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Abstract 

Sociolinguists have long argued that social 
context influences language use in all manner 
of ways, resulting in lects 1 . This paper ex-
plores a text classification problem we will 
call lect modeling, an example of what has 
been termed computational sociolinguistics. In 
particular, we use machine learning techniques 
to identify social power relationships between 
members of a social network, based purely on 
the content of their interpersonal communica-
tion. We rely on statistical methods, as op-
posed to language-specific engineering, to 
extract features which represent vocabulary 
and grammar usage indicative of social power 
lect. We then apply support vector machines to 
model the social power lects representing su-
perior-subordinate communication in the En-
ron email corpus. Our results validate the 
treatment of lect modeling as a text classifica-
tion problem – albeit a hard one – and consti-
tute a case for future research in computational 
sociolinguistics. 

1 Introduction 

Linguists in sociolinguistics, pragmatics and re-

lated fields have analyzed the influence of social 

context on language and have catalogued countless 

phenomena that are influenced by it, confirming 

many with qualitative and quantitative studies. In-

                                                           
* This work was done while these authors were at SET Corpo-

ration, an SAIC Company. 
1 Fields that deal with society and language have inconsistent 

terminology; “lect” is chosen here because “lect” has no other 

English definitions and the etymology of the word gives it the 

sense we consider most relevant. 

deed, social context and function influence lan-

guage at every level – morphologically, lexically, 

syntactically, and semantically, through discourse 

structure, and through higher-level abstractions 

such as pragmatics.  

Considered together, the extent to which speak-

ers modify their language for a social context 

amounts to an identifiable variation on language, 

which we call a lect. Lect is a backformation from 

words such as dialect (geographically defined lan-

guage) and ethnolect (language defined by ethnic 

context). 

In this paper, we describe lect classifiers for so-

cial power relationships. We refer to these lects as: 

 

• UpSpeak: Communication directed to 

someone with greater social authority.  

• DownSpeak: Communication directed to 

someone with less social authority.  

• PeerSpeak: Communication to someone of 

equal social authority.  

 

We call the problem of modeling these lects Social 

Power Modeling (SPM). The experiments reported 

in this paper focused primarily on modeling Up-

Speak and DownSpeak.  

Manually constructing tools that effectively 

model specific linguistic phenomena suggested by 

sociolinguistics would be a Herculean effort. 

Moreover, it would be necessary to repeat the ef-

fort in every language! Our approach first identi-

fies statistically salient phrases of words and parts 

of speech – known as n-grams – in training texts 

generated in conditions where the social power 
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relationship is known. Then, we apply machine 

learning to train classifiers with groups of these n-

grams as features. The classifiers assign the Up-

Speak and DownSpeak labels to unseen text. This 

methodology is a cost-effective approach to model-

ing social information and requires no language- or 

culture-specific feature engineering, although we 

believe sociolinguistics-inspired features hold 

promise. 

When applied to the corpus of emails sent and 

received by Enron employees (CALO Project 

2009), this approach produced solid results, despite 

a limited number of training and test instances. 

This has many implications. Since manually de-

termining the power structure of social networks is 

a time-consuming process, even for an expert, ef-

fective SPM could support data driven socio-

cultural research and greatly aid analysts doing 

national intelligence work. Social network analysis 

(SNA) presupposes a collection of individuals, 

whereas a social power lect classifier, once trained, 

would provide useful information about individual 

author-recipient links. On networks where SNA 

already has traction, SPM could provide comple-

mentary information based on the content of com-

munications.  

If SPM were yoked with sentiment analysis, we 

might identify which opinions belong to respected 

members of online communities or lay the 

groundwork for understanding how respect is 

earned in social networks. 

More broadly, computational sociolinguistics is 

a nascent field with significant potential to aid in 

modeling and understanding human relationships. 

The results in this paper suggest that successes to 

date modeling authorship, sentiment, emotion, and 

personality extend to social power modeling, and 

our approach may well be applicable to other di-

mensions of social meaning. 

In the coming sections, we first establish the 

Related Work, primarily from Statistical NLP. 

