
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, pages 52–61,
Portland, Oregon, June 19-24, 2011. c©2011 Association for Computational Linguistics

A Fast and Accurate Method for Approximate String Search
Ziqi Wang∗

School of EECS
Peking University

Beijing 100871, China
wangziqi@pku.edu.cn

Gu Xu
Microsoft Research Asia

Building 2, No.5 Danling Street,
Beijing 100080, China

guxu@microsoft.com

Hang Li
Microsoft Research Asia

Building 2, No.5 Danling Street,
Beijing 100080, China

hangli@microsoft.com

Ming Zhang
School of EECS

Peking University
Beijing 100871, China

mzhang@net.pku.edu.cn

Abstract

This paper proposes a new method for ap-
proximate string search, specifically candidate
generation in spelling error correction, which
is a task as follows. Given a misspelled word,
the system finds words in a dictionary, which
are most “similar” to the misspelled word.
The paper proposes a probabilistic approach to
the task, which is both accurate and efficient.
The approach includes the use of a log linear
model, a method for training the model, and
an algorithm for finding the top k candidates.
The log linear model is defined as a condi-
tional probability distribution of a corrected
word and a rule set for the correction con-
ditioned on the misspelled word. The learn-
ing method employs the criterion in candidate
generation as loss function. The retrieval al-
gorithm is efficient and is guaranteed to find
the optimal k candidates. Experimental re-
sults on large scale data show that the pro-
posed approach improves upon existing meth-
ods in terms of accuracy in different settings.

1 Introduction

This paper addresses the following problem, re-
ferred to as approximate string search. Given a
query string, a dictionary of strings (vocabulary),
and a set of operators, the system returns the top
k strings in the dictionary that can be transformed
from the query string by applying several operators
in the operator set. Here each operator is a rule
that can replace a substring in the query string with
another substring. The top k results are defined in
∗ Contribution during internship at Microsoft Research Asia.

terms of an evaluation measure employed in a spe-
cific application. The requirement is that the task
must be conducted very efficiently.

Approximate string search is useful in many ap-
plications including spelling error correction, sim-
ilar terminology retrieval, duplicate detection, etc.
Although certain progress has been made for ad-
dressing the problem, further investigation on the
task is still necessary, particularly from the view-
point of enhancing both accuracy and efficiency.

Without loss of generality, in this paper we ad-
dress candidate generation in spelling error correc-
tion. Candidate generation is to find the most pos-
sible corrections of a misspelled word. In such a
problem, strings are words, and the operators rep-
resent insertion, deletion, and substitution of char-
acters with or without surrounding characters, for
example, “a”→“e” and “lly”→“ly”. Note that can-
didate generation is concerned with a single word;
after candidate generation, the words surrounding it
in the text can be further leveraged to make the final
candidate selection, e.g., Li et al. (2006), Golding
and Roth (1999).

In spelling error correction, Brill and Moore
(2000) proposed employing a generative model for
candidate generation and a hierarchy of trie struc-
tures for fast candidate retrieval. Our approach is
a discriminative approach and is aimed at improv-
ing Brill and Moore’s method. Okazaki et al. (2008)
proposed using a logistic regression model for ap-
proximate dictionary matching. Their method is also
a discriminative approach, but it is largely differ-
ent from our approach in the following points. It
formalizes the problem as binary classification and

52

assumes that there is only one rule applicable each
time in candidate generation. Efficiency is also not a
major concern for them, because it is for offline text
mining.

There are two fundamental problems in research
on approximate string search: (1) how to build a
model that can archive both high accuracy and ef-
ficiency, and (2) how to develop a data structure and
algorithm that can facilitate efficient retrieval of the
top k candidates.

In this paper, we propose a probabilistic approach
to the task. Our approach is novel and unique in
the following aspects. It employs (a) a log-linear
(discriminative) model for candidate generation, (b)
an effective algorithm for model learning, and (c) an
efficient algorithm for candidate retrieval.

The log linear model is defined as a conditional
probability distribution of a corrected word and a
rule set for the correction given the misspelled word.
The learning method employs, in the training pro-
cess, a criterion that represents the goal of mak-
ing both accurate and efficient prediction (candidate
generation). As a result, the model is optimally
trained toward its objective. The retrieval algorithm
uses special data structures and efficiently performs
the top k candidates finding. It is guaranteed to find
the best k candidates without enumerating all the
possible ones.

