
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 460–469,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

Prefix Probability
for Probabilistic Synchronous Context-Free Grammars

Mark-Jan Nederhof
School of Computer Science

University of St Andrews
North Haugh, St Andrews, Fife

KY16 9SX
United Kingdom

markjan.nederhof@googlemail.com

Giorgio Satta
Dept. of Information Engineering

University of Padua
via Gradenigo, 6/A

I-35131 Padova
Italy

satta@dei.unipd.it

Abstract

We present a method for the computation of
prefix probabilities for synchronous context-
free grammars. Our framework is fairly gen-
eral and relies on the combination of a sim-
ple, novel grammar transformation and stan-
dard techniques to bring grammars into nor-
mal forms.

1 Introduction

Within the area of statistical machine translation,
there has been a growing interest in so-called syntax-
based translation models, that is, models that de-
fine mappings between languages through hierar-
chical sentence structures. Several such statistical
models that have been investigated in the literature
are based on synchronous rewriting or tree transduc-
tion. Probabilistic synchronous context-free gram-
mars (PSCFGs) are one among the most popular ex-
amples of such models. PSCFGs subsume several
syntax-based statistical translation models, as for in-
stance the stochastic inversion transduction gram-
mars of Wu (1997), the statistical model used by the
Hiero system of Chiang (2007), and systems which
extract rules from parsed text, as in Galley et al.
(2004).

Despite the widespread usage of models related to
PSCFGs, our theoretical understanding of this class
is quite limited. In contrast to the closely related
class of probabilistic context-free grammars, a syn-
tax model for which several interesting mathemati-
cal and statistical properties have been investigated,
as for instance by Chi (1999), many theoretical prob-
lems are still unsolved for the class of PSCFGs.

This paper considers a parsing problem that is
well understood for probabilistic context-free gram-
mars but that has never been investigated in the con-
text of PSCFGs, viz. the computation of prefix prob-
abilities. In the case of a probabilistic context-free
grammar, this problem is defined as follows. We
are asked to compute the probability that a sentence
generated by our model starts with a prefix string v
given as input. This quantity is defined as the (pos-
sibly infinite) sum of the probabilities of all strings
of the form vw, for any string w over the alphabet
of the model. This problem has been studied by
Jelinek and Lafferty (1991) and by Stolcke (1995).
Prefix probabilities can be used to compute probabil-
ity distributions for the next word or part-of-speech.
This has applications in incremental processing of
text or speech from left to right; see again (Jelinek
and Lafferty, 1991). Prefix probabilities can also be
exploited in speech understanding systems to score
partial hypotheses in beam search (Corazza et al.,
1991).

This paper investigates the problem of computing
prefix probabilities for PSCFGs. In this context, a
pair of strings v1 and v2 is given as input, and we are
asked to compute the probability that any string in
the source language starting with prefix v1 is trans-
lated into any string in the target language starting
with prefix v2. This probability is more precisely
defined as the sum of the probabilities of translation
pairs of the form [v1w1, v2w2], for any strings w1

and w2.
A special case of prefix probability for PSCFGs

is the right prefix probability. This is defined as the
probability that some (complete) input string w in
the source language is translated into a string in the
target language starting with an input prefix v.

460

Prefix probabilities and right prefix probabilities
for PSCFGs can be exploited to compute probabil-
ity distributions for the next word or part-of-speech
in left-to-right incremental translation, essentially in
the same way as described by Jelinek and Lafferty
(1991) for probabilistic context-free grammars, as
discussed later in this paper.

Our solution to the problem of computing prefix
probabilities is formulated in quite different terms
from the solutions by Jelinek and Lafferty (1991)
and by Stolcke (1995) for probabilistic context-free
grammars. In this paper we reduce the computation
of prefix probabilities for PSCFGs to the computa-
tion of inside probabilities under the same model.
Computation of inside probabilities for PSCFGs is
a well-known problem that can be solved using off-
the-shelf algorithms that extend basic parsing algo-
rithms. Our reduction is a novel grammar trans-
formation, and the proof of correctness proceeds
by fairly conventional techniques from formal lan-
guage theory, relying on the correctness of standard
methods for the computation of inside probabilities
for PSCFG. This contrasts with the techniques pro-
posed by Jelinek and Lafferty (1991) and by Stolcke
(1995), which are extensions of parsing algorithms
for probabilistic context-free grammars, and require
considerably more involved proofs of correctness.

Our method for computing the prefix probabili-
ties for PSCFGs runs in exponential time, since that
is the running time of existing methods for comput-
ing the inside probabilities for PSCFGs. It is un-
likely this can be improved, because the recogni-
tion problem for PSCFG is NP-complete, as estab-
lished by Satta and Peserico (2005), and there is a
straightforward reduction from the recognition prob-
lem for PSCFGs to the problem of computing the
prefix probabilities for PSCFGs.

2 Definitions

In this section we introduce basic definitions re-
lated to synchronous context-free grammars and
their probabilistic extension; our notation follows
Satta and Peserico (2005).

