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Abstract 

This paper focuses on identifying, extracting 
and evaluating features related to syntactic 
complexity of spontaneous spoken responses as 
part of an effort to expand the current feature 
set of an automated speech scoring system in 
order to cover additional aspects considered 
important in the construct of communicative 
competence. 

Our goal is to find effective features, se-
lected from a large set of features proposed 
previously and some new features designed in 
analogous ways from a syntactic complexity 
perspective that correlate well with human rat-
ings of the same spoken responses, and to build 
automatic scoring models based on the most 
promising features by using machine learning 
methods. 

On human transcriptions with manually 
annotated clause and sentence boundaries, our 
best scoring model achieves an overall Pearson 
correlation with human rater scores of r=0.49 
on an unseen test set, whereas correlations of 
models using sentence or clause boundaries 
from automated classifiers are around r=0.2. 

1 Introduction 

Past efforts directed at automated scoring of 
speech have used mainly features related to fluen 
cy (e.g., speaking rate, length and distribution of 
pauses), pronunciation (e.g., using log-likelihood 
scores from the acoustic model of an Automatic 
Speech Recognition (ASR) system), or prosody 
(e.g., information related to pitch  contours or syl-
lable stress)  (e.g., Bernstein, 1999; Bernstein et 
al., 2000; Bernstein et al., 2010; Cucchiarini et al., 

1997; Cucchiarini et al., 2000; Franco et al., 2000a; 
Franco et al., 2000b; Zechner et al., 2007, Zechner 
et al., 2009). 

While this approach is a good match to most of 
the important properties related to low entropy 
speech (i.e., speech which is highly predictable), 
such as reading a passage aloud, it lacks many im-
portant aspects of spontaneous speech which are 
relevant to be evaluated both by a human rater and 
an automated scoring system. Examples of such 
aspects of speech, which are considered part of the 
construct1 of “communicative competence (Bach-
man, 1990), include grammatical accuracy, syntac-
tic complexity, vocabulary diversity, and aspects of 
spoken discourse structure, e.g., coherence and 
cohesion. These different aspects of speaking pro-
ficiency are often highly correlated in a non-native 
speaker (Xi and Mollaun, 2006; Bernstein et al., 
2010), and so scoring models built solely on fea-
tures of fluency and pronunciation may achieve 
reasonably high correlations with holistic human 
rater scores. However, it is important to point out 
that such systems would still be unable to assess 
many important aspects of the speaking construct 
and therefore cannot be seen as ideal from a validi-
ty point of view.2

The purpose of this paper is to address one of 
these important aspects of spoken language in 
more detail, namely syntactic complexity. This 
paper can be seen as a first step toward including 

 

                                                           
1  A construct is a set of knowledge, skills, and abilities 
measured by a test. 
2 “Construct validity” refers to the extent that a test measures 
what it is designed to measure, in this case, communicative 
competence via speaking. 
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features related to this part of the speaking con-
struct into an already existing automated speech 
scoring system for spontaneous speech which so 
far mostly uses features related to fluency and pro-
nunciation (Zechner et al., 2009). 

We use data from the speaking section of the 
TOEFL® Practice Online (TPO) test, which is a 
low stakes practice test for non-native speakers 
where they are asked to provide six spontaneous 
speech samples of about one minute in length each 
in response to a variety of prompts. Some prompts 
may be simple questions, and others may involve 
reading or listening to passages first and then ans-
wering related questions. All responses were 
scored holistically by human raters according to 
pre-defined scoring rubrics (i.e., specific scoring 
guidelines) on a scale of 1 to 4, 4 being the highest 
proficiency level. 