We then cover our Approach, the Evaluation, 

and, finally, the Conclusions and Future Re-

search. 

2 Related Work 

The feasibility of Social Power Modeling is sup-

ported by sociolinguistic research identifying spe-

cific ways in which a person’s language reflects his 

relative power over others. Fairclough's classic 

work Language and Power explores how 

"sociolinguistic conventions . . . arise out of -- and 

give rise to – particular relations of power" (Fair-

clough, 1989). Brown and Levinson created a the-

ory of politeness, articulating a set of strategies 

which people employ to demonstrate different lev-

els of politeness (Brown & Levinson, 1987). Mo-

rand drew upon this theory in his analysis of 

emails sent within a corporate hierarchy; in it, he 

quantitatively showed that emails from subordi-

nates to superiors are, in fact, perceived as more 

polite, and that this perceived politeness is corre-

lated with specific linguistic tactics, including ones 

set out by Brown and Levinson (Morand, 2000). 

Similarly, Erikson et al identified measurable char-

acteristics of the speech of witnesses in a court-

room setting which were directly associated with 

the witness’s level of social power (Erikson, 1978). 

Given, then, that there are distinct differences 

among what we term UpSpeak and DownSpeak, 

we treat Social Power Modeling as an instance of 

text classification (or categorization): we seek to 

assign a class (UpSpeak or DownSpeak) to a text 

sample. Closely related natural language process-

ing problems are authorship attribution, sentiment 

analysis, emotion detection, and personality classi-

fication: all aim to extract higher-level information 

from language.  

Authorship attribution in computational linguis-

tics is the task of identifying the author of a text. 

The earliest modern authorship attribution work 

was (Mosteller & Wallace, 1964), although foren-

sic authorship analysis has been around much 

longer. Mosteller and Wallace used statistical lan-

guage-modeling techniques to measure the similar-

ity of disputed Federalist Papers to samples of 

known authorship. Since then, authorship identifi-

cation has become a mature area productively ex-

ploring a broad spectrum of features (stylistic, 

lexical, syntactic, and semantic) and many genera-

tive and discriminative modeling approaches (Sta-

matatos, 2009). The generative models of 

authorship identification motivated our statistically 

extracted lexical and grammatical features, and 

future work should consider these language model-

ing (a.k.a. compression) approaches.  

Sentiment analysis, which strives to determine 

the attitude of an author from text, has recently 

garnered much attention (e.g. Pang, Lee, & Vai-

thyanathan, 2002; Kim & Hovy, 2004; Breck, Choi 
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& Cardie, 2007). For example, one problem is 

classifying user reviews as positive, negative or 

neutral. Typically, polarity lexicons (each term is 

labeled as positive, negative or neutral) help de-

termine attitudes in text (Hiroya & Takamura, 

2005, Ravichandran 2009, Choi & Cardie 2009).  

The polarity of an expression can be determined 

based on the polarity of its component lexical 

items (Choi & Cardie 2008). For example, the po-

larity of the expression is determined by the major-

ity polarity of its lexical items or by rules applied 

to syntactic patterns of expressions on how to de-

termine the polarity from its lexical components. 

McDonald et al studied models that classify senti-

ment on multiple levels of granularity: sentence 

and document-level (McDonald, 2007). Their work 

jointly classifies sentiment at both levels instead of 

using independent classifiers for each level or cas-

caded classifiers. Similar to our techniques, these 

studies determine the polarity of text based on its 

component lexical and grammatical sequences. 

Unlike their works, our text classification tech-

niques take into account the frequency of occur-

rence of word n-grams and part-of-speech (POS) 

tag sequences, and other measures of statistical 

salience in training data. 