Let N and Σ be sets of nonterminal and terminal
symbols, respectively. In what follows we need to
represent bijections between the occurrences of non-
terminals in two strings over N ∪Σ. This is realized

by annotating nonterminals with indices from an in-
finite set. We define I(N) = {A t | A ∈ N, t ∈
N} and VI = I(N) ∪ Σ. For a string γ ∈ V ∗

I , we
write index(γ) to denote the set of all indices that
appear in symbols in γ.

Two strings γ1, γ2 ∈ V ∗
I are synchronous if each

index from N occurs at most once in γ1 and at most
once in γ2, and index(γ1) = index(γ2). Therefore
γ1, γ2 have the general form:

γ1 = u10A
t1

11 u11A
t2

12 u12 · · ·u1r−1A
tr

1r u1r

γ2 = u20A
tπ(1)

21 u21A
tπ(2)

22 u22 · · ·u2r−1A
tπ(r)

2r u2r

where r ≥ 0, u1i, u2i ∈ Σ∗, A
ti

1i , A
tπ(i)

2i ∈ I(N),
ti 6= tj for i 6= j, and π is a permutation of the set
{1, . . . , r}.

A synchronous context-free grammar (SCFG)
is a tuple G = (N,Σ,P, S), where N and Σ are fi-
nite, disjoint sets of nonterminal and terminal sym-
bols, respectively, S ∈ N is the start symbol and
P is a finite set of synchronous rules. Each syn-
chronous rule has the form s : [A1 → α1, A2 →
α2], where A1, A2 ∈ N and where α1, α2 ∈ V ∗

I are
synchronous strings. The symbol s is the label of
the rule, and each rule is uniquely identified by its
label. For technical reasons, we allow the existence
of multiple rules that are identical apart from their
labels. We refer to A1 → α1 and A2 → α2, respec-
tively, as the left and right components of rule s.

Example 1 The following synchronous rules im-
plicitly define a SCFG:

s1 : [S → A 1 B 2 , S → B 2 A 1]
s2 : [A → aA 1 b, A → bA 1 a]
s3 : [A → ab, A → ba]
s4 : [B → cB 1 d, B → dB 1 c]
s5 : [B → cd, B → dc] 2

In each step of the derivation process of a SCFG
G, two nonterminals with the same index in a pair of
synchronous strings are rewritten by a synchronous
rule. This is done in such a way that the result is once
more a pair of synchronous strings. An auxiliary
notion is that of reindexing, which is an injective
function f from N to N. We extend f to VI by letting
f(A t) = A f(t) for A t ∈ I(N) and f(a) = a
for a ∈ Σ. We also extend f to strings in V ∗

I by

461

letting f(ε) = ε and f(Xγ) = f(X)f(γ), for each
X ∈ VI and γ ∈ V ∗

I .
Let γ1, γ2 be synchronous strings in V ∗

I . The de-
rive relation [γ1, γ2] ⇒G [δ1, δ2] holds whenever
there exist an index t in index(γ1) = index(γ2), a
synchronous rule s : [A1 → α1, A2 → α2] in P
and some reindexing f such that:

(i) index(f(α1)) ∩ (index(γ1) \ {t}) = ∅;

(ii) γ1 = γ′1A
t

1 γ′′1 , γ2 = γ′2A
t

2 γ′′2 ; and

(iii) δ1 = γ′1f(α1)γ′′1 , δ2 = γ′2f(α2)γ′′2 .

We also write [γ1, γ2] ⇒s
G [δ1, δ2] to explicitly

indicate that the derive relation holds through rule s.
Note that δ1, δ2 above are guaranteed to be syn-

chronous strings, because α1 and α2 are syn-
chronous strings and because of (i) above. Note
also that, for a given pair [γ1, γ2] of synchronous
strings, an index t and a rule s, there may be in-
finitely many choices of reindexing f such that the
above constraints are satisfied. In this paper we will
not further specify the choice of f .

We say the pair [A1, A2] of nonterminals is linked
(in G) if there is a rule of the form s : [A1 →
α1, A2 → α2]. The set of linked nonterminal pairs
is denoted by N [2].

A derivation is a sequence σ = s1s2 · · · sd of syn-
chronous rules si ∈ P with d ≥ 0 (σ = ε for
d = 0) such that [γ1i−1, γ2i−1] ⇒si

G [γ1i, γ2i] for
every i with 1 ≤ i ≤ d and synchronous strings
[γ1i, γ2i] with 0 ≤ i ≤ d. Throughout this paper,
we always implicitly assume some canonical form
for derivations in G, by demanding for instance that
each step rewrites a pair of nonterminal occurrences
of which the first is leftmost in the left component.
When we want to focus on the specific synchronous
strings being derived, we also write derivations in
the form [γ10, γ20] ⇒σ

G [γ1d, γ2d], and we write
[γ10, γ20] ⇒∗

G [γ1d, γ2d] when σ is not further
specified. The translation generated by a SCFG G
is defined as:

T (G) = {[w1, w2] | [S 1
, S

1] ⇒∗
G [w1, w2],

w1, w2 ∈ Σ∗}

For w1, w2 ∈ Σ∗, we write D(G, [w1, w2]) to de-
note the set of all (canonical) derivations σ such that
[S 1 , S 1] ⇒σ

G [w1, w2].