We empirically evaluated the proposed method in
spelling error correction of web search queries. The
experimental results have verified that the accuracy
of the top candidates given by our method is signifi-
cantly higher than those given by the baseline meth-
ods. Our method is more accurate than the baseline
methods in different settings such as large rule sets
and large vocabulary sizes. The efficiency of our
method is also very high in different experimental
settings.

2 Related Work

Approximate string search has been studied by many
researchers. Previous work mainly focused on effi-
ciency rather than model. Usually, it is assumed that
the model (similarity distance) is fixed and the goal
is to efficiently find all the strings in the collection
whose similarity distances are within a threshold.
Most existing methods employ n-gram based algo-

rithms (Behm et al., 2009; Li et al., 2007; Yang et
al., 2008) or filtering algorithms (Mihov and Schulz,
2004; Li et al., 2008). Instead of finding all the can-
didates in a fixed range, methods for finding the top
k candidates have also been developed. For exam-
ple, the method by Vernica and Li (2009) utilized
n-gram based inverted lists as index structure and
a similarity function based on n-gram overlaps and
word frequencies. Yang et al. (2010) presented a
general framework for top k retrieval based on n-
grams. In contrast, our work in this paper aims to
learn a ranking function which can achieve both high
accuracy and efficiency.

Spelling error correction normally consists of
candidate generation and candidate final selection.
The former task is an example of approximate string
search. Note that candidate generation is only con-
cerned with a single word. For single-word candi-
date generation, rule-based approach is commonly
used. The use of edit distance is a typical exam-
ple, which exploits operations of character deletion,
insertion and substitution. Some methods generate
candidates within a fixed range of edit distance or
different ranges for strings with different lengths (Li
et al., 2006; Whitelaw et al., 2009). Other meth-
ods make use of weighted edit distance to enhance
the representation power of edit distance (Ristad and
Yianilos, 1998; Oncina and Sebban, 2005; McCal-
lum et al., 2005; Ahmad and Kondrak, 2005).

Conventional edit distance does not take in con-
sideration context information. For example, peo-
ple tend to misspell “c” to “s” or “k” depending
on contexts, and a straightforward application of
edit distance cannot deal with the problem. To ad-
dress the challenge, some researchers proposed us-
ing a large number of substitution rules containing
context information (at character level). For exam-
ple, Brill and Moore (2000) developed a genera-
tive model including contextual substitution rules;
and Toutanova and Moore (2002) further improved
the model by adding pronunciation factors into
the model. Schaback and Li (2007) proposed a
multi-level feature-based framework for spelling er-
ror correction including a modification of Brill and
Moore’s model (2000). Okazaki et al. (2008) uti-
lized substring substitution rules and incorporated
the rules into a L1-regularized logistic regression
model. Okazaki et al.’s model is largely different

53

from the model proposed in this paper, although
both of them are discriminative models. Their model
is a binary classification model and it is assumed that
only a single rule is applied in candidate generation.

Since users’ behavior of misspelling and correc-
tion can be frequently observed in web search log
data, it has been proposed to mine spelling-error
and correction pairs by using search log data. The
mined pairs can be directly used in spelling error
correction. Methods of selecting spelling and cor-
rection pairs with maximum entropy model (Chen et
al., 2007) or similarity functions (Islam and Inkpen,
2009; Jones et al., 2006) have been developed. The
mined pairs can only be used in candidate genera-
tion of high frequency typos, however. In this paper,
we work on candidate generation at the character
level, which can be applied to spelling error correc-
tion for both high and low frequency words.

3 Model for Candidate Generation

As an example of approximate string search, we
consider candidate generation in spelling correction.
Suppose that there is a vocabulary V and a mis-
spelled word, the objective of candidate generation
is to select the best corrections from the vocabulary
V . We care about both accuracy and efficiency of the
process. The problem is very challenging when the
size of vocabulary is large, because there are a large
number of potential candidates to be verified.

In this paper, we propose a probabilistic approach
to candidate generation, which can achieve both
high accuracy and efficiency, and is particularly
powerful when the scale is large.

In our approach, it is assumed that a large num-
ber of misspelled words and their best corrections
are given as training data. A probabilistic model is
then trained by using the training data, which can
assign ranking scores to candidates. The best can-
didates for correction of a misspelled word are thus
defined as those candidates having the highest prob-
abilistic scores with respect to the training data and
the operators.

