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Abstract

Extensive knowledge bases of entailment rules
between predicates are crucial for applied se-
mantic inference. In this paper we propose an
algorithm that utilizes transitivity constraints
to learn a globally-optimal set of entailment
rules for typed predicates. We model the task
as a graph learning problem and suggest meth-
ods that scale the algorithm to larger graphs.
We apply the algorithm over a large data set
of extracted predicate instances, from which a
resource of typed entailment rules has been re-
cently released (Schoenmackers et al., 2010).
Our results show that using global transitiv-
ity information substantially improves perfor-
mance over this resource and several base-
lines, and that our scaling methods allow us
to increase the scope of global learning of
entailment-rule graphs.

1 Introduction

Generic approaches for applied semantic infer-
ence from text gained growing attention in recent
years, particularly under the Textual Entailment
(TE) framework (Dagan et al., 2009). TE is a
generic paradigm for semantic inference, where the
objective is to recognize whether a target meaning
can be inferred from a given text. A crucial com-
ponent of inference systems is extensive resources
of entailment rules, also known as inference rules,
i.e., rules that specify a directional inference rela-
tion between fragments of text. One important type
of rule is rules that specify entailment relations be-
tween predicates and their arguments. For example,
the rule ‘X annex Y→ X control Y’ helps recognize
that the text ‘Japan annexed Okinawa’ answers the

question ‘Which country controls Okinawa?’. Thus,
acquisition of such knowledge received considerable
attention in the last decade (Lin and Pantel, 2001;
Sekine, 2005; Szpektor and Dagan, 2009; Schoen-
mackers et al., 2010).

Most past work took a “local learning” approach,
learning each entailment rule independently of oth-
ers. It is clear though, that there are global inter-
actions between predicates. Notably, entailment is
a transitive relation and so the rules A → B and
B → C imply A→ C.

Recently, Berant et al. (2010) proposed a global
graph optimization procedure that uses Integer Lin-
ear Programming (ILP) to find the best set of entail-
ment rules under a transitivity constraint. Imposing
this constraint raised two challenges. The first of
ambiguity: transitivity does not always hold when
predicates are ambiguous, e.g., X buy Y→ X acquire
Y and X acquire Y → X learn Y, but X buy Y 9 X
learn Y since these two rules correspond to two dif-
ferent senses of acquire. The second challenge is
scalability: ILP solvers do not scale well since ILP
is an NP-complete problem. Berant et al. circum-
vented these issues by learning rules where one of
the predicate’s arguments is instantiated (e.g., ‘X re-
duce nausea→ X affect nausea’), which is useful for
learning small graphs on-the-fly, given a target con-
cept such as nausea. While rules may be effectively
learned when needed, their scope is narrow and they
are not useful as a generic knowledge resource.

This paper aims to take global rule learning one
step further. To this end, we adopt the represen-
tation suggested by Schoenmackers et al. (2010),
who learned inference rules between typed predi-
cates, i.e., predicates where the argument types (e.g.,
city or drug) are specified. Schoenmackers et al. uti-
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lized typed predicates since they were dealing with
noisy and ambiguous web text. Typing predicates
helps disambiguation and filtering of noise, while
still maintaining rules of wide-applicability. Their
method employs a local learning approach, while the
number of predicates in their data is too large to be
handled directly by an ILP solver.

In this paper we suggest applying global opti-
mization learning to open domain typed entailment
rules. To that end, we show how to construct a
structure termed typed entailment graph, where the
nodes are typed predicates and the edges represent
entailment rules. We suggest scaling techniques that
allow to optimally learn such graphs over a large
set of typed predicates by first decomposing nodes
into components and then applying incremental ILP
(Riedel and Clarke, 2006). Using these techniques,
the obtained algorithm is guaranteed to return an op-
timal solution. We ran our algorithm over the data
set of Schoenmackers et al. and release a resource
of 30,000 rules1 that achieves substantially higher
recall without harming precision. To the best of our
knowledge, this is the first resource of that scale
to use global optimization for learning predicative
entailment rules. Our evaluation shows that global
transitivity improves the F1 score of rule learning by
27% over several baselines and that our scaling tech-
niques allow dealing with larger graphs, resulting in
improved coverage.