Analogously to standard terminology for context-
free grammars, we call a SCFG reduced if ev-
ery rule occurs in at least one derivation σ ∈
D(G, [w1, w2]), for some w1, w2 ∈ Σ∗. We as-
sume without loss of generality that the start sym-
bol S does not occur in the right-hand side of either
component of any rule.

Example 2 Consider the SCFG G from example 1.
The following is a canonical derivation in G, since it
is always the leftmost nonterminal occurrence in the
left component that is involved in a derivation step:

[S 1
, S

1] ⇒G [A 1
B

2
, B

2
A

1]

⇒G [aA
3
bB

2
, B

2
bA

3
a]

⇒G [aaA
4
bbB

2
, B

2
bbA

4
aa]

⇒G [aaabbbB
2
, B

2
bbbaaa]

⇒G [aaabbbcB
5
d, dB

5
cbbbaaa]

⇒G [aaabbbccdd, ddccbbbaaa]

It is not difficult to see that the generated translation
is T (G) = {[apbpcqdq, dqcqbpap] | p, q ≥ 1}. 2

The size of a synchronous rule s : [A1 → α1,
A2 → α2], is defined as |s| = |A1α1A2α2|. The
size of G is defined as |G| =

∑
s∈P |s|.

A probabilistic SCFG (PSCFG) is a pair G =
(G, pG) where G = (N,Σ,P, S) is a SCFG and pG

is a function from P to real numbers in [0, 1]. We
say that G is proper if for each pair [A1, A2] ∈ N [2]

we have: ∑
s:[A1→α1, A2→α2]

pG(s) = 1

Intuitively, properness ensures that where a pair
of nonterminals in two synchronous strings can be
rewritten, there is a probability distribution over the
applicable rules.

For a (canonical) derivation σ = s1s2 · · · sd, we
define pG(σ) =

∏d
i=1 pG(si). For w1, w2 ∈ Σ∗,

we also define:

pG([w1, w2]) =
∑

σ∈D(G,[w1,w2])

pG(σ) (1)

We say a PSCFG is consistent if pG defines a prob-
ability distribution over the translation, or formally:∑

w1,w2

pG([w1, w2]) = 1

462

If the grammar is reduced, proper and consistent,
then also: ∑

w1,w2∈Σ∗, σ∈P ∗

s.t. [A 1
1 , A

1
2]⇒σ

G[w1, w2]

pG(σ) = 1

for every pair [A1, A2] ∈ N [2]. The proof is identi-
cal to that of the corresponding fact for probabilistic
context-free grammars.

3 Effective PSCFG parsing

If w = a1 · · · an then the expression w[i, j], with
0 ≤ i ≤ j ≤ n, denotes the substring ai+1 · · · aj (if
i = j then w[i, j] = ε). In this section, we assume
the input is the pair [w1, w2] of terminal strings.
The task of a recognizer for SCFG G is to decide
whether [w1, w2] ∈ T (G).

We present a general algorithm for solving the
above problem in terms of the specification of a de-
duction system, following Shieber et al. (1995). The
items that are constructed by the system have the
form [m1, A1,m

′
1; m2, A2,m

′
2], where [A1, A2] ∈

N [2] and where m1, m′
1, m2, m′

2 are non-negative
integers such that 0 ≤ m1 ≤ m′

1 ≤ |w1| and
0 ≤ m2 ≤ m′

2 ≤ |w2|. Such an item can be de-
rived by the deduction system if and only if:

[A 1
1 , A

1
2] ⇒∗

G [w1[m1,m
′
1], w2[m2,m

′
2]]

The deduction system has one inference rule,
shown in figure 1. One of its side conditions has
a synchronous rule in P of the form:

s : [A1 → u10A
t1

11 u11 · · ·u1r−1A
tr

1r u1r,

A2 → u20A
tπ(1)

21 u21 · · ·u2r−1A
tπ(r)

2r u2r] (2)

Observe that, in the right-hand side of the two rule
components above, nonterminals A1i and A2π−1(i),
1 ≤ i ≤ r, have both the same index. More pre-
cisely, A1i has index ti and A2π−1(i) has index ti′

with i′ = π(π−1(i)) = i. Thus the nonterminals in
each antecedent item in figure 1 form a linked pair.

We now turn to a computational analysis of the
above algorithm. In the inference rule in figure 1
there are 2(r + 1) variables that can be bound to
positions in w1, and as many that can be bound to
positions in w2. However, the side conditions imply

m′
ij = mij + |uij |, for i ∈ {1, 2} and 0 ≤ j ≤ r,

and therefore the number of free variables is only
r + 1 for each component. By standard complex-
ity analysis of deduction systems, for example fol-
lowing McAllester (2002), the time complexity of
a straightforward implementation of the recogni-
tion algorithm is O(|P | · |w1|rmax+1 · |w2|rmax+1),
where rmax is the maximum number of right-hand
side nonterminals in either component of a syn-
chronous rule. The algorithm therefore runs in ex-
ponential time, when the grammar G is considered
as part of the input. Such computational behavior
seems unavoidable, since the recognition problem
for SCFG is NP-complete, as reported by Satta and
Peserico (2005). See also Gildea and Stefankovic
(2007) and Hopkins and Langmead (2010) for fur-
ther analysis of the upper bound above.