Hereafter, we will describe the probabilistic
model for candidate generation, as well as training
and exploitation of the model.

n i c o s o o f t^ $

Derived rules

Edit-distance based aligment

Expended rules with context

m i c r o s o f t^ $

Figure 1: Example of rule extraction from word pair

3.1 Model

The operators (rules) represent insertion, deletion,
and substitution of characters in a word with or
without surrounding context (characters), which are
similar to those defined in (Brill and Moore, 2000;
Okazaki et al., 2008). An operator is formally rep-
resented a rule α → β that replaces a substring α in
a misspelled word with β, where α, β ∈ {s|s =
t, s = ˆt, or s = t$} and t ∈ Σ∗ is the set of
all possible strings over the alphabet. Obviously,
V ⊂ Σ∗. We actually derive all the possible rules
from the training data using a similar approach to
(Brill and Moore, 2000) as shown in Fig. 1. First
we conduct the letter alignment based on the min-
imum edit-distance, and then derive the rules from
the alignment. Furthermore we expand the derived
rules with surrounding words. Without loss of gen-
erality, we only consider using +2, +1, 0,−1,−2
characters as contexts in this paper.

If we can apply a set of rules to transform the mis-
spelled word wm to a correct word wc in the vocab-
ulary, then we call the rule set a “transformation”
for the word pair wm and wc. Note that for a given
word pair, it is likely that there are multiple possible
transformations for it. For example, both “n”→“m”
and “ni”→“mi” can transform “nicrosoft” to “mi-
crosoft”.

Without loss of generality, we set the maximum
number of rules applicable to a word pair to be a
fixed number. As a result, the number of possible
transformations for a word pair is finite, and usually
limited. This is equivalent to the assumption that the
number of spelling errors in a word is small.

Given word pair (wm, wc), let R(wm, wc) denote
one transformation (a set of rules) that can rewrite

54

wm to wc. We consider that there is a probabilistic
mapping between the misspelled word wm and cor-
rect word wc plus transformation R(wm, wc). We
define the conditional probability distribution of wc

and R(wm, wc) given wm as the following log linear
model:

P (wc, R(wm, wc)|wm) (1)

=
exp

(∑
r∈R(wm,wc)

λr

)
∑

(w′
c,R(wm,w′

c))∈Z(wm) exp
(∑

o∈R(wm,w′
c)

λo

)
where r or o denotes a rule in rule set R, λr or λo de-
notes a weight, and the normalization is carried over
Z(wm), all pairs of word w′

c in V and transforma-
tion R(wm, w′

c), such that wm can be transformed
to w′

c by R(wm, w′
c). The log linear model actually

uses binary features indicating whether or not a rule
is applied.

In general, the weights in Equ. (1) can be any real
numbers. To improve efficiency in retrieval, we fur-
ther assume that all the weights are non-positive, i.e.,
∀λr ≤ 0. It introduces monotonicity in rule applica-
tion and implies that applying additional rules can-
not lead to generation of better candidates. For ex-
ample, both “office” and “officer” are correct candi-
dates of “ofice”. We view “office” a better candidate
(with higher probability) than “officer”, as it needs
one less rule. The assumption is reasonable because
the chance of making more errors should be lower
than that of making less errors. Our experimental
results have shown that the change in accuracy by
making the assumption is negligible, but the gain in
efficiency is very large.

3.2 Training of Model
Training data is given as a set of pairs T ={
(wi

m, wi
c)

}N

i=1
, where wi

m is a misspelled word and
wi

c ∈ V is a correction of wi
m. The objective of train-

ing would be to maximize the conditional probabil-
ity P (wi

c, R(wi
m, wi

c)|wi
m) over the training data.

This is not a trivial problem, however, because
the “true” transformation R∗(wi

m, wi
c) for each word

pair wi
m and wi

c is not given in the training data. It is
often the case that there are multiple transformations
applicable, and it is not realistic to assume that such
information can be provided by humans or automat-
ically derived. (It is relatively easy to automatically

find the pairs wi
m and wi

c as explained in Section
5.1).

In this paper, we assume that the transformation
that actually generates the correction among all the
possible transformations is the one that can give the
maximum conditional probability; the exactly same
criterion is also used for fast prediction. Therefore
we have the following objective function

λ∗ =arg max
λ

L(λ) (2)

=arg max
λ

∑
i

max
R(wi

m,wi
c)
log P (wi

c, R(wi
m, wi

c)|wi
m)

where λ denotes the weight parameters and the max
is taken over the set of transformations that can
transform wi

m to wi
c.