2 Background

Most work on learning entailment rules between
predicates considered each rule independently of
others, using two sources of information: lexico-
graphic resources and distributional similarity.

Lexicographic resources are manually-prepared
knowledge bases containing semantic information
on predicates. A widely-used resource is WordNet
(Fellbaum, 1998), where relations such as synonymy
and hyponymy can be used to generate rules. Other
resources include NomLex (Macleod et al., 1998;
Szpektor and Dagan, 2009) and FrameNet (Baker
and Lowe, 1998; Ben Aharon et al., 2010).

Lexicographic resources are accurate but have

1The resource can be downloaded from
http://www.cs.tau.ac.il/j̃onatha6/homepage files/resources
/ACL2011Resource.zip

low coverage. Distributional similarity algorithms
use large corpora to learn broader resources by as-
suming that semantically similar predicates appear
with similar arguments. These algorithms usually
represent a predicate with one or more vectors and
use some function to compute argument similarity.
Distributional similarity algorithms differ in their
feature representation: Some use a binary repre-
sentation: each predicate is represented by one fea-
ture vector where each feature is a pair of argu-
ments (Szpektor et al., 2004; Yates and Etzioni,
2009). This representation performs well, but suf-
fers when data is sparse. The binary-DIRT repre-
sentation deals with sparsity by representing a pred-
icate with a pair of vectors, one for each argument
(Lin and Pantel, 2001). Last, a richer form of repre-
sentation, termed unary, has been suggested where
a different predicate is defined for each argument
(Szpektor and Dagan, 2008). Different algorithms
also differ in their similarity function. Some employ
symmetric functions, geared towards paraphrasing
(bi-directional entailment), while others choose di-
rectional measures more suited for entailment (Bha-
gat et al., 2007). In this paper, We employ several
such functions, such as Lin (Lin and Pantel, 2001),
and BInc (Szpektor and Dagan, 2008).

Schoenmackers et al. (2010) recently used dis-
tributional similarity to learn rules between typed
predicates, where the left-hand-side of the rule may
contain more than a single predicate (horn clauses).
In their work, they used Hearst-patterns (Hearst,
1992) to extract a set of 29 million (argument, type)
pairs from a large web crawl. Then, they employed
several filtering methods to clean this set and au-
tomatically produced a mapping of 1.1 million ar-
guments into 156 types. Examples for (argument,
type) pairs are (EXODUS, book), (CHINA, coun-
try) and (ASTHMA, disease). Schoenmackers et
al. then utilized the types, the mapped arguments
and tuples from TextRunner (Banko et al., 2007)
to generate 10,672 typed predicates (such as con-
quer(country,city) and common in(disease,place)),
and learn 30,000 rules between these predicates2. In
this paper we will learn entailment rules over the
same data set, which was generously provided by

2The rules and the mapping of arguments into types can
be downloaded from http://www.cs.washington.edu/research/
sherlock-hornclauses/
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Schoenmackers et al.
As mentioned above, Berant et al. (2010) used

global transitivity information to learn small entail-
ment graphs. Transitivity was also used as an in-
formation source in other fields of NLP: Taxonomy
Induction (Snow et al., 2006), Co-reference Reso-
lution (Finkel and Manning, 2008), Temporal Infor-
mation Extraction (Ling and Weld, 2010), and Un-
supervised Ontology Induction (Poon and Domin-
gos, 2010). Our proposed algorithm applies to any
sparse transitive relation, and so might be applicable
in these fields as well.

Last, we formulate our optimization problem as
an Integer Linear Program (ILP). ILP is an optimiza-
tion problem where a linear objective function over
a set of integer variables is maximized under a set of
linear constraints. Scaling ILP is challenging since
it is an NP-complete problem. ILP has been exten-
sively used in NLP lately (Clarke and Lapata, 2008;
Martins et al., 2009; Do and Roth, 2010).