The recognition algorithm above can easily be
turned into a parsing algorithm by letting an imple-
mentation keep track of which items were derived
from which other items, as instantiations of the con-
sequent and the antecedents, respectively, of the in-
ference rule in figure 1.

A probabilistic parsing algorithm that computes
pG([w1, w2]), defined in (1), can also be obtained
from the recognition algorithm above, by associat-
ing each item with a probability. To explain the ba-
sic idea, let us first assume that each item can be
inferred in finitely many ways by the inference rule
in figure 1. Each instantiation of the inference rule
should be associated with a term that is computed
by multiplying the probability of the involved rule
s and the product of all probabilities previously as-
sociated with the instantiations of the antecedents.
The probability associated with an item is then
computed as the sum of each term resulting from
some instantiation of an inference rule deriving that
item. This is a generalization to PSCFG of the in-
side algorithm defined for probabilistic context-free
grammars (Manning and Schütze, 1999), and we
can show that the probability associated with item
[0, S, |w1| ; 0, S, |w2|] provides the desired value
pG([w1, w2]). We refer to the procedure sketched
above as the inside algorithm for PSCFGs.

However, this simple procedure fails if there are
cyclic dependencies, whereby the derivation of an
item involves a proper subderivation of the same
item. Cyclic dependencies can be excluded if it can

463

[m′
10, A11,m11; m′

2π−1(1)−1, A2π−1(1),m2π−1(1)]
...

[m′
1r−1, A1r,m1r; m′

2π−1(r)−1, A2π−1(r),m2π−1(r)]

[m10, A1,m
′
1r; m20, A2,m

′
2r]

s:[A1 → u10A
t1

11 u11 · · ·u1r−1A
tr

1r u1r,

A2 → u20A
tπ(1)

21 u21 · · ·u2r−1A
tπ(r)

2r u2r] ∈ P,
w1[m10,m

′
10] = u10,

...
w1[m1r,m

′
1r] = u1r,

w2[m20,m
′
20] = u20,

...
w2[m2r,m

′
2r] = u2r

Figure 1: SCFG recognition, by a deduction system consisting of a single inference rule.

be guaranteed that, in figure 1, m′
1r −m10 is greater

than m1j − m′
1j−1 for each j (1 ≤ j ≤ r), or

m′
2r − m20 is greater than m2j − m′

2j−1 for each
j (1 ≤ j ≤ r).

Consider again a synchronous rule s of the form
in (2). We say s is an epsilon rule if r = 0 and
u10 = u20 = ε. We say s is a unit rule if r = 1
and u10 = u11 = u20 = u21 = ε. Similarly to
context-free grammars, absence of epsilon rules and
unit rules guarantees that there are no cyclic depen-
dencies between items and in this case the inside al-
gorithm correctly computes pG([w1, w2]).

Epsilon rules can be eliminated from PSCFGs
by a grammar transformation that is very similar
to the transformation eliminating epsilon rules from
a probabilistic context-free grammar (Abney et al.,
1999). This is sketched in what follows. We first
compute the set of all nullable linked pairs of non-
terminals of the underlying SCFG, that is, the set of
all [A1, A2] ∈ N [2] such that [A 1

1 , A 1
2] ⇒∗

G [ε, ε].
This can be done in linear time O(|G|) using essen-
tially the same algorithm that identifies nullable non-
terminals in a context-free grammar, as presented for
instance by Sippu and Soisalon-Soininen (1988).

Next, we identify all occurrences of nullable pairs
[A1, A2] in the right-hand side components of a rule
s, such that A1 and A2 have the same index. For
every possible choice of a subset U of these occur-
rences, we add to our grammar a new rule sU con-
structed by omitting all of the nullable occurrences
in U . The probability of sU is computed as the prob-
ability of s multiplied by terms of the form:∑

σ s.t. [A
1
1 ,A

1
2]⇒σ

G[ε, ε]

pG(σ) (3)

for every pair [A1, A2] in U . After adding these extra
rules, which in effect circumvents the use of epsilon-

generating subderivations, we can safely remove all
epsilon rules, with the only exception of a possible
rule of the form [S → ε, S → ε]. The translation and
the associated probability distribution in the result-
ing grammar will be the same as those in the source
grammar.

One problem with the above construction is that
we have to create new synchronous rules sU for each
possible choice of subset U . In the worst case, this
may result in an exponential blow-up of the source
grammar. In the case of context-free grammars, this
is usually circumvented by casting the rules in bi-
nary form prior to epsilon rule elimination. How-
ever, this is not possible in our case, since SCFGs
do not allow normal forms with a constant bound
on the length of the right-hand side of each compo-
nent. This follows from a result due to Aho and Ull-
man (1969) for a formalism called syntax directed
translation schemata, which is a syntactic variant of
SCFGs.

An additional complication with our construction
is that finding any of the values in (3) may involve
solving a system of non-linear equations, similarly
to the case of probabilistic context-free grammars;
see again Abney et al. (1999), and Stolcke (1995).
Approximate solution of such systems might take
exponential time, as pointed out by Kiefer et al.
(2007).

