maximum error re-
duction of 68.4% and average error reduction
across all test sets of 41.8% compared to our
Google n-gram count baseline.

1 Introduction

Speakers rarely have difficulty correctly ordering
modifiers such as adjectives, adverbs, or gerunds
when describing some noun. The phrase “beau-
tiful blue Macedonian vase” sounds very natural,
whereas changing the modifier ordering to “blue
Macedonian beautiful vase” is awkward (see Table
1 for more examples). In this work, we consider
the task of ordering an unordered set of prenomi-
nal modifiers so that they sound fluent to native lan-
guage speakers. This is an important task for natural
language generation systems.

Much linguistic research has investigated the se-
mantic constraints behind prenominal modifier or-
derings. One common line of research suggests
that modifiers can be organized by the underlying
semantic property they describe and that there is

a. the vegetarian French lawyer
b. the French vegetarian lawyer

a. the beautiful small black purse
b. the beautiful black small purse
c. the small beautiful black purse
d. the small black beautiful purse

Table 1: Examples of restrictions on modifier orderings
from Teodorescu (2006). The most natural sounding or-
dering is in bold, followed by other possibilities that may
only be appropriate in certain situations.

an ordering on semantic properties which in turn
restricts modifier orderings. For instance, Sproat
and Shih (1991) contend that the size property pre-
cedes the color property and thus “small black cat”
sounds more fluent than “black small cat”. Using
> to denote precedence of semantic groups, some
commonly proposed orderings are: quality > size
> shape > color > provenance (Sproat and Shih,
1991), age > color > participle > provenance >

noun > denominal (Quirk et al., 1974), and value
> dimension > physical property > speed > human
propensity > age > color (Dixon, 1977). However,
correctly classifying modifiers into these groups can
be difficult and may be domain dependent or con-
strained by the context in which the modifier is being
used. In addition, these methods do not specify how
to order modifiers within the same class or modifiers
that do not fit into any of the specified groups.

There have also been a variety of corpus-based,
computational approaches. Mitchell (2009) uses

1109



a class-based approach in which modifiers are
grouped into classes based on which positions they
prefer in the training corpus, with a predefined or-
dering imposed on these classes. Shaw and Hatzi-
vassiloglou (1999) developed three different ap-
proaches to the problem that use counting methods
and clustering algorithms, and Malouf (2000) ex-
pands upon Shaw and Hatzivassiloglou’s work.

This paper describes a computational solution to
the problem that uses relevant features to model the
modifier ordering process. By mapping a set of
features across the training data and using a maxi-
mum entropy reranking model, we can learn optimal
weights for these features and then order each set of
modifiers in the test data according to our features
and the learned weights. This approach has not been
used before to solve the prenominal modifier order-
ing problem, and as we demonstrate, vastly outper-
forms the state-of-the-art, especially for sequences
of longer lengths.

Section 2 of this paper describes previous compu-
tational approaches. In Section 3 we present the de-
tails of our maximum entropy reranking approach.
Section 4 covers the evaluation methods we used,
and Section 5 presents our results. In Section 6 we
compare our approach to previous methods, and in
Section 7 we discuss future work and improvements
that could be made to our system.

2 Related Work

Mitchell (2009) orders sequences of at most 4 mod-
ifiers and defines nine classes that express the broad
positional preferences of modifiers, where position
1 is closest to the noun phrase (NP) head and posi-
tion 4 is farthest from it. Classes 1 through 4 com-
prise those modifiers that prefer only to be in posi-
tions 1 through 4, respectively. Class 5 through 7
modifiers prefer positions 1-2, 2-3, and 3-4, respec-
tively, while class 8 modifiers prefer positions 1-3,
and finally, class 9 modifiers prefer positions 2-4.
Mitchell counts how often each word type appears in
each of these positions in the training corpus. If any
modifier’s probability of taking a certain position is
greater than a uniform distribution would allow, then
it is said to prefer that position. Each word type is
then assigned a class, with a global ordering defined
over the nine classes.