Text-based emotion prediction is another in-

stance of text classification, where the goal is to 

detect the emotion appropriate to a text (Alm, Roth 

& Sproat, 2005) or provoked by an author, for ex-

ample (Strapparava & Mihalcea, 2008). Alm, Roth, 

and Sproat explored a broad array of lexical and 

syntactic features, reminiscent of those of author-

ship attribution, as well as features related to story 

structure. A Winnow-based learning algorithm 

trained on these features convincingly predicted an 

appropriate emotion for individual sentences of 

narrative text. Strapparava and Mihalcea try to 

predict the emotion the author of a headline intends 

to provoke by leveraging words with known affec-

tive sense and by expanding those words’ syno-

nyms. They used a Naïve Bayes classifier trained 

on short blogposts of known emotive sense. The 

knowledge engineering approaches were generally 

superior to the Naïve Bayes approach. Our ap-

proach is corpus-driven like the Naïve Bayes ap-

proach, but we interject statistically driven feature 

selection between the corpus and the machine 

learning classifiers. 

In personality classification, a person’s lan-

guage is used to classify him on different personal-

ity dimensions, such as extraversion or neuroticism 

(Oberlander & Nowson, 2006; Mairesse & Walker; 

2006). The goal is to recover the more permanent 

traits of a person, rather than fleeting characteris-

tics such as sentiment or emotion. Oberlander and 

Nowson explore using a Naïve Bayes and an SVM 

classifier to perform binary classification of text on 

each personality dimension. For example, one clas-

sifier might determine if a person displays a high 

or low level of extraversion. Their attempt to clas-

sify each personality trait as either “high” or “low” 

echoes early sentiment analysis work that reduced 

sentiments to either positive or negative (Pang, 

Lee, & Vaithyanathan, 2002), and supports ini-

tially treating Social Power Modeling as a binary 

classification task. Personality classification seems 

to be the application of text classification which is 

the most relevant to Social Power Modeling. As 

Mairesse and Walker note, certain personality 

traits are indicative of leaders. Thus, the ability to 

model personality suggests an ability to model so-

cial power lects as well.  

Apart from text classification, work from the 

topic modeling community is also closely related 

to Social Power Modeling. Andrew McCallum ex-

tended Latent Dirichlet Allocation to model the 

author and recipient dependencies of per-message 

topic distributions with an Author-Recipient-Topic 

(ART) model (McCallum, Wang, & Corrada-

Emmanuel, 2007). This was the first significant 

work to model the content and relationships of 

communication in a social network. McCallum et 

al applied ART to the Enron email corpus to show 

that the resulting topics are strongly tied to role. 

They suggest that clustering these topic distribu-

tions would yield roles and argue that the person-

to-person similarity matrix yielded by this ap-

proach has advantages over those of canonical so-

cial network analysis. The same authors proposed 

several Role-Author-Recipient-Topic (RART) 

models to model authors, roles and words simulta-

neously. With a RART modeling roles-per-word, 

they produced per-author distributions of generated 

roles that appeared reasonable (e.g. they labeled 

Role 10 as ‘grant issues’ and Role 2 as ‘natural 

language researcher’). 

We have a similar emphasis on statistically 

modeling language and interpersonal communica-
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tion. However, we model social power relation-

ships, not roles or topics, and our approach pro-

duces discriminative classifiers, not generative 

models, which enables more concrete evaluation.  

Namata, Getoor, and Diehl effectively applied 

role modeling to the Enron email corpus, allowing 

them to infer the social hierarchy structure of En-

ron (Namata et al., 2006). They applied machine 

learning classifiers to map individuals to their roles 

in the hierarchy based on features related to email 

traffic patterns. They also attempt to identify cases 

of manager-subordinate relationships within the 

email domain by ranking emails using traffic-based 

and content-based features (Diehl et al., 2007). 

While their task is similar to ours, our goal is to 

classify any case in which one person has more 

social power than the other, not just identify in-

stances of direct reporting. 

3 Approach 

3.1 Feature Set-Up 

Previous work in traditional text classification and 

its variants – such as sentiment analysis – has 

achieved successful results by using the bag-of-

words representation; that is, by treating text as a 

collection of words with no interdependencies, 

training a classifier on a large feature set of word 

unigrams which appear in the corpus. However, 

our hypothesis was that this approach would not be 

the best for SPM. Morand’s study, for instance, 

identified specific features that correlate with the 

direction of communication within a social hierar-

chy (Morand, 2000). Few of these tactics would be 

effectively encapsulated by word unigrams. Many 

would be better modeled by POS tag unigrams 

(with no word information) or by longer n-grams 

consisting of either words, POS tags, or a combina-

tion of the two. “Uses subjunctive” and “Uses past 

tense” are examples. Because considering such 

features would increase the size of the feature 

space, we suspected that including these features 

would also benefit from algorithmic means of se-

lecting n-grams that are indicative of particular 

lects, and even from binning these relevant n-

grams into sets to be used as features. 