Notwithstanding the worst cases mentioned
above, there is a special case that can be easily dealt
with. Assume that, for each nullable pair [A1, A2] in
G we have that [A 1

1 , A 1
2] ⇒∗

G [w1, w2] does not
hold for any w1 and w2 with w1 6= ε or w2 6= ε.
Then each of the values in (3) is guaranteed to be 1,
and furthermore we can remove the instances of the
nullable pairs in the source rule s all at the same
time. This means that the overall construction of

464

elimination of nullable rules from G can be imple-
mented in linear time |G|. It is this special case that
we will encounter in section 4.

After elimination of epsilon rules, one can elimi-
nate unit rules. We define Cunit([A1, A2], [B1, B2])
as the sum of the probabilities of all derivations de-
riving [B1, B2] from [A1, A2] with arbitrary indices,
or more precisely: ∑

σ∈P ∗ s.t. ∃t∈N,

[A
1
1 , A

1
2]⇒σ

G[B
t

1 , B
t

2]

pG(σ)

Note that [A1, A2] may be equal to [B1, B2] and σ
may be ε, in which case Cunit([A1, A2], [B1, B2]) is
at least 1, but it may be larger if there are unit rules.
Therefore Cunit([A1, A2], [B1, B2]) should not be
seen as a probability.

Consider a pair [A1, A2] ∈ N [2] and let all unit
rules with left-hand sides A1 and A2 be:

s1 : [A1, A2] → [A t1

11 , A
t1

21]
...

sm : [A1, A2] → [A tm

1m , A
tm

2m]

The values of Cunit(·, ·) are related by the following:

Cunit([A1, A2], [B1, B2]) =
δ([A1, A2] = [B1, B2]) +∑

i

pG(si) · Cunit([A1i, A2i], [B1, B2])

where δ([A1, A2] = [B1, B2]) is defined to be 1 if
[A1, A2] = [B1, B2] and 0 otherwise. This forms a
system of linear equations in the unknown variables
Cunit(·, ·). Such a system can be solved in polyno-
mial time in the number of variables, for example
using Gaussian elimination.

The elimination of unit rules starts with adding
a rule s′ : [A1 → α1, A2 → α2] for each non-
unit rule s : [B1 → α1, B2 → α2] and pair
[A1, A2] such that Cunit([A1, A2], [B1, B2]) > 0.
We assign to the new rule s′ the probability pG(s) ·
Cunit([A1, A2], [B1, B2]). The unit rules can now
be removed from the grammar. Again, in the re-
sulting grammar the translation and the associated
probability distribution will be the same as those in
the source grammar. The new grammar has size

O(|G|2), where G is the input grammar. The time
complexity is dominated by the computation of the
solution of the linear system of equations. This com-
putation takes cubic time in the number of variables.
The number of variables in this case is O(|G|2),
which makes the running time O(|G|6).

4 Prefix probabilities

The joint prefix probability pprefix
G ([v1, v2]) of a

pair [v1, v2] of terminal strings is the sum of the
probabilities of all pairs of strings that have v1 and
v2, respectively, as their prefixes. Formally:

pprefix
G ([v1, v2]) =

∑
w1,w2∈Σ∗

pG([v1w1, v2w2])

At first sight, it is not clear this quantity can be ef-
fectively computed, as it involves a sum over in-
finitely many choices of w1 and w2. However, anal-
ogously to the case of context-free prefix probabili-
ties (Jelinek and Lafferty, 1991), we can isolate two
parts in the computation. One part involves infinite
sums, which are independent of the input strings v1

and v2, and can be precomputed by solving a sys-
tem of linear equations. The second part does rely
on v1 and v2, and involves the actual evaluation of
pprefix

G ([v1, v2]). This second part can be realized
effectively, on the basis of the precomputed values
from the first part.

In order to keep the presentation simple, and
to allow for simple proofs of correctness, we
solve the problem in a modular fashion. First,
we present a transformation from a PSCFG
G = (G, pG), with G = (N,Σ,P, S), to a
PSCFG Gprefix = (Gprefix, pGprefix

), with Gprefix =
(Nprefix, Σ, Pprefix, S

↓). The latter grammar derives
all possible pairs [v1, v2] such that [v1w1, v2w2] can
be derived from G, for some w1 and w2. Moreover,
pGprefix

([v1, v2]) = pprefix
G ([v1, v2]), as will be veri-

fied later.
Computing pGprefix

([v1, v2]) directly using a
generic probabilistic parsing algorithm for PSCFGs
is difficult, due to the presence of epsilon rules and
unit rules. The next step will be to transform Gprefix

into a third grammar G′prefix by eliminating epsilon
rules and unit rules from the underlying SCFG,
and preserving the probability distribution over pairs
of strings. Using G′prefix one can then effectively

465

apply generic probabilistic parsing algorithms for
PSCFGs, such as the inside algorithm discussed in
section 3, in order to compute the desired prefix
probabilities for the source PSCFG G.