In our automated scoring system, the first com-
ponent is an ASR system that decodes the digitized 
speech sample, generating a time-annotated hypo-
thesis for every response. Next, fluency and pro-
nunciation features are computed based on the 
ASR output hypotheses, and finally a multiple re-
gression scoring model, trained on human rater 
scores, computes the score for a given spoken re-
sponse (see Zechner et al. (2009) for more details). 
We conducted the study in three steps: (1) finding 
important measures of syntactic complexity from 
second language acquisition (SLA) and English 
language learning (ELL) literature, and extending 
this feature set based on our observations of the 
TPO data in analogous ways; (2) computing fea-
tures based on transcribed speech responses and 
selecting features with highest correlations to hu-
man rater scores, also considering their compara-
tive values for native speakers taking the same test;  
and (3) building scoring models for the selected 
sub-set of the features to generate a proficiency 
score for each speaker, using all six responses of 
that speaker. 

In the remainder of the paper, we will address 
related work in syntactic complexity (Section 2), 
introduce the speech data sets of our study (Section 
3), describe the methods we used for feature ex-
traction (Section 4), provide the experiment design 
and results (Section 5), analyze and discuss the 
results in Section 6, before concluding the paper 
(Section 7). 

2 Related Work 

2.1 Literature on Syntactic Complexity 

Syntactic complexity is defined as “the range of 
forms that surface in language production and the 
degree of sophistication of such forms” (Ortega, 
2003). It is an important factor in the second lan-
guage assessment construct as described  in Bach-
man’s (1990) conceptual model of language 
ability, and therefore is often used as an index of 
language proficiency and development status of L2 
learners. Various studies have proposed and inves-
tigated measures of syntactic complexity as well as 
examined its predictiveness for language profi-
ciency, in both L2 writing and speaking settings, 
which will be reviewed respectively. 

Writing 

Wolfe-Quintero et al. (1998) reviewed a number of 
grammatical complexity measures in L2 writing 
from thirty-nine studies, and their usage for pre-
dicting language proficiency was discussed. Some 
examples of syntactic complexity measures are: 
mean number of clauses per T-unit3

                                                           
3 T-units are defined as “shortest grammatically allowable 
sentences into which (writing can be split) or minimally 
terminable units” (Hunt, 1965:20). 

, mean length 
of clauses, mean number of verbs per sentence, etc. 
The various measures can be grouped into two cat-
egories: (1) clauses, sentences, and T-units in 
terms of each other; and (2) specific grammatical 
structures (e.g., passives, nominals) in relation to 
clauses, sentences, or T-units (Wolfe-Quintero et 
al., 1998). Three primary methods of calculating 
syntactic complexity measures are frequency, ratio, 
and index, where frequency is the count of occur-
rences of a specific grammatical structure, ratio is 
the number of one type of unit divided by the total 
number of another unit, and index is computing 
numeric scores by specific formulae (Wolfe-
Quintero et al., 1998). For example, the measure 
“mean number of clauses per T-unit” is obtained 
by using the ratio calculation method and the 
clause and T-unit grammatical structures. Some 
structures such as clauses and T-units only need 
shallow linguistic processing to acquire, while 
some require parsing. There are numerous combi-
nations for measures and we need empirical evi-
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dence to select measures with the highest perfor-
mance. 

There have been a series of empirical studies 
examining the relationship of syntactic complexity 
measures to L2 proficiency using real-world data 
(Cooper, 1976; Larsen-Freeman, 1978; Perkins, 
1980; Ho-Peng, 1983; Henry, 1996; Ortega, 2003; 
Lu, 2010). The studies investigate measures that 
highly correlate with proficiency levels or distin-
guish between different proficiency levels. Many 
T-unit related measures were identified as statisti-
cally significant indicators to L2 proficiency, such 
as mean length of T-unit (Henry, 1996; Lu, 2010), 
mean number of clauses per T-unit (Cooper, 1976; 
Lu, 2010), mean number of complex nominals per 
T-unit (Lu, 2010), or the mean number of error-
free T-units per sentence (Ho-Peng, 1983). Other 
significant measures are mean length of clause (Lu, 
2010), or frequency of passives in composition 
(Kameen, 1979).   