Given a set of modifiers to order, if the entire
set has been seen at training time, Mitchell’s sys-
tem looks up the class of each modifier and then or-
ders the sequence based on the predefined ordering
for the classes. When two modifiers have the same
class, the system picks between the possibilities ran-
domly. If a modifier was not seen at training time
and thus cannot be said to belong to a specific class,
the system favors orderings where modifiers whose
classes are known are as close to their classes’ pre-
ferred positions as possible.

Shaw and Hatzivassiloglou (1999) use corpus-
based counting methods as well. For a corpus with
w word types, they define a w × w matrix where
Count[A, B] indicates how often modifier A pre-
cedes modifier B. Given two modifiers a and b to
order, they compare Count[a, b] and Count[b, a] in
their training data. Assuming a null hypothesis that
the probability of either ordering is 0.5, they use a
binomial distribution to compute the probability of
seeing the ordering < a, b > for Count[a, b] num-
ber of times. If this probability is above a certain
threshold then they say that a precedes b. Shaw and
Hatzivassiloglou also use a transitivity method to fill
out parts of the Count table where bigrams are not
actually seen in the training data but their counts can
be inferred from other entries in the table, and they
use a clustering method to group together modifiers
with similar positional preferences.

These methods have proven to work well, but they
also suffer from sparsity issues in the training data.
Mitchell reports a prediction accuracy of 78.59%
for NPs of all lengths, but the accuracy of her ap-
proach is greatly reduced when two modifiers fall
into the same class, since the system cannot make
an informed decision in those cases. In addition, if a
modifier is not seen in the training data, the system
is unable to assign it a class, which also limits accu-
racy. Shaw and Hatzivassiloglou report a highest ac-
curacy of 94.93% and a lowest accuracy of 65.93%,
but since their methods depend heavily on bigram
counts in the training corpus, they are also limited in
how informed their decisions can be if modifiers in
the test data are not present at training time.

In this next section, we describe our maximum
entropy reranking approach that tries to develop a
more comprehensive model of the modifier ordering
process to avoid the sparsity issues that previous ap-

1110



proaches have faced.

3 Model

We treat the problem of prenominal modifier or-
dering as a reranking problem. Given a set B of
prenominal modifiers and a noun phrase head H

which B modifies, we define π(B) to be the set of all
possible permutations, or orderings, of B. We sup-
pose that for a set B there is some x

∗ ∈ π(B) which
represents a “correct” natural-sounding ordering of
the modifiers in B.

At test time, we choose an ordering x ∈ π(B) us-
ing a maximum entropy reranking approach (Collins
and Koo, 2005). Our distribution over orderings
x ∈ π(B) is given by:

P (x|H, B, W ) =
exp{W T

φ(B, H, x)}�
x�∈π(B) exp{W T φ(B, H, x�)}

where φ(B, H, x) is a feature vector over a particu-
lar ordering of B and W is a learned weight vector
over features. We describe the set of features in sec-
tion 3.1, but note that we are free under this formu-
lation to use arbitrary features on the full ordering x

of B as well as the head noun H , which we implic-
itly condition on throughout. Since the size of the
set of prenominal modifiers B is typically less than
six, enumerating π(B) is not expensive.

At training time, our data consists of sequences of
prenominal orderings and their corresponding nom-
inal heads. We treat each sequence as a training ex-
ample where the labeled ordering x

∗ ∈ π(B) is the
one we observe. This allows us to extract any num-
ber of ‘labeled’ examples from part-of-speech text.
Concretely, at training time, we select W to maxi-
mize:

L(W ) =




�

(B,H,x∗)

P (x∗|H, B, W )



− �W�2

2σ2

where the first term represents our observed data
likelihood and the second the �2 regularization,
where σ

2 is a fixed hyperparameter; we fix the value
of σ

2 to 0.5 throughout. We optimize this objective
using standard L-BFGS optimization techniques.

The key to the success of our approach is us-
ing the flexibility afforded by having arbitrary fea-
tures φ(B, H, x) to capture all the salient elements

of the prenominal ordering data. These features can
be used to create a richer model of the modifier or-
dering process than previous corpus-based counting
approaches. In addition, we can encapsulate previ-
ous approaches in terms of features in our model.
Mitchell’s class-based approach can be expressed as
a binary feature that tells us whether a given permu-
ation satisfies the class ordering constraints in her
model. Previous counting approaches can be ex-
pressed as a real-valued feature that, given all n-
grams generated by a permutation of modifiers, re-
turns the count of all these n-grams in the original
training data.