For each nonterminal A in the source SCFG G,
the grammar Gprefix contains three nonterminals,
namely A itself, A↓ and Aε. The meaning of A re-
mains unchanged, whereas A↓ is intended to gen-
erate a string that is a suffix of a known prefix v1 or
v2. Nonterminals Aε generate only the empty string,
and are used to simulate the generation by G of in-
fixes of the unknown suffix w1 or w2. The two left-
hand sides of a synchronous rule in Gprefix can con-
tain different combinations of nonterminals of the
forms A, A↓, or Aε. The start symbol of Gprefix is
S↓. The structure of the rules from the source gram-
mar is largely retained, except that some terminal
symbols are omitted in order to obtain the intended
interpretation of A↓ and Aε.

In more detail, let us consider a synchronous rule
s : [A1 → α1, A2 → α2] from the source gram-
mar, where for i ∈ {1, 2} we have:

αi = ui0A
ti1

i1 ui1 · · ·uir−1A
tir

ir uir

The transformed grammar then contains a large
number of rules, each of which is of the form s′ :
[B1 → β1, B2 → β2], where Bi → βi is of
one of three forms, namely Ai → αi, A↓

i → α↓i
or Aε

i → αε
i , where α↓i and αε

i are explained below.
The choices for i = 1 and for i = 2 are independent,
so that we can have 3 ∗ 3 = 9 kinds of synchronous
rules, to be further subdivided in what follows. A
unique label s′ is produced for each new rule, and
the probability of each new rule equals that of s.

The right-hand side αε
i is constructed by omitting

all terminals and propagating downwards the ε su-
perscript, resulting in:

αε
i = Aε ti1

i1 · · ·Aε tir

ir

It is more difficult to define α↓i . In fact, there can
be a number of choices for α↓i and, for each choice,
the transformed grammar contains an instance of the
synchronous rule s′ : [B1 → β1, B2 → β2] as de-
fined above. The reason why different choices need
to be considered is because the boundary between
the known prefix vi and the unknown suffix wi can

occur at different positions, either within a terminal
string uij or else further down in a subderivation in-
volving Aij . In the first case, we have for some j
(0 ≤ j ≤ r):

α↓i = ui0A
ti1

i1 ui1A
ti2

i2 · · ·

uij−1A
tij

ij u′ijA
ε tij+1

ij+1 A
ε tij+2

ij+2 · · ·Aε tir

ir

where u′ij is a choice of a prefix of uij . In words,
the known prefix ends after u′ij and, thereafter, no
more terminals are generated. We demand that u′ij
must not be the empty string, unless Ai = S and
j = 0. The reason for this restriction is that we want
to avoid an overlap with the second case. In this
second case, we have for some j (1 ≤ j ≤ r):

α↓i = ui0A
ti1

i1 ui1A
ti2

i2 · · ·

uij−1A
↓ tij

ij A
ε tij+1

ij+1 A
ε tij+2

ij+2 · · ·Aε tir

ir

Here the known prefix of the input ends within a sub-
derivation involving Aij , and further to the right no
more terminals are generated.
Example 3 Consider the synchronous rule s :
[A → aB 1 bc C 2 d, D → ef E 2 F 1]. The first
component of a synchronous rule derived from this
can be one of the following eight:

Aε → Bε 1
Cε 2

A↓ → aBε 1
Cε 2

A↓ → aB↓ 1
Cε 2

A↓ → aB
1 b Cε 2

A↓ → aB
1 bc Cε 2

A↓ → aB
1 bc C↓ 2

A↓ → aB
1 bc C

2
d

A → aB
1 bc C

2
d

The second component can be one of the following
six:

Dε → Eε 2
F ε 1

D↓ → eEε 2
F ε 1

D↓ → ef Eε 2
F ε 1

D↓ → ef E↓ 2
F ε 1

D↓ → ef E
2
F ↓ 1

D → ef E
2
F

1

466

In total, the transformed grammar will contain 8 ∗
6 = 48 synchronous rules derived from s. 2

For each synchronous rule s, the above gram-
mar transformation produces O(|s|) left rule com-
ponents and as many right rule components. This
means the number of new synchronous rules is
O(|s|2), and the size of each such rule is O(|s|). If
we sum O(|s|3) for every rule s we obtain a time
and space complexity of O(|G|3).

We now investigate formal properties of our
grammar transformation, in order to relate it to pre-
fix probabilities. We define the relation ` between P
and Pprefix such that s ` s′ if and only if s′ was ob-
tained from s by the transformation described above.
This is extended in a natural way to derivations, such
that s1 · · · sd ` s′1 · · · s′d′ if and only if d = d′ and
si ` s′i for each i (1 ≤ i ≤ d).

The formal relation between G and Gprefix is re-
vealed by the following two lemmas.

Lemma 1 For each v1, v2, w1, w2 ∈ Σ∗ and
σ ∈ P ∗ such that [S, S] ⇒σ

G [v1w1, v2w2], there
is a unique σ′ ∈ P ∗

prefix such that [S↓, S↓] ⇒σ′
Gprefix

[v1, v2] and σ ` σ′. 2

Lemma 2 For each v1, v2 ∈ Σ∗ and derivation
σ′ ∈ P ∗

prefix such that [S↓, S↓] ⇒σ′
Gprefix

[v1, v2],
there is a unique σ ∈ P ∗ and unique w1, w2 ∈ Σ∗

such that [S, S] ⇒σ
G [v1w1, v2w2] and σ ` σ′. 2

The only non-trivial issue in the proof of Lemma 1
is the uniqueness of σ′. This follows from the obser-
vation that the length of v1 in v1w1 uniquely deter-
mines how occurrences of left components of rules
in P found in σ are mapped to occurrences of left
components of rules in Pprefix found in σ′. The same
applies to the length of v2 in v2w2 and the right com-
ponents.