3 Typed Entailment Graphs

Given a set of typed predicates, entailment rules can
only exist between predicates that share the same
(unordered) pair of types (such as place and coun-
try)3. Hence, every pair of types defines a graph
that describes the entailment relations between pred-
icates sharing those types (Figure 1). Next, we show
how to represent entailment rules between typed
predicates in a structure termed typed entailment
graph, which will be the learning goal of our algo-
rithm.

A typed entailment graph is a directed graph
where the nodes are typed predicates. A typed pred-
icate is a triple p(t1, t2) representing a predicate in
natural language. p is the lexical realization of the
predicate and the types t1, t2 are variables repre-
senting argument types. These are taken from a
set of types T , where each type t ∈ T is a bag
of natural language words or phrases. Examples
for typed predicates are: conquer(country,city) and
contain(product,material). An instance of a typed
predicate is a triple p(a1, a2), where a1 ∈ t1 and
a2 ∈ t2 are termed arguments. For example, be
common in(ASTHMA,AUSTRALIA) is an instance of
be common in(disease,place). For brevity, we refer

3Otherwise, the rule would contain unbound variables.

to typed entailment graphs and typed predicates as
entailment graphs and predicates respectively.

Edges in typed entailment graphs represent en-
tailment rules: an edge (u, v) means that predicate
u entails predicate v. If the type t1 is different
from the type t2, mapping of arguments is straight-
forward, as in the rule ‘be find in(material,product)
→ contain(product,material)’. We term this a two-
types entailment graph. When t1 and t2 are equal,
mapping of arguments is ambiguous: we distin-
guish direct-mapping edges where the first argu-
ment on the left-hand-side (LHS) is mapped to
the first argument on the right-hand-side (RHS),
as in ‘beat(team,team) d−→ defeat(team,team)’, and
reversed-mapping edges where the LHS first argu-
ment is mapped to the RHS second argument, as
in ‘beat(team,team) r−→ lose to(team,team)’. We
term this a single-type entailment graph. Note
that in single-type entailment graphs reversed-
mapping loops are possible as in ‘play(team,team)
r−→ play(team,team)’: if team A plays team B, then
team B plays team A.

Since entailment is a transitive relation, typed-
entailment graphs are transitive: if the edges (u, v)
and (v, w) are in the graph so is the edge (u,w).
Note that in single-type entailment graphs one needs
to consider whether mapping of edges is direct or re-
versed: if mapping of both (u, v) and (v, w) is either
direct or reversed, mapping of (u,w) is direct, oth-
erwise it is reversed.

Typing plays an important role in rule transitiv-
ity: if predicates are ambiguous, transitivity does not
necessarily hold. However, typing predicates helps
disambiguate them and so the problem of ambiguity
is greatly reduced.

4 Learning Typed Entailment Graphs

Our learning algorithm is composed of two steps:
(1) Given a set of typed predicates and their in-
stances extracted from a corpus, we train a (local)
entailment classifier that estimates for every pair of
predicates whether one entails the other. (2) Using
the classifier scores we perform global optimization,
i.e., learn the set of edges over the nodes that maxi-
mizes the global score of the graph under transitivity
and background-knowledge constraints.

Section 4.1 describes the local classifier training
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province of
(place,country)

be part of
(place,country)

annex
(country,place)

invade
(country,place)

be relate to
(drug,drug)

be derive from
(drug,drug)

be process from
(drug,drug)

be convert into
(drug,drug)

Figure 1: Top: A fragment of a two-types entailment
graph. bottom: A fragment of a single-type entailment
graph. Mapping of solid edges is direct and of dashed
edges is reversed.

procedure. Section 4.2 gives an ILP formulation for
the optimization problem. Sections 4.3 and 4.4 pro-
pose scaling techniques that exploit graph sparsity
to optimally solve larger graphs.