3.1 Feature Selection

Our features are of the form φ(B, H, x) as expressed
in the model above, and we include both indica-
tor features and real-valued numeric features in our
model. We attempt to capture aspects of the modifier
permutations that may be significant in the ordering
process. For instance, perhaps the majority of words
that end with -ly are adverbs and should usually be
positioned farthest from the head noun, so we can
define an indicator function that captures this feature
as follows:

φ(B, H, x) =






1 if the modifier in position i

of ordering x ends in -ly
0 otherwise

We create a feature of this form for every possible
modifier position i from 1 to 4.

We might also expect permutations that contain n-
grams previously seen in the training data to be more
natural sounding than other permutations that gener-
ate n-grams that have not been seen before. We can
express this as a real-valued feature:

φ(B, H, x) =

�
count in training data of all
n-grams present in x

See Table 2 for a summary of our features. Many
of the features we use are similar to those in Dunlop
et al. (2010), which uses a feature-based multiple se-
quence alignment approach to order modifiers.

1111



Numeric Features
n-gram Count If N is the set of all n-grams present in the permutation, returns

the sum of the counts of each element of N in the training data.
A separate feature is created for 2-gms through 5-gms.

Count of Head Noun and Closest Modifier Returns the count of < M, H > in the training data where H is
the head noun and M is the modifier closest to H .

Length of Modifier∗ Returns the length of modifier in position i

Indicator Features
Hyphenated∗ Modifier in position i contains a hyphen.
Is Word w∗ Modifier in position i is word w � W , where W is the set of all

word types in the training data.
Ends In e∗ Modifier in position i ends in suffix e � E, where E = {-al -ble

-ed -er -est -ic -ing -ive -ly -ian}
Is A Color∗ Modifier in position i is a color, where we use a list of common

colors
Starts With a Number∗ Modifier in position i starts with a number
Is a Number∗ Modifier in position i is a number
Satisfies Mitchell Class Ordering The permutation’s class ordering satisfies the Mitchell class or-

dering constraints

Table 2: Features Used In Our Model. Features with an asterisk (*) are created for all possible modifier positions i

from 1 to 4.

4 Experiments

4.1 Data Preprocessing and Selection

We extracted all noun phrases from four corpora: the
Brown, Switchboard, and Wall Street Journal cor-
pora from the Penn Treebank, and the North Amer-
ican Newswire corpus (NANC). Since there were
very few NPs with more than 5 modifiers, we kept
those with 2-5 modifiers and with tags NN or NNS
for the head noun. We also kept NPs with only 1
modifier to be used for generating <modifier, head
noun> bigram counts at training time. We then fil-
tered all these NPs as follows: If the NP contained
a PRP, IN, CD, or DT tag and the corresponding
modifier was farthest away from the head noun, we
removed this modifier and kept the rest of the NP. If
the modifier was not the farthest away from the head
noun, we discarded the NP. If the NP contained a
POS tag we only kept the part of the phrase up to this
tag. Our final set of NPs had tags from the following
list: JJ, NN, NNP, NNS, JJS, JJR, VBG, VBN, RB,
NNPS, RBS. See Table 3 for a summary of the num-
ber of NPs of lengths 1-5 extracted from the four

corpora.

Our system makes several passes over the data
during the training process. In the first pass,
we collect statistics about the data, to be used
later on when calculating our numeric features.
To collect the statistics, we take each NP in
the training data and consider all possible 2-
gms through 5-gms that are present in the NP’s
modifier sequence, allowing for non-consecutive
n-grams. For example, the NP “the beautiful
blue Macedonian vase” generates the following bi-
grams: <beautiful blue>, <blue Macedonian>,
and <beautiful Macedonian>, along with the 3-
gram <beautiful blue Macedonian>. We keep a
table mapping each unique n-gram to the number
of times it has been seen in the training data. In
addition, we also store a table that keeps track of
bigram counts for < M, H >, where H is the
head noun of an NP and M is the modifier clos-
est to it. In the example “the beautiful blue Mace-
donian vase,” we would increment the count of <