Speaking 

Syntactic complexity analysis in speech mainly 
inherits measures from the writing domain, and the 
abovementioned measures can be employed in the 
same way on speech transcripts for complexity 
computation. A series of studies have examined 
relations between the syntactic complexity of 
speech and the speakers’ holistic speaking profi-
ciency levels (Halleck, 1995; Bernstein et al., 
2010; Iwashita, 2006). Three objective measures of 
syntactic complexity, including mean T-unit 
length, mean error-free T-unit length, and percent 
of error-free T-units were found to correlate with 
holistic evaluations of speakers in Halleck (1995). 
Iwashita’s (2006) study on Japanese L2 speakers 
found that length-based complexity features (i.e., 
number of T-units and number of clauses per T-
unit) are good predictors for oral proficiency. In 
studies directly employing syntactic complexity 
measures in other contexts, ratio-based measures 
are frequently used. Examples are mean length of 
utterance (Condouris et al., 2003), word count or 
tree depth (Roll et al., 2007), or mean length of T-
units and mean number of clauses per T-unit 
(Bernstein et al., 2010). Frequency-based measures 
were used less, such as number of full phrases in 
Roll et al. (2007). 

The speaking output is usually less clean than 
writing data (e.g., considering disfluencies such as 
false starts, repetitions, filled pauses etc.). There-

fore we may need to remove these disfluencies first 
before computing syntactic complexity features. 
Also, importantly, ASR output does not contain 
interpunctuation but both for sentential-based fea-
tures as well as for parser-based features, the 
boundaries of clauses and sentences need to be 
known. For this purpose, we will use automated 
classifiers that are trained to predict clause and 
sentence boundaries, as described in Chen et al. 
(2010). With previous studies providing us a rich 
pool of complexity features, additionally we also 
develop features analogous to the ones from the 
literature, mostly by using different calculation 
methods. For instance, the frequency of Preposi-
tional Phrases (PPs) is a feature from the literature, 
and we add some variants such as number of PPs 
per clause as a new feature to our extended feature 
set. 

2.2 Devising the Initial Feature Set 

Through this literature review, we identified some 
important features that were frequently used in 
previous studies in both L2 speaking and writing, 
such as length of sentences and number of clauses 
per sentence. In addition, we also collected candi-
date features that were less frequently mentioned 
in the literature, in order to start with a larger field 
of potential candidate features. We further ex-
tended the feature set by inspecting our data, de-
scribed in the following section, and created 
suitable additional features by means of analogy. 
This process resulted in a set of 91 features, 11 of 
which are related to clausal and sentential unit 
measurements (frequency-based) and 80 to mea-
surements within such units (ratio-based). From 
the perspective of extracting measures, in our study, 
some measures can be computed using only clause 
and sentence boundary information, and some can 
be derived only if the spoken responses are syntac-
tically parsed. In our feature set, there are two 
types of features: clause and sentence boundary 
based (26 in total) and parsing based (65). The fea-
tures will be described in detail in Section 4. 

3 Data 

Our data set contains (1) 1,060 non-native speech 
responses of 189 speakers from the TPO test (NN 
set), and (2) 100 responses from 48 native speakers 
that took the same test (Nat set). All responses 
were verbatim transcribed manually and scored 
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holistically by human raters. (We only made use of 
the scores for the non-native data set in this study, 
since we purposefully selected speakers with per-
fect or near perfect scores for the Nat set from a 
larger native speech data set.) As mentioned above, 
there are four proficiency levels for human scoring, 
levels 1 to 4, with higher levels indicating better 
speaking proficiency. 

The NN set was randomly partitioned into a 
training (NN-train) and a test set with 760 and 300 
responses, respectively, and no speaker overlap.  
 
Data 
Set 

Res-
ponses 

Speakers Responses per 
Speaker  
(average) 

NN-
train 

760 137 5.55 
Description: used to train sentence and 
clause boundary detectors, evaluate fea-
tures and train scoring models 

1: 
NN-
test-1-
Hum 

300 52 5.77 
Description: human transcriptions and 
annotations of sentence and clause boun-
daries 

2: 
NN-
test-2-
CB 

300 52 5.77 
Description: human transcriptions, au-
tomatically predicted clause boundaries 

3: 
NN-
test-3-
SB 

300 52 5.77 
Description: human transcriptions, au-
tomatically predicted sentence bounda-
ries 

4: 
NN-
test-4-
ASR-
CB 

300 52 5.77 
Description: ASR hypotheses, automati-
cally predicted clause boundaries 

5: 
NN-
test-5-
ASR-
SB 

300 52 5.77 
Description: ASR hypotheses, automati-
cally predicted sentence boundaries 

Table 1. Overview of non-native data sets. 
 