We employ gradient ascent in the optimization in
Equ. (2). At each step, we first find the best trans-
formation for each word pair based on the current
parameters λ(t)

R∗(wi
m, wi

c) (3)

= arg max
R(wi

m,wi
c)

log Pλ(t)(wi
c, R(wi

m, wi
c)|wi

m)

Next, we calculate the gradients,

∂L

∂λr
=

∑
i log Pλ(t)(wi

c, R
∗(wi

m, wi
c)|wi

m)

∂λr
(4)

In this paper, we employ the bounded L-BFGS
(Behm et al., 2009) algorithm for the optimization
task, which works well even when the number of
weights λ is large.

3.3 Candidate Generation
In candidate generation, given a misspelled word
wm, we find the k candidates from the vocabu-
lary, that can be transformed from wm and have the
largest probabilities assigned by the learned model.

We only need to utilize the following ranking
function to rank a candidate wc given a misspelled
word wm, by taking into account Equs. (1) and (2)

rank(wc|wm) = max
R(wm,wc)

 ∑
r∈R(wm,wc)

λr

 (5)

For each possible transformation, we simply take
summation of the weights of the rules used in the
transformation. We then choose the sum as a rank-
ing score, which is equivalent to ranking candidates
based on their largest conditional probabilities.

55

aa

a NULL

NULL

......

......

......

......

......

......

e
s

a

0.0

-0.3

-0.1

failure link

leaf node link

Aho Corasick Tree

 a e

a s

aa a
e

ea

Figure 2: Rule Index based on Aho Corasick Tree.

4 Efficient Retrieval Algorithm

In this section, we introduce how to efficiently per-
form top k candidate generation. Our retrieval algo-
rithm is guaranteed to find the optimal k candidates
with some “pruning” techniques. We first introduce
the data structures and then the retrieval algorithm.

4.1 Data Structures

We exploit two data structures for candidate genera-
tion. One is a trie for storing and matching words in
the vocabulary, referred to as vocabulary trie, and the
other based on what we call an Aho-Corasick tree
(AC tree) (Aho and Corasick, 1975), which is used
for storing and applying correction rules, referred to
as rule index. The vocabulary trie is the same as that
used in existing work and it will be traversed when
searching the top k candidates.

Our rule index is unique because it indexes all the
rules based on an AC tree. The AC tree is a trie with
“failure links”, on which the Aho-Corasick string
matching algorithm can be executed. Aho-Corasick
algorithm is a well known dictionary-matching al-
gorithm which can quickly locate all the words in a
dictionary within an input string. Time complexity
of the algorithm is of linear order in length of input
string plus number of matched entries.

We index all the α’s in the rules on the AC tree.
Each α corresponds to a leaf node, and the β’s of the
α are stored in an associated list in decreasing order
of rule weights λ, as illustrated in Fig. 2. 1

1One may further improve the index structure by using a trie
rather than a ranking list to store βs associated with the same
α. However the improvement would not be significant because
the number of βs associated with each α is usually very small.

4.2 Algorithm

One could employ a naive algorithm that applies all
the possible combinations of rules (α’s) to the cur-
rent word wm, verifies whether the resulting words
(candidates) are in the vocabulary, uses the function
in Equ. (5) to calculate the ranking scores of the can-
didates, and find the top k candidates. This algo-
rithm is clearly inefficient.

Our algorithm first employs the Aho-Corasick al-
gorithm to locate all the applicable α’s within the in-
put word wm, from the rule index. The correspond-
ing β’s are retrieved as well. Then all the applicable
rules are identified and indexed by the applied posi-
tions of word wm.

Our algorithm next traverses the vocabulary trie
and searches the top k candidates with some pruning
techniques. The algorithm starts from the root node
of the vocabulary trie. At each step, it has multiple
search branches. It tries to match at the next position
of wm, or apply a rule at the current position of wm.
The following two pruning criteria are employed to
significantly accelerate the search process.

1) If the current sum of weights of applied rules
is smaller than the smallest weight in the top k
list, the search branch is pruned. This criterion
is derived from the non-negative constraint on
rule weights λ. It is easy to verify that the sum
of weights will not become larger if one contin-
ues to search the branch because all the weights
are non-positive.