Macedonian, vase > in the table. The n-gram and
< M, H > counts are used to compute numeric fea-

1112



Number of Sequences (Token)

1 2 3 4 5 Total
Brown 11,265 1,398 92 8 2 12,765
WSJ 36,313 9,073 1,399 229 156 47,170
Switchboard 10,325 1,170 114 4 1 11,614
NANC 15,456,670 3,399,882 543,894 80,447 14,840 19,495,733

Number of Sequences (Type)

1 2 3 4 5 Total
Brown 4,071 1,336 91 8 2 5,508
WSJ 7,177 6,687 1,205 182 42 15,293
Switchboard 2,122 950 113 4 1 3,190
NANC 241,965 876,144 264,503 48,060 8,451 1,439,123

Table 3: Number of NPs extracted from our data for NP sequences with 1 to 5 modifiers.

ture values.

4.2 Google n-gram Baseline

The Google n-gram corpus is a collection of n-gram
counts drawn from public webpages with a total of
one trillion tokens – around 1 billion each of unique
3-grams, 4-grams, and 5-grams, and around 300,000
unique bigrams. We created a Google n-gram base-
line that takes a set of modifiers B, determines the
Google n-gram count for each possible permutation
in π(B), and selects the permutation with the high-
est n-gram count as the winning ordering x

∗. We
will refer to this baseline as GOOGLE N-GRAM.

4.3 Mitchell’s Class-Based Ordering of
Prenominal Modifiers (2009)

Mitchell’s original system was evaluated using only
three corpora for both training and testing data:
Brown, Switchboard, and WSJ. In addition, the
evaluation presented by Mitchell’s work considers a
prediction to be correct if the ordering of classes in
that prediction is the same as the ordering of classes
in the original test data sequence, where a class
refers to the positional preference groupings defined
in the model. We use a more stringent evaluation as
described in the next section.

We implemented our own version of Mitchell’s
system that duplicates the model and methods but

allows us to scale up to a larger training set and to
apply our own evaluation techniques. We will refer
to this baseline as CLASS BASED.

4.4 Evaluation
To evaluate our system (MAXENT) and our base-
lines, we partitioned the corpora into training and
testing data. For each NP in the test data, we gener-
ated a set of modifiers and looked at the predicted
orderings of the MAXENT, CLASS BASED, and
GOOGLE N-GRAM methods. We considered a pre-
dicted sequence ordering to be correct if it matches
the original ordering of the modifiers in the corpus.
We ran four trials, the first holding out the Brown
corpus and using it as the test set, the second hold-
ing out the WSJ corpus, the third holding out the
Switchboard corpus, and the fourth holding out a
randomly selected tenth of the NANC. For each trial
we used the rest of the data as our training set.

5 Results

The MAXENT model consistently outperforms
CLASS BASED across all test corpora and sequence
lengths for both tokens and types, except when test-
ing on the Brown and Switchboard corpora for mod-
ifier sequences of length 5, for which neither ap-
proach is able to make any correct predictions. How-
ever, there are only 3 sequences total of length 5
in the Brown and Swichboard corpora combined.

1113



Test Corpus Token Accuracy (%) Type Accuracy (%)
2 3 4 5 Total 2 3 4 5 Total

Brown GOOGLE N-GRAM 82.4 35.9 12.5 0 79.1 81.8 36.3 12.5 0 78.4
CLASS BASED 79.3 54.3 25.0 0 77.3 78.9 54.9 25.0 0 77.0
MAXENT 89.4 70.7 87.5 0 88.1 89.1 70.3 87.5 0 87.8

WSJ GOOGLE N-GRAM 84.8 53.5 31.4 71.8 79.4 82.6 49.7 23.1 16.7 76.0
CLASS BASED 85.5 51.6 16.6 0.6 78.5 85.1 50.1 19.2 0 78.0
MAXENT 95.9 84.1 71.2 80.1 93.5 94.7 81.9 70.3 45.2 92.0

Switchboard GOOGLE N-GRAM 92.8 68.4 0 0 90.3 91.7 68.1 0 0 88.8
CLASS BASED 80.1 52.6 0 0 77.3 79.1 53.1 0 0 75.9
MAXENT 91.4 74.6 25.0 0 89.6 90.3 75.2 25.0 0 88.4