Therefore, we focused on an approach where 

each feature is associated with a set of one or more 

n-grams. Each n-gram is a sequence of words, POS 

tags or a combination of words and POS tags 

(“mixed” n-grams). Let S represent a set {n1, …, 

nk} of n-grams. The feature associated with S on 

text T would be: 

 

1

( , ) ( , )
k

i

i

f S T freq n T
=

=∑  

   

where ( , )ifreq n T is the relative frequency (de-

fined later) of in  in text T. Let in  represent the 

sequence 1 ms s… where js  specifies either a word 

or a POS tag. Let T represent the text consisting of 

the sequence of tagged-word tokens 1 lt t… . 

( , )ifreq n T is then defined as follows: 
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( )

( )

i j j

i j

i j j

word t s if s is a word
t s

tag t s if s is a tag

=
= ↔ 

=
 

 

To illustrate, consider the following feature set, a 

bigram and a trigram (each term in the n-gram ei-

ther has the form word or ^tag):  

 

{please ^VB, please ^‘comma’ ^VB}2
  

 

The tag “VB” denotes a verb. Suppose T consists 

of the following tokenized and tagged text (sen-

tence initial and final tokens are not shown):  

 

please^RB bring^VB the^DET report^NN 

to^TO our^PRP$ next^JJ weekly^JJ meet-

ing^NN .^.  

 

The first n-gram of the set, please ^VB, would 

match please^RB bring^VB from the text. The fre-

quency of this n-gram in T would then be 1/9, 

where 1 is the number of substrings in T that match 

                                                           
2
 To distinguish a comma separating elements of a set with a 
comma as part of an ngram, we use ‘comma’ to denote the 

punctuation mark ‘,’ as part of the ngram.  
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please ^VB and 9 is the number of bigrams in T, 

excluding sentence initial and final markers. The 

other n-gram, the trigram please ^‘comma’ ^VB, 

does not have any match, so the final value of the 

feature is 1/9. 

Defining features in this manner allows us to 

both explore the bag-of-words representation as 

well as use groups of n-grams as features, which 

we believed would be a better fit for this problem. 

3.2 N-Gram Selection 

To identify n-grams which would be useful fea-

tures, frequencies of n-grams in only the training 

set are considered. Different types of frequency 

measures were explored to capture different types 

of information about an n-gram’s usage. These are: 

 

• Absolute frequency: The total number of 

times a particular n-gram occurs in the text 

of a given class (social power lect).  

• Relative frequency: The total number of 

times a particular n-gram occurs in a given 

class, divided by the total number of n-

grams in that class. Normalization by the 

size of the class makes relative frequency a 

better metric for comparing n-gram usage 

across classes.  

  

We then used the following frequency-based met-

rics to select n-grams: 

 

• We set a minimum threshold for the abso-

lute frequency of the n-gram in a class. 

This helps weed out extremely infrequent 

words and spelling errors.  

• We require that the ratio of the relative 

frequency of the n-gram in one class to its 

relative frequency in the other class is also 

greater than a threshold. This is a simple 

means of selecting n-grams indicative of 

lect. 

 

In experiments based on the bag-of-words model, 

we only consider an absolute frequency threshold, 

whereas in later experiments, we also take into ac-

count the relative frequency ratio threshold.  

3.3 N-gram Binning  

In experiments in which we bin n-grams, selected 

n-grams are assigned to the class in which their 

relative frequency is highest. For example, an n-

gram whose relative frequency in UpSpeak text is 

twice that in DownSpeak text would be assigned to 

the class UpSpeak. 