2) If two search branches merge at the same node
in the vocabulary trie as well as the same po-
sition on wm, the search branches with smaller
sum of weights will be pruned. It is based on
the dynamic programming technique because
we take max in the ranking function in Equ. 5.

It is not difficult to prove that our algorithm is guar-
anteed to find the best k candidates in terms of the
ranking scores, because we only prune those candi-
dates that cannot give better scores than the ones in
the current top k list. Due to the limitation of space,
we omit the proof of the theorem that if the weights
of rules λ are non-positive and the ranking function
is defined as in Equ. 5, then the top k candidates ob-
tained with the pruning criteria are the same as the
top k candidates obtained without pruning.

56

5 Experimental Results

We have experimentally evaluated our approach in
spelling error correction of queries in web search.
The problem is more challenging than usual due to
the following reasons. (1) The vocabulary of queries
in web search is extremely large due to the scale, di-
versity, and dynamics of the Internet. (2) Efficiency
is critically important, because the response time of
top k candidate retrieval for web search must be kept
very low. Our approach for candidate generation is
in fact motivated by the application.

5.1 Word Pair Mining

In web search, a search session is comprised of a se-
quence of queries from the same user within a time
period. It is easy to observe from search session data
that there are many spelling errors and their correc-
tions occurring in the same sessions. We employed
heuristics to automatically mine training pairs from
search session data at a commercial search engine.

First, we segmented the query sequence from
each user into sessions. If two queries were issued
more than 5 minutes apart, then we put a session
boundary between them. We used short sessions
here because we found that search users usually cor-
rect their misspelled queries very quickly after they
find the misspellings. Then the following heuristics
were employed to identify pairs of misspelled words
and their corrections from two consecutive queries
within a session:

1) Two queries have the same number of words.
2) There is only one word difference between two

queries.
3) For the two distinct words, the word in the first

query is considered as misspelled and the sec-
ond one as its correction.

Finally, we aggregated the identified training pairs
across sessions and users and discarded the pairs
with low frequencies. Table 1 shows some examples
of the mined word pairs.

5.2 Experiments on Accuracy

Two representative methods were used as baselines:
the generative model proposed by (Brill and Moore,
2000) referred to as generative and the logistic re-
gression model proposed by (Okazaki et al., 2008)

Misspelled Correct Misspelled Correct
aacoustic acoustic chevorle chevrolet
liyerature literature tournemen tournament
shinngle shingle newpape newspaper
finlad finland ccomponet component
reteive retrieve olimpick olympic

Table 1: Examples of Word Pairs

referred to as logistic. Note that Okazaki et al.
(2008)’s model is not particularly for spelling error
correction, but it can be employed in the task. When
using their method for ranking, we used outputs of
the logistic regression model as rank scores.

We compared our method with the two baselines
in terms of top k accuracy, which is ratio of the true
corrections among the top k candidates generated by
a method. All the methods shared the same settings:
973,902 words in the vocabulary, 10,597 rules for
correction, and up to two rules used in one transfor-
mation. We made use of 100,000 word pairs mined
from query sessions for training, and 10,000 word
pairs for testing.

The experimental results are shown in Fig. 3. We
can see that our method always performs the best
when compared with the baselines and the improve-
ments are statistically significant (p < 0.01). The
logistic method works better than generative, when
k is small, but its performance becomes saturated,
when k is large. Usually a discriminative model
works better than a generative model, and that seems
to be what happens with small k’s. However, logis-
tic cannot work so well for large k’s, because it only
allows the use of one rule each time. We observe
that there are many word pairs in the data that need
to be transformed with multiple rules.

Next, we conducted experiments to investigate
how the top k accuracy changes with different sizes
of vocabularies, maximum numbers of applicable
rules and sizes of rule set for the three methods. The
experimental results are shown in Fig. 4, Fig. 5 and
Fig. 6.