4.1 Training an entailment classifier

Similar to the work of Berant et al. (2010), we
use “distant supervision”. Given a lexicographic re-
source (WordNet) and a set of predicates with their
instances, we perform the following three steps (see
Table 1):

1) Training set generation We use WordNet to
generate positive and negative examples, where each
example is a pair of predicates. Let P be the
set of input typed predicates. For every predicate
p(t1, t2) ∈ P such that p is a single word, we extract
from WordNet the set S of synonyms and direct hy-
pernyms of p. For every p′ ∈ S, if p′(t1, t2) ∈ P
then p(t1, t2) → p′(t1, t2) is taken as a positive ex-
ample.

Negative examples are generated in a similar
manner, with direct co-hyponyms of p (sister nodes
in WordNet) and hyponyms at distance 2 instead of
synonyms and direct hypernyms. We also generate
negative examples by randomly sampling pairs of
typed predicates that share the same types.

2) Feature representation Each example pair of
predicates (p1, p2) is represented by a feature vec-
tor, where each feature is a specific distributional

Type example
hyper. beat(team,team)→ play(team,team)
syno. reach(team,game)→ arrive at(team,game)
cohypo. invade(country,city) 9 bomb(country,city)
hypo. defeat(city,city) 9 eliminate(city,city)
random hold(place,event) 9 win(place,event)

Table 1: Automatically generated training set examples.

similarity score estimating whether p1 entails p2.
We compute 11 distributional similarity scores for
each pair of predicates based on the arguments ap-
pearing in the extracted arguments. The first 6
scores are computed by trying all combinations of
the similarity functions Lin and BInc with the fea-
ture representations unary, binary-DIRT and binary
(see Section 2). The other 5 scores were provided
by Schoenmackers et al. (2010) and include SR
(Schoenmackers et al., 2010), LIME (McCreath and
Sharma, 1997), M-estimate (Dzeroski and Brakto,
1992), the standard G-test and a simple implementa-
tion of Cover (Weeds and Weir, 2003). Overall, the
rationale behind this representation is that combin-
ing various scores will yield a better classifier than
each single measure.

3) Training We train over an equal number of
positive and negative examples, as classifiers tend to
perform poorly on the minority class when trained
on imbalanced data (Van Hulse et al., 2007; Nikulin,
2008).

4.2 ILP formulation

Once the classifier is trained, we would like to learn
all edges (entailment rules) of each typed entailment
graph. Given a set of predicates V and an entail-
ment score function f : V × V → R derived from
the classifier, we want to find a graph G = (V,E)
that respects transitivity and maximizes the sum of
edge weights

∑
(u,v)∈E f(u, v). This problem is

NP-hard by a reduction from the NP-hard Transitive
Subgraph problem (Yannakakis, 1978). Thus, em-
ploying ILP is an appealing approach for obtaining
an optimal solution.

For two-types entailment graphs the formulation
is simple: The ILP variables are indicators Xuv de-
noting whether an edge (u, v) is in the graph, with
the following ILP:
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Ĝ = argmax
∑
u6=v

f(u, v) ·Xuv (1)

s.t. ∀u,v,w∈V Xuv +Xvw −Xuw ≤ 1 (2)

∀u,v∈Ayes Xuv = 1 (3)

∀u,v∈Ano Xuv = 0 (4)

∀u6=v Xuv ∈ {0, 1} (5)

The objective in Eq. 1 is a sum over the weights
of the eventual edges. The constraint in Eq. 2 states
that edges must respect transitivity. The constraints
in Eq. 3 and 4 state that for known node pairs, de-
fined by Ayes and Ano, we have background knowl-
edge indicating whether entailment holds or not. We
elaborate on how Ayes and Ano were constructed in
Section 5. For a graph with n nodes we get n(n−1)
variables and n(n−1)(n−2) transitivity constraints.