N-grams assigned to a class are then partitioned 

into sets of n-grams. Each of these sets of n-grams 

is associated with a feature. This partition is based 

on the n-gram type, the length of n-grams and the 

relative frequency ratio of the n-grams. While the 

n-grams composing a set may themselves be in-

dicative of social power lects, this method of 

grouping them makes no guarantees as to how in-

dicative the overall set is. Therefore, we experi-

mented with filtering out sets which had a 

negligible information gain. Information gain is an 

information theoretic concept measuring how 

much the probability distributions for a feature dif-

fer among the different classes. A small informa-

tion gain suggests that a feature may not be 

effective at discriminating between classes. 

Although this approach to partitioning is simple 

and worthy of improvement, it effectively reduced 

the dimensionality of the feature space. 

3.4 Classification 

Once features are selected, a classifier is trained on 

these features. Many features are weak on their 

own; they either occur rarely or occur frequently 

but only hint weakly at social information. There-

fore, we experimented with classifiers friendly to 

weak features, such as Adaboost and Logistic Re-

gression (MaxEnt). However, we generally 

achieved the best results using support vector ma-

chines, a machine learning classifier which has 

been successfully applied to many previous text 

classification problems. We used Weka’s opti-

mized SVMs (SMO) (Witten 2005, Platt 1998) and 

default parameters, except where noted. 

4 Evaluation 

4.1 Data 

To validate our supervised learning approach, we 

sought an adequately large English corpus of per-

son-to-person communication labeled with the 

ground truth. For this, we used the publicly avail-
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able Enron corpus. After filtering for duplicates 

and removing empty or otherwise unusable emails, 

the total number of emails is 245K, containing 

roughly 90 million words. However, this total in-

cludes emails to non-Enron employees, such as 

family members and employees of other corpora-

tions, emails to multiple people, and emails re-

ceived from Enron employees without a known 

corporate role. Because the author-recipient rela-

tionships of these emails could not be established, 

they were not included in our experiments. 

Building upon previous annotation done on the 

corpus, we were able to ascertain the corporate role 

(CEO, Manager, Employee, etc.) of many email 

authors and recipients. From this information, we 

determined the author-recipient relationship by 

applying general rules about the structure of a cor-

porate hierarchy (an email from an Employee to a 

CEO, for instance, is UpSpeak). This annotation 

method does not take into account promotions over 

time, secretaries speaking on behalf of their super-

visors, or other causes of relationship irregularities. 

However, this misinformation would, if anything, 

generally hurt our classifiers.   

The emails were pre-processed to eliminate text 

not written by the author, such as forwarded text 

and email headers. As our approach requires text to 

be POS-tagged, we employed Stanford’s POS tag-

ger (http://nlp.stanford.edu/software/tagger.shtml). 

In addition, text was regularized by conversion to 

lower case and tokenized to improve counts. 

To create training and test sets, we partitioned 

the authors of text from the corpus into two sets: A 

and B. Then, we used text authored by individuals 

in A as a training set and text authored by indi-

viduals in B as a test set. The training set is used to 

determine discriminating features upon which clas-

sifiers are built and applied to the test set. We  

 

Table 1. Author-based Training and Test partitions. The 

number of author-recipient pairs (links) and the number 

of words in text labeled as UpSpeak and DownSpeak 

are shown. 

 

found that partitioning by authors was necessary to 

avoid artificially inflated scores, because the clas-

sifiers pick up aspects of particular authors’ lan-

guage (idiolect) in addition to social power lect 

information. It was not necessary to account for 

recipients because the emails did not contain text 

from the recipients. Table 1 summarizes the text 

partitions. 

Because preliminary experiments suggested that 

smaller text samples were harder to classify, the 

classifiers we describe in this paper were both 

trained and tested on a subset of the Enron corpus 

where at least 500 words of text was communi-

cated from a specific author to a specific recipient. 

This subset contained 142 links, 40% of which 

were used as the test set. 