A second version of the test set contains ASR 
hypotheses instead of human transcriptions. The 
word error rate (WER4

                                                           
4 Word error rate (WER) is the ratio of errors from a string 
between the ASR hypothesis and the reference transcript, 
where the sum of substitutions, insertions, and deletions is 

) on this data set is 50.5%. 

We used a total of five variants of the test sets, as 
described in Table 1. Sets 1-3 are based on human 
transcriptions, whereas sets 4 and 5 are based on 
ASR output. Further, set 1 contains human anno-
tated clause and sentence boundaries, whereas the 
other 4 sets have clause or sentence boundaries 
predicted by a classifier. 

All human transcribed files from the NN data 
set were annotated for clause boundaries, clause 
types, and disfluencies by human annotators (see 
Chen et al. (2010)). 

For the Nat data set, all of the 100 transcribed 
responses were annotated in the same manner by a 
human annotator. They are not used for any train-
ing purposes but serve as a comparative reference 
for syntactic complexity features derived from the 
non-native corpus. 

The NN-train set was used both for training 
clause and sentence boundary classifiers, as well as 
for feature selection and training of the scoring 
models. The two boundary detectors were machine 
learning based Hidden Markov Models, trained by 
using a language model derived from the 760 train-
ing files which had sentence and clause boundary 
labels (NN-train; see also Chen et al. (2010)).  

Since a speaker’s response to a single test item 
can be quite short (fewer than 100 words in many 
cases), it may contain only very few syntactic 
complexity features we are looking for. (Note that 
much of the previous work focused on written lan-
guage with much longer texts to be considered.) 
However, if we aggregate responses of a single 
speaker, we have a better chance of finding a larger 
number of syntactic complexity features in the ag-
gregated file. Therefore we joined files from the 
same speaker to one file for the training set and the 
five test sets, resulting in 52 aggregated files in 
each test set. Accordingly, we averaged the re-
sponse scores of a single speaker to obtain the total 
speaker score to be used later in scoring model 
training and evaluation (Section 5).5

While disfluencies were used for the training of 
the boundary detectors, they were removed after-
wards from the annotated data sets to obtain a tran-

 

                                                                                           
divided by the length of the reference. To obtain WER in 
percent, this ratio is multiplied by 100.0. 
5 Although in most operational settings, features are derived 
from single responses, this may not be true in all cases. 
Furthermore, scores of multiple responses are often combined 
for score reporting, which would make such an approach 
easier to implement and argue for operationally. 
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scription which is “cleaner” and lends itself better 
to most of the feature extraction methods we use.  

4 Feature Extraction 

4.1 Feature Set 

As mentioned in Section 2, we gathered 91 candi-
date syntactic complexity features based on our 
literature review as initial feature set, which is 
grouped into two categories: (1) Clause and sen-
tence Boundary based features (CB features); and 
(2) Parse Tree based features (PT features). Clause 
based features are based on both clause boundaries 
and clause types and can be generated from human 
clause annotations, e.g., “frequency of adjective 
clauses6

We first selected features showing high correla-
tion to human assigned scores. In this process the 
CB features were computed from human labeled 
clause boundaries in transcripts for best accuracy, 
and PT features were calculated from using parsing 
and other tools because we did not have human 
parse tree annotations for our data.  

 per one thousand words”, “mean number 
of dependent clauses per clause”, etc. Parse tree 
based features refer to features that are generated 
from parse trees and cannot be extracted from hu-
man annotated clauses directly.  