The simplest way to expand this formulation for
single-type graphs is to duplicate each predicate
node, with one node for each order of the types, and
then the ILP is unchanged. However, this is inef-
ficient as it results in an ILP with 2n(2n − 1) vari-
ables and 2n(2n−1)(2n−2) transitivity constraints.
Since our main goal is to scale the use of ILP, we
modify it a little. We denote a direct-mapping edge
(u, v) by the indicator Xuv and a reversed-mapping
edge (u, v) by Yuv. The functions fd and fr provide
scores for direct and reversed mappings respectively.
The objective in Eq. 1 and the constraint in Eq. 2 are
replaced by (Eq. 3, 4 and 5 still exist and are carried
over in a trivial manner):

argmax
∑
u6=v

fd(u, v)Xuv +
∑
u,v

fr(u, v)Yuv (6)

s.t. ∀u,v,w∈V Xuv +Xvw −Xuw ≤ 1

∀u,v,w∈V Xuv + Yvw − Yuw ≤ 1

∀u,v,w∈V Yuv +Xvw − Yuw ≤ 1

∀u,v,w∈V Yuv + Yvw −Xuw ≤ 1

The modified constraints capture the transitivity
behavior of direct-mapping and reversed-mapping
edges, as described in Section 3. This results in
2n2 − n variables and about 4n3 transitivity con-
straints, cutting the ILP size in half.

Next, we specify how to derive the function f
from the trained classifier using a probabilistic for-
mulation4. Following Snow et al. (2006) and Be-
rant et al. (2010), we utilize a probabilistic entail-
ment classifier that computes the posterior Puv =
P (Xuv = 1|Fuv). We want to use Puv to derive the
posterior P (G|F ), where F = ∪u6=vFuv and Fuv is
the feature vector for a node pair (u, v).

Since the classifier was trained on a balanced
training set, the prior over the two entailment
classes is uniform and so by Bayes rule Puv ∝
P (Fuv|Xuv = 1). Using that and the exact same
three independence assumptions described by Snow
et al. (2006) and Berant et al. (2010) we can show
that (for brevity, we omit the full derivation):

Ĝ = argmaxG logP (G|F ) = (7)

argmax
∑
u6=v

(log
Puv · P (Xuv = 1)

(1− Puv)P (Xuv = 0)
)Xuv

= argmax
∑
u6=v

(log
Puv

1− Puv
)Xuv + log η · |E|

where η = P (Xuv=1)
P (Xuv=0) is the prior odds ratio for

an edge in the graph. Comparing Eq. 1 and 7 we
see that f(u, v) = log Puv ·P (Xuv=1)

(1−Puv)P (Xuv=0) . Note that f
is composed of a likelihood component and an edge
prior expressed by P (Xuv = 1), which we assume
to be some constant. This constant is a parameter
that affects graph sparsity and controls the trade-off
between recall and precision.

Next, we show how sparsity is exploited to scale
the use of ILP solvers. We discuss two-types entail-
ment graphs, but generalization is simple.

4.3 Graph decomposition

Though ILP solvers provide an optimal solution,
they substantially restrict the size of graphs we can
work with. The number of constraints is O(n3),
and solving graphs of size > 50 is often not feasi-
ble. To overcome this, we take advantage of graph
sparsity: most predicates in language do not entail
one another. Thus, it might be possible to decom-
pose graphs into small components and solve each

4We describe two-types graphs but extending to single-type
graphs is straightforward.
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Algorithm 1 Decomposed-ILP
Input: A set V and a function f : V × V → R
Output: An optimal set of directed edges E∗

1: E′ = {(u, v) : f(u, v) > 0 ∨ f(v, u) > 0}
2: V1, V2, ..., Vk ← connected components of
G′ = (V,E′)

3: for i = 1 to k do
4: Ei ← ApplyILPSolve(Vi,f)
5: end for
6: E∗ ←

⋃k
i=1Ei

component separately. This is formalized in the next
proposition.

Proposition 1. If we can partition a set of nodes
V into disjoint sets U,W such that for any cross-
ing edge (u,w) between them (in either direction),
f(u,w) < 0, then the optimal set of edgesEopt does
not contain any crossing edge.

Proof Assume by contradiction that Eopt con-
tains a set of crossing edges Ecross. We can
construct Enew = Eopt \ Ecross. Clearly∑

(u,v)∈Enew
f(u, v) >

∑
(u,v)∈Eopt

f(u, v), as
f(u, v) < 0 for any crossing edge.