Weighting for Cost-Sensitive Learning: The 

original corpus was not balanced: the number of 

UpSpeak links was greater than the number of 

DownSpeak links. Varying the weight given to 

training instances is a technique for creating a clas-

sifier that is cost-sensitive, since a classifier built 

on an unbalanced training set can be biased to-

wards avoiding errors on the overrepresented class 

(Witten, 2005). We wanted misclassifying Up-

Speak as DownSpeak to have the same cost as mis-

classifying DownSpeak as UpSpeak. To do this, 

we assigned weights to each instance in the train-

ing set. UpSpeak instances were weighted less than 

DownSpeak instances, creating a training set that 

was balanced between UpSpeak and DownSpeak. 

Balancing the training set generally improved re-

sults.  

Weighting the test set in the same manner al-

lowed us to evaluate the performance of the classi-

fier in a situation in which the numbers of 

UpSpeak and DownSpeak instances were equal. A 

baseline classifier that always predicted the major-

ity class would, on its own, achieve an accuracy of 

74% on UpSpeak/DownSpeak classification of 

unweighted test set instances with a minimum 

length of 500 words. However, results on the 

weighted test set are properly compared to a base-

line of 50%. We include both approaches to scor-

ing in this paper. 

4.2 UpSpeak/DownSpeak Classifiers 

In this section, we describe experiments on classi-

fication of interpersonal email communication into 

UpSpeak and DownSpeak. For these experiments, 

only emails exchanged between two people related 

by a superior/subordinate power relationship were  

 UpSpeak DownSpeak 

 Links Words Links Words 

Training 431 136K 328 63K 

Test 232 74K 148 27K 
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Table 2. Experiment Results. Accuracies/F-Scores with an SVM classifier for 10-fold cross validation on the 

weighted training set and evaluation against the weighted and unweighted test sets. Note that the baseline accu-

racy against the unweighted test set is 74%, but 50% for the weighted test set and cross-validation.   

 

Human-Engineered Features: Before examin-

ing the data itself, we identified some features 

which we thought would be predictive of UpSpeak 

or DownSpeak, and which could be fairly accu-

rately modeled by mixed n-grams. These features 

included the use of different types of imperatives. 

We also thought that the type of greeting or sig-

nature used in the email might be reflective of 

formality, and therefore of UpSpeak and Down-

Speak. For example, subordinates might be more 

likely to use an honorific when addressing a supe-

rior, or to sign an email with “Thanks.” We pre-

formed some preliminary experiments using these 

features. While the feature set was too small to 

produce notable results, we identified which fea-

tures actually were indicative of lect. One such 

feature was polite imperatives (imperatives pre-

ceded by the word “please”). The polite imperative 

feature was represented by the n-gram set: 

 

{please ^VB, please ^‘comma’ ^VB}. 

 

Unigrams and Bigrams: As a different sort of 

baseline, we considered the results of a bag-of-

words based classifier. Features used in these ex-

periments consist of single words which occurred a 

minimum of four times in the relevant lects (Up-

Speak and DownSpeak) of the training set. The 

results of the SVM classifier, shown in line (1) of 

Table 2, were fairly poor. We then performed ex-

periments with word bigrams, selecting as features 

those which occurred at least seven times in the 

relevant lects of the training set. This threshold for 

bigram frequency minimized the difference in the 

number of features between the unigram and bi-

gram experiments. While the bigrams on their own 

were less successful than the unigrams, as seen in 

line (2), adding them to the unigram features im-

proved accuracy against the test set, shown in line 

(3).  

As we had speculated that including surface-

level grammar information in the form of tag n-

grams would be beneficial to our problem, we per-

formed experiments using all tag unigrams and all 

tag bigrams occurring in the training set as fea-

tures. The results are shown in line (4) of Table 2. 

The results of these experiments were not particu-

larly strong, likely owing to the increased sparsity 

of the feature vectors. 

Binning: Next, we wished to explore longer n-

grams of words or POS tags and to reduce the 

sparsity of the feature vectors. We therefore ex-

perimented with our method of binning the indi-

vidual n-grams to be used as features. We binned 

features by their relative frequency ratios. In addi-

tion to binning, we also reduced the total number 

of n-grams by setting higher frequency thresholds 

and relative frequency ratio thresholds.  