We used the Stanford Parser (Klein and Man-
ning, 2003) in conjunction with the Stanford Tre-
gex package (Levy and Andrew, 2006) which 
supports using rules to extract specific configura-
tions from parse trees, in a package put together by 
Lu (Lu, 2011). When given a sentence, the Stan-
ford Parser outputs its grammatical structure by 
grouping words (and phrases) in a tree structure 
and identifies grammatical roles of words and 
phrases.  

Tregex is a tree query tool that takes Stanford 
parser trees as input and queries the trees to find 
subtrees that meet specific rules written in Tregex 
syntax (Levy and Andrew, 2006). It uses relational 
operators regulated by Tregex, for example, “A << 
B” stands for “subtree A dominates subtree B”. 
The operators primarily function in subtree prece-
dence, dominance, negation, regular expression, 
tree node identity, headship, or variable groups, 
among others (Levy and Andrew, 2006).   
                                                           
6 An adjective clause is a clause that functions as an adjective 
in modifying a noun. E.g., “This cat is a cat that is difficult to 
deal with.” 

Lu’s tool (Lu, 2011), built upon the Stanford 
Parser and Tregex, does syntactic complexity anal-
ysis given textual data. Lu’s tool contributed 8 of 
the initial CB features and 6 of the initial PT fea-
tures, and we computed the remaining CB and PT 
features using Perl scripts, the Stanford Parser, and 
Tregex.  

Table 2 lists the sub-set of 17 features (out of 91 
features total) that were used for building the scor-
ing models described later (Section 5). 

4.2 Feature Selection 

We determined the importance of the features by 
computing each feature’s correlation with human 
raters’ proficiency scores based on the training set 
NN-train. We also used criteria related to the 
speaking construct, comparisons with native 
speaker data, and feature inter-correlations. While 
approaches coming from a pure machine learning 
perspective would likely use the entire feature pool 
as input for a classifier, our goal here is to obtain 
an initial feature set by judicious and careful fea-
ture selection that can withstand the scrutiny of 
construct validity in assessment development. 
 
As noted earlier, the disfluencies in the training set 
had been removed to obtain a “cleaner” text that 
looks somewhat more akin to a written passage and 
is easier to process by NLP modules such as pars-
ers and part-of-speech (POS) taggers. 7

                                                           
7 We are aware that disfluencies can provide valuable clues 
about spoken proficiency in and of themselves; however, this 
study is focused exclusively on syntactic complexity analysis, 
and in this context, disfluencies would distort the picture 
considerably due to the introduction of parsing errors, e.g. 

  The ex-
tracted features partly were taken directly from 
proposals in the literature and partly were slightly 
modified to fit our clause annotation scheme. In 
order to have a unified framework for computing 
syntactic complexity features, we used a combina-
tion of the Stanford Parser and Tregex for compu-
ting both clause- and sentence-based features as 
well as parse-tree-based features, i.e., we did not 
make use of the human clause boundary label an-
notations here. The only exception to this
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is that we are using human clause and sentence 
labels to create a candidate set for the clause boun-
dary features evaluated by the Stanford Parser and 
Tregex, as explained in the following subsection. 

                                                           
8  Feature type: CB=Clause boundary based feature type, 
PT=Parse tree based feature type 
9A “linguistically meaningful PP” (PP_ling) is defined as a PP 
immediately dominated by another PP in cases where a 
preposition contains a noun such as “in spite of” or “in front 
of”. An example would be “she stood in front of a house” 
where “in front of a house” would be parsed as two embedded 
PPs but only the top PP would be counted in this case.  
10 A “linguistically meaningful VP” (VP_ling) is defined  as a 
verb phrase immediately dominated by a clausal phrase, in 
order to avoid VPs embedded in another VP, e.g., "should go 
to work" is identified as one VP instead of two embedded 
VPs. 
11 The “P-based Sampson” is a raw production-based measure 
(Sampson, 1997), defined as "proportion of the daughters of a 
nonterminal node which are themselves nonterminal and 
nonrightmost, averaged over the nonterminals of a sentence". 