Lemma 2 is easy to prove as the structure of the
transformation ensures that the terminals that are in
rules from P but not in the corresponding rules from
Pprefix occur at the end of a string v1 (and v2) to form
the longer string v1w1 (and v2w2, respectively).

The transformation also ensures that s ` s′ im-
plies pG(s) = pGprefix

(s′). Therefore σ ` σ′ implies
pG(σ) = pGprefix

(σ′). By this and Lemmas 1 and 2
we may conclude:

Theorem 1 pGprefix
([v1, v2]) = pprefix

G ([v1, v2]). 2

Because of the introduction of rules with left-hand
sides of the form Aε in both the left and right compo-
nents of synchronous rules, it is not straightforward
to do effective probabilistic parsing with the gram-
mar Gprefix. We can however apply the transforma-
tions from section 3 to eliminate epsilon rules and
thereafter eliminate unit rules, in a way that leaves
the derived string pairs and their probabilities un-
changed.

The simplest case is when the source grammar G
is reduced, proper and consistent, and has no epsilon
rules. The only nullable pairs of nonterminals in
Gprefix will then be of the form [Aε

1, A
ε
2]. Consider

such a pair [Aε
1, A

ε
2]. Because of reduction, proper-

ness and consistency of G we have:∑
w1,w2∈Σ∗, σ∈P ∗ s.t.

[A
1
1 , A

1
2]⇒σ

G[w1, w2]

pG(σ) = 1

Because of the structure of the grammar transforma-
tion by which Gprefix was obtained from G, we also
have: ∑

σ∈P ∗ s.t.

[Aε 1
1 , Aε 1

2]⇒σ
Gprefix

[ε, ε]

pGprefix
(σ) = 1

Therefore pairs of occurrences of Aε
1 and Aε

2 with
the same index in synchronous rules of Gprefix

can be systematically removed without affecting the
probability of the resulting rule, as outlined in sec-
tion 3. Thereafter, unit rules can be removed to allow
parsing by the inside algorithm for PSCFGs.

Following the computational analyses for all of
the constructions presented in section 3, and for the
grammar transformation discussed in this section,
we can conclude that the running time of the pro-
posed algorithm for the computation of prefix prob-
abilities is dominated by the running time of the in-
side algorithm, which in the worst case is exponen-
tial in |G|. This result is not unexpected, as already
pointed out in the introduction, since the recogni-
tion problem for PSCFGs is NP-complete, as estab-
lished by Satta and Peserico (2005), and there is a
straightforward reduction from the recognition prob-
lem for PSCFGs to the problem of computing the
prefix probabilities for PSCFGs.

467

One should add that, in real world machine trans-
lation applications, it has been observed that recog-
nition (and computation of inside probabilities) for
SCFGs can typically be carried out in low-degree
polynomial time, and the worst cases mentioned
above are not observed with real data. Further dis-
cussion on this issue is due to Zhang et al. (2006).

5 Discussion

We have shown that the computation of joint prefix
probabilities for PSCFGs can be reduced to the com-
putation of inside probabilities for the same model.
Our reduction relies on a novel grammar transfor-
mation, followed by elimination of epsilon rules and
unit rules.

Next to the joint prefix probability, we can also
consider the right prefix probability, which is de-
fined by:

pr−prefix
G ([v1, v2]) =

∑
w

pG([v1, v2w])

In words, the entire left string is given, along with a
prefix of the right string, and the task is to sum the
probabilities of all string pairs for different suffixes
following the given right prefix. This can be com-
puted as a special case of the joint prefix probability.
Concretely, one can extend the input and the gram-
mar by introducing an end-of-sentence marker $.
Let G′ be the underlying SCFG grammar after the
extension. Then:

pr−prefix
G ([v1, v2]) = pprefix

G′ ([v1$, v2])

Prefix probabilities and right prefix probabilities
for PSCFGs can be exploited to compute probability
distributions for the next word or part-of-speech in
left-to-right incremental translation of speech, or al-
ternatively as a predictive tool in applications of in-
teractive machine translation, of the kind described
by Foster et al. (2002). We provide some technical
details here, generalizing to PSCFGs the approach
by Jelinek and Lafferty (1991).

Let G = (G, pG) be a PSCFG, with Σ the alpha-
bet of terminal symbols. We are interested in the
probability that the next terminal in the target trans-
lation is a ∈ Σ, after having processed a prefix v1 of
the source sentence and having produced a prefix v2

of the target translation. This can be computed as:

pr−word
G (a | [v1, v2]) =

pprefix
G ([v1, v2a])

pprefix
G ([v1, v2])

Two considerations are relevant when applying
the above formula in practice. First, the computa-
tion of pprefix

G ([v1, v2a]) need not be computed from
scratch if pprefix

G ([v1, v2]) has been computed al-
ready. Because of the tabular nature of the inside al-
gorithm, one can extend the table for pprefix

G ([v1, v2])
by adding new entries to obtain the table for
pprefix

G ([v1, v2a]). The same holds for the compu-
tation of pprefix

G ([v1b, v2]).