For the experiment in Fig. 4, we enlarged
the vocabulary size from 973,902 (smallVocab) to
2,206,948 (largeVocab) and kept the other settings
the same as in the previous experiment. Because
more candidates can be generated with a larger vo-
cabulary, the performances of all the methods de-

57

0 5 10 15 20 25 30

40%

50%

60%

70%

80%

90%

100%

top k

A
cc
ur
ac

y

 Generative
 Logistic
 Our Method

Figure 3: Accuracy Comparison between Our Method
and Baselines

cline. However, the drop of accuracy by our method
is much smaller than that by generative, which
means our method is more powerful when the vo-
cabulary is large, e.g., for web search. For the exper-
iment in Fig. 5, we changed the maximum number of
rules that can be applied to a transformation from 2
to 3. Because logistic can only use one rule at a time,
it is not included in this experiment. When there
are more applicable rules, more candidates can be
generated and thus ranking of them becomes more
challenging. The accuracies of both methods drop,
but our method is constantly better than generative.
Moreover, the decrease in accuracy by our method
is clearly less than that by generative. For the ex-
periment in Fig. 6, we enlarged the number of rules
from 10,497 (smallRuleNum) to 24,054 (largeRu-
leNum). The performance of our method and those
of the two baselines did not change so much, and our
method still visibly outperform the baselines when
more rules are exploited.

5.3 Experiments on Efficiency
We have also experimentally evaluated the effi-
ciency of our approach. Because most existing work
uses a predefined ranking function, it is not fair to
make a comparison with them. Moreover, Okazaki
et al.’ method does not consider efficiency, and Brill
and Moore’s method is based a complicated retrieve
algorithm which is very hard to implement. Instead
of making comparison with the existing methods in
terms of efficiency, we evaluated the efficiency of
our method by looking at how efficient it becomes
with its data structure and pruning technique.

0 5 10 15 20 25 30
30%

40%

50%

60%

70%

80%

90%

100%

 top k

A
cc
ur
ac

y

 Generative (smallVocab)
 Generative (largeVocab)
 Logistic (smallVocab)
 Logistic (largeVocab)
 Our Method (smallVocab)
 Our Method (largeVocab)

Figure 4: Accuracy Comparisons between Baselines and
Our Method with Different Vocabulary Sizes

0 5 10 15 20 25 30
30%

40%

50%

60%

70%

80%

90%

100%

top k

A
cc
ur
ac

y

 Generative (2 applicable rules)
 Generative (3 applicable rules)
 Our Method (2 applicable rules)
 Our Method (3 applicable rules)

Figure 5: Accuracy Comparison between Generative and
Our Method with Different Maximum Numbers of Ap-
plicable Rules

0 5 10 15 20 25 30

40%

50%

60%

70%

80%

90%

100%

A
cc
ur
ac

y

top k

 Generative (largeRuleSet)
 Generative (smallRuleSet)
 Logistic (largeRuleSet)
 Logistic (smallRuleSet)
 Our Method (largeRuleSet)
 Our Method (smallRuleSet)

Figure 6: Accuracy Comparison between Baselines and
Our Method with Different Numbers of Rules

First, we tested the efficiency of using Aho-
Corasick algorithm (the rule index). Because the

58

0 5000 10000 15000 20000 25000

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

Number of Rules

Word Length

N
um

be
r o

f M
at

ch
in

g
R

ul
es

 4
 5
 6
 7
 8
 9
 10

Figure 7: Number of Matching Rules v.s. Number of
Rules

time complexity of Aho-Corasick algorithm is de-
termined by the lengths of query strings and the
number of matches, we examined how the number
of matches on query strings with different lengths
changes when the number of rules increases. The
experimental results are shown in Fig. 7. We can see
that the number of matches is not largely affected by
the number of rules in the rule index. It implies that
the time for searching applicable rules is close to a
constant and does not change much with different
numbers of rules.

Next, since the running time of our method is
proportional to the number of visited nodes on the
vocabulary trie, we evaluated the efficiency of our
method in terms of number of visited nodes. The
result reported here is that when k is 10.

Specifically, we tested how the number of visited
nodes changes according to three factors: maximum
number of applicable rules in a transformation, vo-
cabulary size and rule set size. The experimental re-
sults are shown in Fig. 8, Fig. 9 and Fig. 10 respec-
tively. From Fig. 8, with increasing maximum num-
ber of applicable rules in a transformation, number
of visited nodes increases first and then stabilizes,
especially when the words are long. Note that prun-
ing becomes even more effective because number of
visited nodes without pruning grows much faster. It
demonstrates that our method is very efficient when
compared to the non-pruning method. Admittedly,
the efficiency of our method also deteriorates some-
what. This would not cause a noticeable issue in
real applications, however. In the previous section,

1 2 3 4 5 6 7

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Maximum Number of Applicable Rules