 

 
 
Clause and Sentence based Features (CB fea-
tures) 
 
Firstly, we extracted all 26 initial CB features di-
rectly from human annotated data of NN-train, us-
ing information from the clause and sentence type 
labels. The reasoning behind this was to create an 
initial pool of clause-based features that reflects 
the distribution of clauses and sentences as accu-
rately as possible, even though we did not plan to 
use this extraction method operationally, where the 
parser decides on clause and sentence types. After 
computing the values of each CB feature, we cal-
culated correlations between each feature and hu-
man-rated scores. Then we created an initial CB   
feature pool by selecting features that met two cri-
teria: (1) the absolute Pearson correlation coeffi-
cient with human scores was larger than 0.2; and 
(2) the mean value of the feature on non-native 
speakers was at least 20% lower than that for na-

Name Type8 Meaning  Correlation Regression 

MLS CB Mean length of sentences 0.329 0.101 

MLT CB Mean length of T-units 0.300 -0.059 

DC/C CB Mean number of dependent clauses per clause 0.291 2.873 

SSfreq CB Frequency of simple sentences per 1000 words -.0242 0.001 

MLSS CB Mean length of simple sentences 0.255 0.040 

ADJCfreq CB Frequency of adjective clauses per 1000 words 0.253 0.004 

Ffreq CB Frequency of fragments per 1000 words -0.386 -0.057 

MLCC CB Mean length of coordinate clauses 0.224 0.017 

CT/T PT Mean number of complex T-units per T-unit 0.248 0.908 

PP_ling/S PT Mean number of linguistically meaningful prepositional phrases (PP) per sentence9 0.310  0.423 

NP/S PT Mean number of noun phrases (NP) per sentence 0.244 -0.411 

CN/S PT Mean number of complex nominal per sentence 0.325 0.653 

VB _ling/T PT Mean number of linguistically meaningful10 0.273   verb phrases per T-unit -0.780 

PAS/S PT Mean number of passives per sentence 0.260 1.520 

DI/T PT Mean number of dependent infinitives per T-unit 0.325 1.550 

MLev PT Mean number of parsing tree levels per sentence 0.306 -0.134 

MPSam PT Mean P-based Sampson11 0.254  per sentence 0.234 

Table 2. List of syntactic complexity features selected to be included in building the scoring models. 
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tive speakers in case of positive correlation and at 
least by 20% higher than for native speakers in 
case of negative correlation, using the Nat data set 
for the latter criterion. Note that all of these fea-
tures were computed without using a parser. This 
resulted in 13 important features. 

Secondly, Tregex rules were developed based 
on Lu’s tool to extract these 13 CB features from 
parsing results where the parser is provided with 
one sentence at a time. By applying the same selec-
tion criteria as before, except for allowing for cor-
relations above 0.1 and giving preference to 
linguistically more meaningful features, we found 
8 features that matched our criteria:  
MLS, MLT, DC/C, SSfreq, MLSS, ADJCfreq, 
Ffreq, MLCC 

All 28 pairwise inter-correlations between these 
8 features were computed and inspected to avoid 
including features with high inter-correlations in 
the scoring model. Since we did not find any inter-
correlations larger than 0.9, the features were con-
sidered moderately independent and none of them 
were removed from this set so it also maintains 
linguistic richness for the feature set.  

Due to the importance of T-units in complexity 
analysis, we briefly introduce how we obtain them 
from annotations. Three types of clauses labeled in 
our transcript can serve as T-units, including sim-
ple sentences, independent clauses, and conjunct 
(coordination) clauses. These clauses were identi-
fied in the human-annotated text and extracted as 
T-units in this phase. T-units in parse trees are 
identified using rules in Lu’s tool. 
 
Parse Tree based Features (PT features) 
 
We evaluated 65 features in total and selected fea-
tures with highest importance using the following 
two criteria (which are very similar as before): (1) 
the absolute Pearson correlation coefficient with 
human scores is larger than 0.2; and (2) the feature 
mean value on native speakers (Nat) is higher than 
on score 4 for non-native speakers in case of posi-
tive correlation, or lower for negative correlation. 
20 of 65 features were found to meet the require-
ments. 