Next, we show that Enew does not violate tran-
sitivity constraints. Assume it does, then the viola-
tion is caused by omitting the edges in Ecross. Thus,
there must be a node u ∈ U and w ∈ W (w.l.o.g)
such that for some node v, (u, v) and (v, w) are in
Enew, but (u,w) is not. However, this means either
(u, v) or (v, w) is a crossing edge, which is impossi-
ble since we omitted all crossing edges. Thus, Enew

is a better solution than Eopt, contradiction.
This proposition suggests a simple algorithm (see

Algorithm 1): Add to the graph an undirected edge
for any node pair with a positive score, then find the
connected components, and apply an ILP solver over
the nodes in each component. The edges returned
by the solver provide an optimal (not approximate)
solution to the optimization problem.

The algorithm’s complexity is dominated by the
ILP solver, as finding connected components takes
O(V 2) time. Thus, efficiency depends on whether
the graph is sparse enough to be decomposed into
small components. Note that the edge prior plays an
important role: low values make the graph sparser
and easier to solve. In Section 5 we empirically test

Algorithm 2 Incremental-ILP
Input: A set V and a function f : V × V → R
Output: An optimal set of directed edges E∗

1: ACT,VIO← φ
2: repeat
3: E∗ ← ApplyILPSolve(V,f,ACT)
4: VIO← violated(V,E∗)
5: ACT← ACT ∪ VIO
6: until |VIO| = 0

how typed entailment graphs benefit from decompo-
sition given different prior values.

From a more general perspective, this algo-
rithm can be applied to any problem of learning
a sparse transitive binary relation. Such problems
include Co-reference Resolution (Finkel and Man-
ning, 2008) and Temporal Information Extraction
(Ling and Weld, 2010). Last, the algorithm can be
easily parallelized by solving each component on a
different core.

4.4 Incremental ILP

Another solution for scaling ILP is to employ in-
cremental ILP, which has been used in dependency
parsing (Riedel and Clarke, 2006). The idea is
that even if we omit the transitivity constraints, we
still expect most transitivity constraints to be satis-
fied, given a good local entailment classifier. Thus,
it makes sense to avoid specifying the constraints
ahead of time, but rather add them when they are
violated. This is formalized in Algorithm 2.

Line 1 initializes an active set of constraints and a
violated set of constraints (ACT;VIO). Line 3 applies
the ILP solver with the active constraints. Lines 4
and 5 find the violated constraints and add them to
the active constraints. The algorithm halts when no
constraints are violated. The solution is clearly op-
timal since we obtain a maximal solution for a less-
constrained problem.

A pre-condition for using incremental ILP is that
computing the violated constraints (Line 4) is effi-
cient, as it occurs in every iteration. We do that in
a straightforward manner: For every node v, and
edges (u, v) and (v, w), if (u,w) /∈ E∗ we add
(u, v, w) to the violated constraints. This is cubic
in worst-case but assuming the degree of nodes is
bounded by a constant it is linear, and performs very
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fast in practice.
Combining Incremental-ILP and Decomposed-

ILP is easy: We decompose any large graph into
its components and apply Incremental ILP on each
component. We applied this algorithm on our evalu-
ation data set (Section 5) and found that it converges
in at most 6 iterations and that the maximal num-
ber of active constraints in large graphs drops from
∼ 106 to ∼ 103 − 104.

5 Experimental Evaluation

In this section we empirically answer the follow-
ing questions: (1) Does transitivity improve rule
learning over typed predicates? (Section 5.1) (2)
Do Decomposed-ILP and Incremental-ILP improve
scalability? (Section 5.2)

5.1 Experiment 1

A data set of 1 million TextRunner tuples (Banko
et al., 2007), mapped to 10,672 distinct typed predi-
cates over 156 types was provided by Schoenmack-
ers et al. (2010). Readers are referred to their pa-
per for details on mapping of tuples to typed predi-
cates. Since entailment only occurs between pred-
icates that share the same types, we decomposed
predicates by their types (e.g., all predicates with the
types place and disease) into 2,303 typed entailment
graphs. The largest graph contains 118 nodes and
the total number of potential rules is 263,756.