When selecting n-grams for this experiment, we 

considered only word n-grams and tag n-grams – 

not mixed n-grams, which are a combination of 

words and tags. These mixed n-grams, while useful 

for specifying human-defined features, largely in-

creased the dimensionality of the feature search 

space and did not provide significant benefit in 

preliminary experiments. For the word sequences, 

Cross-Validation Test Set  

(weighted) 

Test Set  

(unweighted) 

 Features # of  

features 

# of  

n-grams 

Acc (%) F-score Acc (%) F-score Acc (%) F-score 

(1) Word unigrams 3899 3899 55.4 .481 62.1 .567 78.9 .748 

(2) Word bigrams 3740 3740 54.5 .457 56.4 .498 73.7 .693 

(3) Word unigrams + 

word bigrams 

7639 7639 51.8 .398 63.3 .576 80.7 .762 

(4) (3) + tag unigrams 

+ tag bigrams 

9014 9014 51.8 .398 58.8 .515 77.2 .719 

(5) Binned n-grams 8 106 83.0 .830 78.1 .781 77.2 .783 

(6) N-grams from (5), 

separated 

106 106 83.0 .828 60.5 .587 70.2 .698 

(7) (5) + polite  

imperatives 

9 108 83.9 .839 77.1 .771 78.9 .797 
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we set an absolute frequency threshold that de-

pended on class. The frequency of a word n-gram 

in a particular class was required to be 0.18 * 

nrlinks / n, where nrlinks is the number of links in 

each class (431 for UpSpeak and 328 for Down-

Speak), and n is the number of words in the class. 

The relative frequency ratio was required to be at 

least 1.5. The tag sequences were required to meet 

an absolute frequency threshold of 20, but the 

same relative frequency ratio of 1.5.  

Binning the n-grams into features was done 

based on both the length of the n-gram and the rel-

ative frequency ratio. For example, one feature 

might represent the set of all word unigrams which 

have a relative frequency ratio between 1.5 and 

1.6.  

We explored possible feature sets with cross va-

lidation. Before filtering for low information gain, 

we used six word n-gram bins per class (relative 

frequency ratios of 1.5, 1.6 ..., 1.9 and 2.0+), one 

tag n-gram bin for UpSpeak (2.0+), and three tag 

n-gram bins for DownSpeak (2.0+, 5.0+, 10.0+). 

Even with the weighted training set, DownSpeak 

instances were generally harder to identify and 

likely benefited from additional representation. 

Grouping features by length was a simple but arbi-

trary method for reducing dimensionality, yet 

sometimes produced small bins of otherwise good 

features.  Therefore, as we explored the feature 

space, small bins of different n-gram lengths were 

merged. We then employed Weka’s InfoGain fea-

ture selection tool to remove those features with a 

low information gain
3
, which removed all but eight 

features. The results of this experiment are shown 

in line (5) of Table 2. It far outperforms the bag-of-

words baselines, despite significantly fewer fea-

tures. 

To ascertain which feature reduction method had 

the greatest effect on performance – binning or 

setting a relative frequency ratio threshold – we 

performed an experiment in which all the n-grams 

that we used in the previous experiment were their 

own features. Line (6) of Table 2 shows that while 

this approach is an improvement over the basic 

bag-of-words method, grouping features still im-

proves results. 

                                                           
3
 In Weka, features (‘attributes’) with a sufficiently low in-

formation gain have this value rounded down to “0”; these are 

the features we removed. 

Our goal was to have successful results using 

only statistically extracted features; however, we 

examined the effect of augmenting this feature set 

with the most indicative of the human-identified 

feature – polite imperatives. The results, in line (7), 

show a slight improvement in both the cross vali-

dation accuracy, and the accuracy against the un-

weighted test set increases to 78.9%
4
. However, 

among the weighted test sets, the highest accuracy 

was 78.1%, with the features in line (5). 

We report the scores for cross-validation on the 

training set for these features; however, because 

the features were selected with knowledge of their 

per-class distribution in the training set, these 

cross-validation scores should not be seen as the 

classifier’s true accuracy. 