Next, we examined inter-correlations between 
these features and found some correlations larger 

than 0.85.12

CT/T, PP_ling/S, NP/S, CN/S, VP_ling/T, PAS/S, 
DI/T, MLev, MPSam  

 For each feature pair exhibiting high 
inter-correlation, we removed one feature accord-
ing to the criterion that the removed feature should 
be linguistically less meaningful than the remain-
ing one. After this filtering, the 9 remaining PT 
features are: 

In summary, as a result of the feature selection 
process, a total of 17 features were identified as 
important features to be used in scoring models for 
predicting speakers’ proficiency scores. Among 
them 8 are clause boundary based and the other 9 
are parse tree based. 

5 Experiments and Results 

In the previous section, we identified 17 syntactic 
features that show promising correlations with hu-
man rater speaking proficiency scores. These fea-
tures as well as the human-rated scores will be 
used to build scoring models by using machine 
learning methods. As introduced in Section 3, we 
have one training set (N=137 speakers with all of 
their responses combined) for model building and 
five testing sets (N=52 for each of them) for evalu-
ation.  

The publicly available machine learning pack-
age Weka was used in our experiments (Hall et al. 
2009). We experimented with two algorithms in 
Weka: multiple regression (called “LinearRegres-
sion” in Weka) and decision tree (called “M5P”in 
Weka). The score values to be predicted are real 
numbers (i.e., non-integer), because we have to 
compute the average score of one speaker’s res-
ponses. Our initial runs showed that decision tree 
models were consistently outperformed by mul-
tiple regression (MR) models and thus decided to 
only focus on MR models henceforth. 

We set the “AttributeSelectionMethod” parame-
ter in Weka’s LinearRegression algorithm to all 3 
of its possible values in turn: (Model-1) M5 me-
thod; (Model-2) no attribute selection; and (Model-
3) greedy method. The resulting three multiple re-
gression models were then tested against the five 
testing sets. Overall, correlations for all models for 
the NN-test-1-Hum set were between 0.45 and 
0.49, correlations for sets NN-test-2-CB and NN- 
                                                           
12 The reason for using a lower threshold than above was to 
obtain a roughly equal number of CB and PT features in the 
end. 
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test-3-SB (human transcript based, and using au-
tomated boundaries) around 0.2, and for sets NN-
test-4-ASR-CB  and NN-test-5-ASR-SB (ASR hy-
potheses, and using automated boundaries), the 
correlations were not significant. Model-2 (using 
all 17 features) had the highest correlation on NN-
test-1-Hum and we provide correlation results of 
this model in Table 3. 
 

Test set Correlation 
coefficient 

Correlation significance 
(p < 0.05) 

NN-test-1-Hum 0.488 Significant 

NN-test-2-CB 0.220 Significant 

NN-test-3-SB 0.170 Significant 

NN-test-4-ASR-CB -0.025 Not significant 

NN-test-5-ASR-SB -0.013 Not significant 

Table 3. Multiple regression model testing results for 
Model-2. 

6 Discussion 

As we can see from the result table (Table 3) in the 
previous section, using only syntactic complexity 
features, based on clausal or parse tree information 
derived from human transcriptions of spoken test 
responses, can predict holistic human rater scores 
for combined speaker responses over a whole test 
with an overall correlation of r=0.49. While this is 
a promising result for this study with a focus on a 
broad spectrum of syntactic complexity features, 
the results also show significant limitations for an 
immediate operational use of such features. First, 
the imperfect prediction of clause and sentence 
boundaries by the two automatic classifiers causes 
a substantial degradation of scoring model perfor-
mance to about r=0.2, and secondly, the rather high 
error rate of the ASR system (50.5%) does not al-
low for the computation of features that would re-
sult in any significant correlation with human 
scores. We want to note here that while ASR sys-
tems can be found that exhibit WERs below 10% 
for certain tasks, such as restricted dictation in 
low-noise environments by native speakers, our 
ASR task is significantly harder in several ways: 
(1) we have to recognize non-native speak-
ers’rresponses where speakers have a number of 
different native language backgrounds; (2) the pro-
ficiency level of the test takers varies widely; and 

(3) the responses are spontaneous and uncon-
strained in terms of vocabulary. 