N
um

be
r o

f V
is

ite
d

N
od

es

Word Length

 4
 5
 6
 7
 8
 9
 10

Figure 8: Efficiency Evaluation with Different Maximum
Numbers of Applicable Rules

0 100 200 300 400 500
0

1000

2000

3000

4000

5000

6000

7000

Vocabulary Size (million)

N
um

be
r o

f V
is

ite
d

N
od

es

Word Length
 4
 5
 6
 7
 8
 9
 10

Figure 9: Efficiency Evaluation with Different Sizes of
Vocabulary

we have seen that using up to two rules in a transfor-
mation can bring a very high accuracy. From Fig. 8
and Fig. 9, we can conclude that the numbers of vis-
ited nodes are stable and thus the efficiency of our
method keeps high with larger vocabulary size and
number of rules. It indicates that our pruning strat-
egy is very effective. From all the figures, we can see
that our method is always efficient especially when
the words are relatively short.

5.4 Experiments on Model Constraints

In Section 3.1, we introduce the non-positive con-
straints on the parameters, i.e., ∀λr ≤ 0, to en-
able the pruning technique for efficient top k re-
trieval. We experimentally verified the impact of
the constraints to both the accuracy and efficiency.
For ease of reference, we name the model with the
non-positive constraints as bounded, and the origi-

59

5000 10000 15000 20000 25000
0

1000

2000

3000

4000

5000

6000

7000

Number of Rules

N
um

be
r o

f V
is

ite
d

N
od

es

Word Length
 4
 5
 6
 7
 8
 9
 10

Figure 10: Efficiency Evaluation with Different Number
of Rules

0 5 10 15 20 25 30
40%

50%

60%

70%

80%

90%

100%

top k

A
cc
ur
ac

y

 Bounded
 Unbounded

Figure 11: Accuracy Comparison between Bounded and
Unbounded Models

nal model as unbounded. The experimental results
are shown in Fig. 11 and Fig. 12. All the experi-
ments were conducted based on the typical setting
of our experiments: 973,902 words in the vocabu-
lary, 10,597 rules, and up to two rules in one trans-
formation. In Fig. 11, we can see that the differ-
ence between bounded and unbounded in terms of
accuracy is negligible, and we can draw a conclu-
sion that adding the constraints does not hurt the ac-
curacy. From Fig. 12, it is easy to note that bounded
is much faster than unbounded because our pruning
strategy can be applied to bounded.

6 Conclusion

In this paper, we have proposed a new method for
approximate string search, including spelling error
correction, which is both accurate and efficient. Our
method is novel and unique in its model, learning

4 6 8 10 12

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

N
um

be
r o

f V
is

ite
d

N
od

es

Word Length

 Bounded
 Unbounded

Figure 12: Efficiency Comparison between Bounded and
Unbounded Models

algorithm, and retrieval algorithm. Experimental re-
sults on a large data set show that our method im-
proves upon existing methods in terms of accuracy,
and particularly our method can perform better when
the dictionary is large and when there are many
rules. Experimental results have also verified the
high efficiency of our method. As future work, we
plan to add contextual features into the model and
apply our method to other data sets in other tasks.

References
Farooq Ahmad and Grzegorz Kondrak. 2005. Learning

a spelling error model from search query logs. In Pro-
ceedings of the conference on Human Language Tech-
nology and Empirical Methods in Natural Language
Processing, HLT ’05, pages 955–962, Morristown, NJ,
USA. Association for Computational Linguistics.

Alfred V. Aho and Margaret J. Corasick. 1975. Efficient
string matching: an aid to bibliographic search. Com-
mun. ACM, 18:333–340, June.

Alexander Behm, Shengyue Ji, Chen Li, and Jiaheng Lu.
2009. Space-constrained gram-based indexing for effi-
cient approximate string search. In Proceedings of the
2009 IEEE International Conference on Data Engi-
neering, pages 604–615, Washington, DC, USA. IEEE
Computer Society.

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting on Associa-
tion for Computational Linguistics, ACL ’00, pages
286–293, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Qing Chen, Mu Li, and Ming Zhou. 2007. Improv-
ing query spelling correction using web search re-

60

sults. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning,
pages 181–189.

Andrew R. Golding and Dan Roth. 1999. A winnow-
based approach to context-sensitive spelling correc-
tion. Mach. Learn., 34:107–130, February.