Self-Training: Besides sparse feature vectors, 

another factor likely to be hurting our classifier 

was the limited amount of training data. We at-

tempted to increase the training set size by per-

forming exploratory experiments with self-

training, an iterative semi-supervised learning me-

thod (Zhu, 2005) with the feature set from (7). On 

the first iteration, we trained the classifier on the 

labeled training set, classified the instances of the 

unlabeled test set, and then added the instances of 

the test set along with their predicted class to the 

training set to be used for the next iteration. After 

three iterations, the accuracy of the classifier when 

evaluated on the weighted test set improved to 

82%, suggesting that our classifiers would benefit 

from more data. 

Impact of Cost-Sensitive Learning: Without 

cost-sensitive learning, the classifiers were heavily 

biased towards UpSpeak, tending to classify both 

DownSpeak and UpSpeak test instances as Up-

Speak.  With cost-sensitive training, overall per-

formance improved and classifier performance on 

DownSpeak instances improved dramatically.  In 

(5) of Table 2, DownSpeak  classifier accuracy 

even edged out the accuracy for UpSpeak.  We 

expect that on a larger dataset behavior with un-

weighted training and test data would improve. 

5 Conclusions and Future Research 

We presented a corpus-based statistical learning 

approach to modeling social power relationships 

and experimental results for our methods. To our 

                                                           
4
 The associated p-value is 6.56E-6. 
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knowledge, this is the first corpus-based approach 

to learning social power lects beyond those in di-

rect reporting relationships. 

Our work strongly suggests that statistically ex-

tracted features are an efficient and effective ap-

proach to modeling social information. Our 

methods exploit many aspects of language use and 

effectively model social power information while 

using statistical methods at every stage to tease out 

the information we seek, significantly reducing 

language-, culture-, and lect-specific engineering 

needs. Our feature selection method picks up on 

indicators suggested by sociolinguistics, and it also 

allows for the identification of features that are not 

obviously characteristic of UpSpeak or Down-

Speak. Some easily recognizable features include: 

 
Lect Ngram Example 

UpSpeak if you “Let me know if you need any-

thing.” 

  “Please call me if you have any 

questions.” 

Down-

Speak 

give me “Read this over and give me a 

call.” 

  “Please give me your comments 

next week.” 

 

On the other hand, other features are less intuitive: 
 

Lect Ngram Example 

UpSpeak I’ll, we’ll “I’ll let you know the final re-

sults soon” 

  “Everyone is very excited […] 

and we’re confident we’ll be 

successful” 

DownSpeak that is, 

this is 

“Neither does any other group 

but that is not my problem” 

  “I think this is an excellent let-

ter” 

We hope to improve our methods for selecting 

and binning features with information theoretic 

selection metrics and clustering algorithms. 

We also have begun work on 3-way, UpSpeak/ 

DownSpeak/PeerSpeak classification. Training a 

multiclass SVM on the binned n-gram features 

from (5) produces 51.6% cross-validation accu-

racy on training data and 44.4% accuracy on the 

weighted test set (both numbers should be com-

pared to a 33% baseline). That classifier contained 

no n-gram features selected from the PeerSpeak 

class. Preliminary experiments incorporating 

PeerSpeak n-grams yield slightly better numbers. 

However, early results also suggest that the three-

way classification problem is made more tractable 

with cascaded two-way classifiers; feature selec-

tion was more manageable with binary problems. 

For example, one classifier determines whether an 

instance is UpSpeak; if it is not, a second classifier 

distinguishes between DownSpeak and PeerSpeak. 

Our text classification problem is similar to senti-

ment analysis in that there are class dependencies; 

for example, DownSpeak is more closely related to 

PeerSpeak than to UpSpeak. We might attempt to 

exploit these dependencies in a manner similar to 

Pang and Lee (2005) to improve three-way classi-

fication. 

In addition, we had promising early results for 

classification of author-recipient links with 200 to 

500 words, so we plan to explore performance im-

provements for links of few words. 

In early, unpublished work, we had promising 

results with generative model-based approach to 

SPM, and we plan to revisit it; language models 

are a natural fit for lect modeling. Finally, we hope 

to investigate how SPM and SNA can enhance one 

another, and explore other lect classification prob-

lems for which the ground truth can be found. 
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