As for the automatic clause and sentence boun-
dary classifiers, we can observe (in Table 4) that 
although the sentence boundary classifier has a 
slightly higher F-score than the clause boundary 
classifier, errors in sentence boundary detection 
have more negative effects on the accuracy of 
score prediction than those made by the clause 
boundary classifier. In fact, the lower F-score of 
the latter is mainly due to its lower precision which 
indicates that there are more spurious clause boun-
daries in its output which apparently cause little 
harm to the feature extraction processes. 

Among the 17 final features, 3 of them are fre-
quency-based and the remaining 14 are ratio-
based, which mirrors our findings from previous 
work that frequency features have been used less 
successfully than ratio features. As for ratio fea-
tures, 5 of them are grammatical structure counts 
against sentence units, 4 are counts against T-units, 
and only 1 is based on counts against clause units. 
The feature set covers a wide range of grammatical 
structures, such as T-units, verb phrases, noun 
phrases, complex nominals, adjective clauses, 
coordinate clauses, prepositional phrases, etc. 
While this wide coverage provides for richness of 
the construct of syntactic complexity, some of the 
features exhibit relatively high correlation with 
each other which reduces their overall contribu-
tions to the scoring model’s performance. 

Going through the workflow of our system, we 
find at least five major stages that can generate 
errors which in turn can adversely affect feature 
computation and scoring model building. Errors 
may appear in each stage of our workflow, passing 
or even enlarging their effects from previous stages 
to later stages: 
1) grammatical errors by the speakers (test takers); 
2) errors by the ASR system; 
3) sentence/clause boundary detection errors; 
4) parser errors; and 
5) rule extraction errors. 

 
In future work we will need to address each er-

ror source to obtain a higher overall system per-
formance. 
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Table 4. Performance of clause and sentence boundary 
detectors. 

7 Conclusion and Future Work 

In this paper, we investigated associations between 
speakers’ syntactic complexity features and their 
speaking proficiency scores provided by human 
raters. By exploring empirical evidence from non-
native and native speakers’ data sets of spontane-
ous speech test responses, we identified 17 features 
related to clause types and parse trees as effective 
predictors of human speaking scores. The features 
were implemented based on Lu’s L2 Syntactic 
Complexity Analyzer toolkit (Lu, 2011) to be au-
tomatically extracted from human or ASR tran-
scripts. Three multiple regression models were 
built from non-native speech training data with 
different parameter setup and were tested against 
five testing sets with different preprocessing steps. 
The best model used the complete set of 17 fea-
tures and exhibited a correlation with human 
scores of r=0.49 on human transcripts with boun-
dary annotations. 

When using automated classifiers to predict 
clause or sentence boundaries, correlations with 
human scores are around r=0.2. Our experiments 
indicate that by enhancing the accuracy of the two 
main automated preprocessing components, name-
ly ASR and automatic sentence and clause boun-
dary detectors, scoring model performance will 
increase substantially, as well. Furthermore, this 
result demonstrates clearly that syntactic complexi-
ty features can be devised that are able to predict 
human speaking proficiency scores. 

Since this is a preliminary study, there is ample 
space to improve all major stages in the feature 
extraction process. The errors listed in the previous 
section are potential working directions for prepro-
cessing enhancements prior to machine learning. 
Among the five types of errors, we can work on 
improving the accuracy of the speech recognizer, 
sentence and clause boundary detectors, parser, 
and feature extraction rules; as for the grammatical 
errors produced by test takers, we are envisioning 
to automatically identify and correct such errors. 
We will further experiment with syntactic com-

plexity measures to balance construct richness and 
model simplicity. Furthermore, we can also expe-
riment with additional types of machine learning 
models and tune parameters to derive scoring 
models with better performance. 
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