One Tenth of GOOGLE N-GRAM 86.8 55.8 27.7 43.0 81.1 79.2 44.6 20.5 12.3 70.4
NANC CLASS BASED 86.1 54.7 20.1 1.9 80.0 80.3 51.0 18.4 3.3 74.5

MAXENT 95.2 83.8 71.6 62.2 93.0 91.6 78.8 63.8 44.4 88.0

Test Corpus Number of Features Used In MaxEnt Model
Brown 655,536
WSJ 654,473
Switchboard 655,791
NANC 565,905

Table 4: Token and type prediction accuracies for the GOOGLE N-GRAM, MAXENT, and CLASS BASED approaches
for modifier sequences of lengths 2-5. Our data consisted of four corpuses: Brown, Switchboard, WSJ, and NANC.
The test data was held out and each approach was trained on the rest of the data. Winning scores are in bold. The
number of features used during training for the MAXENT approach for each test corpus is also listed.

MAXENT also outperforms the GOOGLE N-GRAM
baseline for almost all test corpora and sequence
lengths. For the Switchboard test corpus token
and type accuracies, the GOOGLE N-GRAM base-
line is more accurate than MAXENT for sequences
of length 2 and overall, but the accuracy of MAX-
ENT is competitive with that of GOOGLE N-GRAM.

If we examine the error reduction between MAX-
ENT and CLASS BASED, we attain a maximum error
reduction of 69.8% for the WSJ test corpus across
modifier sequence tokens, and an average error re-
duction of 59.1% across all test corpora for tokens.
MAXENT also attains a maximum error reduction of
68.4% for the WSJ test corpus and an average error
reduction of 41.8% when compared to GOOGLE N-
GRAM.

It should also be noted that on average the MAX-

ENT model takes three hours to train with several
hundred thousand features mapped across the train-
ing data (the exact number used during each test run
is listed in Table 4) – this tradeoff is well worth the
increase we attain in system performance.

6 Analysis

MAXENT seems to outperform the CLASS BASED
baseline because it learns more from the training
data. The CLASS BASED model classifies each
modifier in the training data into one of nine broad
categories, with each category representing a differ-
ent set of positional preferences. However, many of
the modifiers in the training data get classified to the
same category, and CLASS BASED makes a random
choice when faced with orderings of modifiers all in
the same category. When applying CLASS BASED

1114



0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
Sequences of 2 Modifiers

Portion of NANC Used in Training (%)

C
o
rr

ec
t 

P
re

d
ic

ti
o
n
s 

(%
)

 

 

MaxEnt
ClassBased

(a)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
Sequences of 3 Modifiers

Portion of NANC Used in Training (%)

C
o
rr

ec
t 

P
re

d
ic

ti
o
n
s 

(%
)

 

 

MaxEnt
ClassBased

(b)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
Sequences of 4 Modifiers

Portion of NANC Used in Training (%)

C
o
rr

ec
t 

P
re

d
ic

ti
o
n
s 

(%
)

 

 

MaxEnt
ClassBased

(c)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
Sequences of 5 Modifiers

Portion of NANC Used in Training (%)

C
o
rr

ec
t 

P
re

d
ic

ti
o
n
s 

(%
)

 

 

MaxEnt
ClassBased

(d)

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100
All Modifier Sequences

Portion of NANC Used in Training (%)

C
o
rr

ec
t 

P
re

d
ic

ti
o
n
s 

(%
)

 

 

MaxEnt
ClassBased

(e)

0 20 40 60 80 100

0

1

2

3

4

5

6

7
x 10

5 Features Used by MaxEnt Model

Portion of NANC Used in Training (%)

N
u
m

b
er

 o
f 

F
ea

tu
re

s 
U

se
d

(f)

Figure 1: Learning curves for the MAXENT and CLASS BASED approaches. We start by training each approach on
just the Brown and Switchboard corpora while testing on WSJ. We incrementally add portions of the NANC corpus.
Graphs (a) through (d) break down the total correct predictions by the number of modifiers in a sequence, while graph
(e) gives accuracies over modifier sequences of all lengths. Prediction percentages are for sequence tokens. Graph (f)
shows the number of features active in the MaxEnt model as the training data scales up.