Aminul Islam and Diana Inkpen. 2009. Real-word
spelling correction using google web it 3-grams. In
Proceedings of the 2009 Conference on Empirical
Methods in Natural Language Processing: Volume 3
- Volume 3, EMNLP ’09, pages 1241–1249, Morris-
town, NJ, USA. Association for Computational Lin-
guistics.

Rosie Jones, Benjamin Rey, Omid Madani, and Wiley
Greiner. 2006. Generating query substitutions. In
Proceedings of the 15th international conference on
World Wide Web, WWW ’06, pages 387–396, New
York, NY, USA. ACM.

Mu Li, Yang Zhang, Muhua Zhu, and Ming Zhou. 2006.
Exploring distributional similarity based models for
query spelling correction. In Proceedings of the 21st
International Conference on Computational Linguis-
tics and the 44th annual meeting of the Association
for Computational Linguistics, ACL-44, pages 1025–
1032, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Chen Li, Bin Wang, and Xiaochun Yang. 2007. Vgram:
improving performance of approximate queries on
string collections using variable-length grams. In Pro-
ceedings of the 33rd international conference on Very
large data bases, VLDB ’07, pages 303–314. VLDB
Endowment.

Chen Li, Jiaheng Lu, and Yiming Lu. 2008. Effi-
cient merging and filtering algorithms for approximate
string searches. In Proceedings of the 2008 IEEE 24th
International Conference on Data Engineering, pages
257–266, Washington, DC, USA. IEEE Computer So-
ciety.

Andrew McCallum, Kedar Bellare, and Fernando Pereira.
2005. A conditional random field for discriminatively-
trained finite-state string edit distance. In Conference
on Uncertainty in AI (UAI).

Stoyan Mihov and Klaus U. Schulz. 2004. Fast approx-
imate search in large dictionaries. Comput. Linguist.,
30:451–477, December.

Naoaki Okazaki, Yoshimasa Tsuruoka, Sophia Anani-
adou, and Jun’ichi Tsujii. 2008. A discriminative

candidate generator for string transformations. In
Proceedings of the Conference on Empirical Methods
in Natural Language Processing, EMNLP ’08, pages
447–456, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Jose Oncina and Marc Sebban. 2005. Learning unbiased
stochastic edit distance in the form of a memoryless
finite-state transducer. In International Joint Confer-
ence on Machine Learning (2005). Workshop: Gram-
matical Inference Applications: Successes and Future
Challenges.

Eric Sven Ristad and Peter N. Yianilos. 1998. Learning
string-edit distance. IEEE Trans. Pattern Anal. Mach.
Intell., 20:522–532, May.

Johannes Schaback and Fang Li. 2007. Multi-level fea-
ture extraction for spelling correction. In IJCAI-2007
Workshop on Analytics for Noisy Unstructured Text
Data, pages 79–86, Hyderabad, India.

Kristina Toutanova and Robert C. Moore. 2002. Pro-
nunciation modeling for improved spelling correction.
In Proceedings of the 40th Annual Meeting on Associ-
ation for Computational Linguistics, ACL ’02, pages
144–151, Morristown, NJ, USA. Association for Com-
putational Linguistics.

Rares Vernica and Chen Li. 2009. Efficient top-k algo-
rithms for fuzzy search in string collections. In Pro-
ceedings of the First International Workshop on Key-
word Search on Structured Data, KEYS ’09, pages 9–
14, New York, NY, USA. ACM.

Casey Whitelaw, Ben Hutchinson, Grace Y. Chung, and
Gerard Ellis. 2009. Using the web for language in-
dependent spellchecking and autocorrection. In Pro-
ceedings of the 2009 Conference on Empirical Meth-
ods in Natural Language Processing: Volume 2 - Vol-
ume 2, EMNLP ’09, pages 890–899, Morristown, NJ,
USA. Association for Computational Linguistics.

Xiaochun Yang, Bin Wang, and Chen Li. 2008. Cost-
based variable-length-gram selection for string collec-
tions to support approximate queries efficiently. In
Proceedings of the 2008 ACM SIGMOD international
conference on Management of data, SIGMOD ’08,
pages 353–364, New York, NY, USA. ACM.

Zhenglu Yang, Jianjun Yu, and Masaru Kitsuregawa.
2010. Fast algorithms for top-k approximate string
matching. In Proceedings of the Twenty-Fourth AAAI
Conference on Artificial Intelligence, AAAI ’10, pages
1467–1473.

61