We generated a training set by applying the proce-
dure described in Section 4.1, yielding 2,644 exam-
ples. We used SVMperf (Joachims, 2005) to train a
Gaussian kernel classifier and computed Puv by pro-
jecting the classifier output score, Suv, with the sig-
moid function: Puv = 1

1+exp(−Suv) . We tuned two
SVM parameters using 5-fold cross validation and a
development set of two typed entailment graphs.

Next, we used our algorithm to learn rules. As
mentioned in Section 4.2, we integrate background
knowledge using the sets Ayes and Ano that contain
predicate pairs for which we know whether entail-
ment holds. Ayes was constructed with syntactic
rules: We normalized each predicate by omitting the
first word if it is a modal and turning passives to ac-
tives. If two normalized predicates are equal they are
synonymous and inserted into Ayes. Ano was con-
structed from 3 sources (1) Predicates differing by a

single pair of words that are WordNet antonyms (2)
Predicates differing by a single word of negation (3)
Predicates p(t1, t2) and p(t2, t1) where p is a transi-
tive verb (e.g., beat) in VerbNet (Kipper-Schuler et
al., 2000).

We compared our algorithm (termed ILPscale) to
the following baselines. First, to 10,000 rules re-
leased by Schoenmackers et al. (2010) (Sherlock),
where the LHS contains a single predicate (Schoen-
mackers et al. released 30,000 rules but 20,000 of
those have more than one predicate on the LHS,
see Section 2), as we learn rules over the same data
set. Second, to distributional similarity algorithms:
(a) SR: the score used by Schoenmackers et al. as
part of the Sherlock system. (b) DIRT: (Lin and
Pantel, 2001) a widely-used rule learning algorithm.
(c) BInc: (Szpektor and Dagan, 2008) a directional
rule learning algorithm. Third, we compared to the
entailment classifier with no transitivity constraints
(clsf ) to see if combining distributional similarity
scores improves performance over single measures.
Last, we added to all baselines background knowl-
edge with Ayes and Ano (adding the subscript Xk to
their name).

To evaluate performance we manually annotated
all edges in 10 typed entailment graphs - 7 two-
types entailment graphs containing 14, 22, 30, 53,
62, 86 and 118 nodes, and 3 single-type entailment
graphs containing 7, 38 and 59 nodes. This annota-
tion yielded 3,427 edges and 35,585 non-edges, re-
sulting in an empirical edge density of 9%. We eval-
uate the algorithms by comparing the set of edges
learned by the algorithms to the gold standard edges.

Figure 2 presents the precision-recall curve of the
algorithms. The curve is formed by varying a score
threshold in the baselines and varying the edge prior
in ILPscale

5. For figure clarity, we omit DIRT and
SR, since BInc outperforms them.

Table 2 shows micro-recall, precision and F1 at
the point of maximal F1, and the Area Under the
Curve (AUC) for recall in the range of 0-0.45 for all
algorithms, given background knowledge (knowl-
edge consistently improves performance by a few
points for all algorithms). The table also shows re-
sults for the rules from Sherlockk.

5we stop raising the prior when run time over the graphs
exceeds 2 hours. Often when the solver does not terminate in 2
hours, it also does not terminate after 24 hours or more.
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Figure 2: Precision-recall curve for the algorithms.

micro-average
R (%) P (%) F1 (%) AUC

ILPscale 43.4 42.2 42.8 0.22
clsfk 30.8 37.5 33.8 0.17
Sherlockk 20.6 43.3 27.9 N/A
BInck 31.8 34.1 32.9 0.17
SRk 38.4 23.2 28.9 0.14
DIRTk 25.7 31.0 28.1 0.13

Table 2: micro-average F1 and AUC for the algorithms.

Results show that using global transitivity
information substantially improves performance.
ILPscale is better than all other algorithms by a large
margin starting from recall .2, and improves AUC
by 29% and the maximal F1 by 27%. Moreover,
ILPscale doubles recall comparing to the rules from
the Sherlock resource, while maintaining compara-
ble precision.