1115



to WSJ as the test data and training on the other cor-
pora, 74.7% of the incorrect predictions contained
at least 2 modifiers that were of the same positional
preferences class. In contrast, MAXENT allows us
to learn much more from the training data. As a re-
sult, we see much higher numbers when trained and
tested on the same data as CLASS BASED.

The GOOGLE N-GRAM method does better than
the CLASS BASED approach because it contains n-
gram counts for more data than the WSJ, Brown,
Switchboard, and NANC corpora combined. How-
ever, GOOGLE N-GRAM suffers from sparsity issues
as well when testing on less common modifier com-
binations. For example, our data contains rarely
heard sequences such as “Italian, state-owned, hold-
ing company” or “armed Namibian nationalist guer-
rillas.” While MAXENT determines the correct or-
dering for both of these examples, none of the per-
mutations of either example show up in the Google
n-gram corpus, so the GOOGLE N-GRAM method is
forced to randomly select from the six possibilities.
In addition, the Google n-gram corpus is composed
of sentence fragments that may not necessarily be
NPs, so we may be overcounting certain modifier
permutations that can function as different parts of a
sentence.

We also compared the effect that increasing the
amount of training data has when using the CLASS
BASED and MAXENT methods by initially train-
ing each system with just the Brown and Switch-
board corpora and testing on WSJ. Then we incre-
mentally added portions of NANC, one tenth at a
time, until the training set included all of it. The re-
sults (see Figure 1) show that we are able to benefit
from the additional data much more than the CLASS
BASED approach can, since we do not have a fixed
set of classes limiting the amount of information the
model can learn. In addition, adding the first tenth
of NANC made the biggest difference in increasing
accuracy for both approaches.

7 Conclusion

The straightforward maximum entropy reranking
approach is able to significantly outperform previous
computational approaches by allowing for a richer
model of the prenominal modifier ordering process.
Future work could include adding more features to

the model and conducting ablation testing. In addi-
tion, while many sets of modifiers have stringent or-
dering requirements, some variations on orderings,
such as “former famous actor” vs. “famous former
actor,” are acceptable in both forms and have dif-
ferent meanings. It may be beneficial to extend the
model to discover these ambiguities.

Acknowledgements
Many thanks to Margaret Mitchell, Regina Barzilay, Xiao Chen,
and members of the CSAIL NLP group for their help and sug-
gestions.

References
M. Collins and T. Koo. 2005. Discriminative reranking

for natural language parsing. Computational Linguis-
tics, 31(1):25–70.

R. M. W. Dixon. 1977. Where Have all the Adjectives
Gone? Studies in Language, 1(1):19–80.

A. Dunlop, M. Mitchell, and B. Roark. 2010. Prenomi-
nal modifier ordering via multiple sequence alignment.
In Human Language Technologies: The 2010 Annual
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, pages 600–
608. Association for Computational Linguistics.

R. Malouf. 2000. The order of prenominal adjectives
in natural language generation. In Proceedings of
the 38th Annual Meeting on Association for Computa-
tional Linguistics, pages 85–92. Association for Com-
putational Linguistics.

M. Mitchell. 2009. Class-based ordering of prenominal
modifiers. In Proceedings of the 12th European Work-
shop on Natural Language Generation, pages 50–57.
Association for Computational Linguistics.

R. Quirk, S. Greenbaum, R.A. Close, and R. Quirk. 1974.
A university grammar of English, volume 1985. Long-
man London.

J. Shaw and V. Hatzivassiloglou. 1999. Ordering among
premodifiers. In Proceedings of the 37th annual meet-
ing of the Association for Computational Linguistics
on Computational Linguistics, pages 135–143. Asso-
ciation for Computational Linguistics.

R. Sproat and C. Shih. 1991. The cross-linguistic dis-
tribution of adjective ordering restrictions. Interdisci-
plinary approaches to language, pages 565–593.

A. Teodorescu. 2006. Adjective Ordering Restrictions
Revisited. In Proceedings of the 25th West Coast Con-
ference on Formal Linguistics, pages 399–407. West
Coast Conference on Formal Linguistics.

1116