Secondly, the computation of pprefix
G ([v1, v2a]) for

all possible a ∈ Σ may be impractical. However,
one may also compute the probability that the next
part-of-speech in the target translation is A. This can
be realised by adding a rule s′ : [B → b, A → cA]
for each rule s : [B → b, A → a] from the source
grammar, where A is a nonterminal representing a
part-of-speech and cA is a (pre-)terminal specific to
A. The probability of s′ is the same as that of s. If
G′ is the underlying SCFG after adding such rules,
then the required value is pprefix

G′ ([v1, v2 cA]).
One variant of the definitions presented in this pa-

per is the notion of infix probability, which is use-
ful in island-driven speech translation. Here we are
interested in the probability that any string in the
source language with infix v1 is translated into any
string in the target language with infix v2. However,
just as infix probabilities are difficult to compute
for probabilistic context-free grammars (Corazza et
al., 1991; Nederhof and Satta, 2008) so (joint) infix
probabilities are difficult to compute for PSCFGs.
The problem lies in the possibility that a given in-
fix may occur more than once in a string in the lan-
guage. The computation of infix probabilities can
be reduced to that of solving non-linear systems of
equations, which can be approximated using for in-
stance Newton’s algorithm. However, such a system
of equations is built from the input strings, which en-
tails that the computational effort of solving the sys-
tem primarily affects parse time rather than parser-
generation time.

468

References
S. Abney, D. McAllester, and F. Pereira. 1999. Relating

probabilistic grammars and automata. In 37th Annual
Meeting of the Association for Computational Linguis-
tics, Proceedings of the Conference, pages 542–549,
Maryland, USA, June.

A.V. Aho and J.D. Ullman. 1969. Syntax directed trans-
lations and the pushdown assembler. Journal of Com-
puter and System Sciences, 3:37–56.

Z. Chi. 1999. Statistical properties of probabilistic
context-free grammars. Computational Linguistics,
25(1):131–160.

D. Chiang. 2007. Hierarchical phrase-based translation.
Computational Linguistics, 33(2):201–228.

A. Corazza, R. De Mori, R. Gretter, and G. Satta.
1991. Computation of probabilities for an island-
driven parser. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 13(9):936–950.

G. Foster, P. Langlais, and G. Lapalme. 2002. User-
friendly text prediction for translators. In Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 148–155, University of Pennsylvania,
Philadelphia, PA, USA, July.

M. Galley, M. Hopkins, K. Knight, and D. Marcu. 2004.
What’s in a translation rule? In HLT-NAACL 2004,
Proceedings of the Main Conference, Boston, Mas-
sachusetts, USA, May.

D. Gildea and D. Stefankovic. 2007. Worst-case syn-
chronous grammar rules. In Human Language Tech-
nologies 2007: The Conference of the North American
Chapter of the Association for Computational Linguis-
tics, Proceedings of the Main Conference, pages 147–
154, Rochester, New York, USA, April.

M. Hopkins and G. Langmead. 2010. SCFG decod-
ing without binarization. In Conference on Empirical
Methods in Natural Language Processing, Proceed-
ings of the Conference, pages 646–655, October.

F. Jelinek and J.D. Lafferty. 1991. Computation of the
probability of initial substring generation by stochas-
tic context-free grammars. Computational Linguistics,
17(3):315–323.

S. Kiefer, M. Luttenberger, and J. Esparza. 2007. On the
convergence of Newton’s method for monotone sys-
tems of polynomial equations. In Proceedings of the
39th ACM Symposium on Theory of Computing, pages
217–266.

C.D. Manning and H. Schütze. 1999. Foundations of
Statistical Natural Language Processing. MIT Press.

D. McAllester. 2002. On the complexity analysis of
static analyses. Journal of the ACM, 49(4):512–537.

M.-J. Nederhof and G. Satta. 2008. Computing parti-
tion functions of PCFGs. Research on Language and
Computation, 6(2):139–162.

G. Satta and E. Peserico. 2005. Some computational
complexity results for synchronous context-free gram-
mars. In Human Language Technology Conference
and Conference on Empirical Methods in Natural Lan-
guage Processing, pages 803–810.

S.M. Shieber, Y. Schabes, and F.C.N. Pereira. 1995.
Principles and implementation of deductive parsing.
Journal of Logic Programming, 24:3–36.

S. Sippu and E. Soisalon-Soininen. 1988. Parsing
Theory, Vol. I: Languages and Parsing, volume 15
of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag.

A. Stolcke. 1995. An efficient probabilistic context-free
parsing algorithm that computes prefix probabilities.
Computational Linguistics, 21(2):167–201.

D. Wu. 1997. Stochastic inversion transduction gram-
mars and bilingual parsing of parallel corpora. Com-
putational Linguistics, 23(3):377–404.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for machine
translation. In Proceedings of the Human Language
Technology Conference of the NAACL, Main Confer-
ence, pages 256–263, New York, USA, June.

469