5.2 Experiment 2

We want to test whether using our scaling tech-
niques, Decomposed-ILP and Incremental-ILP, al-
lows us to reach the optimal solution in graphs that
otherwise we could not solve, and consequently in-
crease the number of learned rules and the overall
recall. To check that, we run ILPscale, with and with-
out these scaling techniques (termed ILP−).

We used the same data set as in Experiment 1
and learned edges for all 2,303 entailment graphs
in the data set. If the ILP solver was unable to
hold the ILP in memory or took more than 2 hours

log η # unlearned # rules 4 Red.
-1.75 9/0 6,242 / 7,466 20% 75%
-1 9/1 16,790 / 19,396 16% 29%
-0.6 9/3 26,330 / 29,732 13% 14%

Table 3: Impact of scaling techinques (ILP−/ILPscale).

for some graph, we did not attempt to learn its
edges. We ran ILPscale and ILP− in three den-
sity modes to examine the behavior of the algo-
rithms for different graph densities: (a) log η =
−0.6: the configuration that achieved the best
recall/precision/F1 of 43.4/42.2/42.8. (b) log η =
−1 with recall/precision/F1 of 31.8/55.3/40.4. (c)
log η = −1.75: A high precision configuration with
recall/precision/F1 of 0.15/0.75/0.23 6.

In each run we counted the number of graphs that
could not be learned and the number of rules learned
by each algorithm. In addition, we looked at the
20 largest graphs in our data (49-118 nodes) and
measured the ratio r between the size of the largest
component after applying Decomposed-ILP and the
original size of the graph. We then computed the av-
erage 1−r over the 20 graphs to examine how graph
size drops due to decomposition.

Table 3 shows the results. Column # unlearned
and # rules describe the number of unlearned graphs
and the number of learned rules. Column 4 shows
relative increase in the number of rules learned and
column Red. shows the average 1− r.

ILPscale increases the number of graphs that we
are able to learn: in our best configuration (log η =
−0.6) only 3 graphs could not be handled com-
paring to 9 graphs when omitting our scaling tech-
niques. Since the unlearned graphs are among the
largest in the data set, this adds 3,500 additional
rules. We compared the precision of rules learned
only by ILPscale with that of the rules learned by
both, by randomly sampling 100 rules from each and
found precision to be comparable. Thus, the addi-
tional rules learned translate into a 13% increase in
relative recall without harming precision.

Also note that as density increases, the number of
rules learned grows and the effectiveness of decom-
position decreases. This shows how Decomposed-
ILP is especially useful for sparse graphs. We re-

6Experiment was run on an Intel i5 CPU with 4GB RAM.
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lease the 29,732 rules learned by the configuration
log η = −0.6 as a resource.

To sum up, our scaling techniques allow us to
learn rules from graphs that standard ILP can not
handle and thus considerably increase recall without
harming precision.

6 Conclusions and Future Work

This paper proposes two contributions over two re-
cent works: In the first, Berant et al. (2010) pre-
sented a global optimization procedure to learn en-
tailment rules between predicates using transitivity,
and applied this algorithm over small graphs where
all predicates have one argument instantiated by a
target concept. Consequently, the rules they learn
are of limited applicability. In the second, Schoen-
mackers et al. learned rules of wider applicability by
using typed predicates, but utilized a local approach.

In this paper we developed an algorithm that uses
global optimization to learn widely-applicable en-
tailment rules between typed predicates (where both
arguments are variables). This was achieved by
appropriately defining entailment graphs for typed
predicates, formulating an ILP representation for
them, and introducing scaling techniques that in-
clude graph decomposition and incremental ILP.
Our algorithm is guaranteed to provide an optimal
solution and we have shown empirically that it sub-
stantially improves performance over Schoenmack-
ers et al.’s recent resource and over several baselines.

In future work, we aim to scale the algorithm
further and learn entailment rules between untyped
predicates. This would require explicit modeling of
predicate ambiguity and using approximation tech-
niques when an optimal solution cannot be attained.
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