
Proceedings of the ACL 2010 Conference Short Papers, pages 231–235,
Uppsala, Sweden, 11-16 July 2010. c©2010 Association for Computational Linguistics

Online Generation of Locality Sensitive Hash Signatures

Benjamin Van Durme
HLTCOE

Johns Hopkins University
Baltimore, MD 21211 USA

Ashwin Lall
College of Computing

Georgia Institute of Technology
Atlanta, GA 30332 USA

Abstract
Motivated by the recent interest in stream-
ing algorithms for processing large text
collections, we revisit the work of
Ravichandran et al. (2005) on using the
Locality Sensitive Hash (LSH) method of
Charikar (2002) to enable fast, approxi-
mate comparisons of vector cosine simi-
larity. For the common case of feature
updates being additive over a data stream,
we show that LSH signatures can be main-
tained online, without additional approxi-
mation error, and with lower memory re-
quirements than when using the standard
offline technique.

1 Introduction

There has been a surge of interest in adapting re-
sults from the streaming algorithms community to
problems in processing large text collections. The
term streaming refers to a model where data is
made available sequentially, and it is assumed that
resource limitations preclude storing the entirety
of the data for offline (batch) processing. Statis-
tics of interest are approximated via online, ran-
domized algorithms. Examples of text applica-
tions include: collecting approximate counts (Tal-
bot, 2009; Van Durme and Lall, 2009a), finding
top-n elements (Goyal et al., 2009), estimating
term co-occurrence (Li et al., 2008), adaptive lan-
guage modeling (Levenberg and Osborne, 2009),
and building top-k ranklists based on pointwise
mutual information (Van Durme and Lall, 2009b).

Here we revisit the work of Ravichandran et al.
(2005) on building word similarity measures from
large text collections by using the Locality Sensi-
tive Hash (LSH) method of Charikar (2002). For
the common case of feature updates being addi-
tive over a data stream (such as when tracking
lexical co-occurrence), we show that LSH signa-
tures can be maintained online, without additional

approximation error, and with lower memory re-
quirements than when using the standard offline
technique.

We envision this method being used in conjunc-
tion with dynamic clustering algorithms, for a va-
riety of applications. For example, Petrovic et al.
(2010) made use of LSH signatures generated over
individual tweets, for the purpose of first story de-
tection. Streaming LSH should allow for the clus-
tering of Twitter authors, based on the tweets they
generate, with signatures continually updated over
the Twitter stream.

2 Locality Sensitive Hashing

We are concerned with computing the cosine sim-
ilarity of feature vectors, defined for a pair of vec-
tors ~u and ~v as the dot product normalized by their
lengths:

cosine−similarity(~u,~v) =
~u · ~v
|~u||~v|

.

This similarity is the cosine of the angle be-
tween these high-dimensional vectors and attains
a value of one (i.e., cos (0)) when the vectors are
parallel and zero (i.e., cos (π/2)) when orthogo-
nal.

Building on the seminal work of Indyk and
Motwani (1998) on locality sensitive hashing
(LSH), Charikar (2002) presented an LSH that
maps high-dimensional vectors to a much smaller
dimensional space while still preserving (cosine)
similarity between vectors in the original space.
The LSH algorithm computes a succinct signature
of the feature set of the words in a corpus by com-
puting d independent dot products of each feature
vector ~v with a random unit vector ~r, i.e.,

∑
i viri,

and retaining the sign of the d resulting products.
Each entry of ~r is drawn from the distribution
N(0, 1), the normal distribution with zero mean
and unit variance. Charikar’s algorithm makes use
of the fact (proved by Goemans and Williamson

231

(1995) for an unrelated application) that the an-
gle between any two vectors summarized in this
fashion is proportional to the expected Hamming
distance of their signature vectors. Hence, we can
retain length d bit-signatures in the place of high
dimensional feature vectors, while preserving the
ability to (quickly) approximate cosine similarity
in the original space.

Ravichandran et al. (2005) made use of this al-
gorithm to reduce the computation in searching
for similar nouns by first computing signatures for
each noun and then computing similarity over the
signatures rather than the original feature space.

3 Streaming Algorithm

In this work, we focus on features that can be
maintained additively, such as raw frequencies.1

Our streaming algorithm for this problem makes
use of the simple fact that the dot product of the
feature vector with random vectors is a linear op-
eration. This permits us to replace the vi · ri op-
eration by vi individual additions of ri, once for
each time the feature is encountered in the stream
(where vi is the frequency of a feature and ri is the
randomly chosen Gaussian-distributed value asso-
ciated with this feature). The result of the final
computation is identical to the dot products com-
puted by the algorithm of Charikar (2002), but
the processing can now be done online. A simi-
lar technique, for stable random projections, was
independently discussed by Li et al. (2008).

Since each feature may appear multiple times
in the stream, we need a consistent way to retrieve
the random values drawn from N(0, 1) associated
with it. To avoid the expense of computing and
storing these values explicitly, as is the norm, we
propose the use of a precomputed pool of ran-
dom values drawn from this distribution that we
can then hash into. Hashing into a fixed pool en-
sures that the same feature will consistently be as-
sociated with the same value drawn from N(0, 1).
This introduces some weak dependence in the ran-
dom vectors, but we will give some analysis show-
ing that this should have very limited impact on
the cosine similarity computation, which we fur-
ther support with experimental evidence (see Ta-
ble 3).

Our algorithm traverses a stream of words and

1Note that Ravichandran et al. (2005) used pointwise mu-
tual information features, which are not additive since they
require a global statistic to compute.

Algorithm 1 STREAMING LSH ALGORITHM
Parameters:
m : size of pool
d : number of bits (size of resultant signature)
s : a random seed
h1, ..., hd : hash functions mapping 〈s, fi〉 to {0, . . . , m−1}
INITIALIZATION:
1: Initialize floating point array P [0, . . . , m− 1]
2: Initialize H , a hashtable mapping words to floating point

arrays of size d
3: for i := 0 . . . m− 1 do
4: P [i] := random sample from N(0, 1), using s as seed

ONLINE:
1: for each word w in the stream do
2: for each feature fi associated with w do
3: for j := 1 . . . d do
4: H[w][j] := H[w][j] + P [hj(s, fi)]

SIGNATURECOMPUTATION:

1: for each w ∈ H do
2: for i := 1 . . . d do
3: if H[w][i] > 0 then
4: S[w][i] := 1
5: else
6: S[w][i] := 0

maintains some state for each possible word that
it encounters (cf. Algorithm 1). In particular, the
state maintained for each word is a vector of float-
ing point numbers of length d. Each element of the
vector holds the (partial) dot product of the feature
vector of the word with a random unit vector. Up-
dating the state for a feature seen in the stream for
a given word simply involves incrementing each
position in the word’s vector by the random value
associated with the feature, accessed by hash func-
tions h1 through hd. At any point in the stream,
the vector for each word can be processed (in time
O(d)) to create a signature computed by checking
the sign of each component of its vector.

3.1 Analysis

The update cost of the streaming algorithm, per
word in the stream, is O(df), where d is the target
signature size and f is the number of features asso-
ciated with each word in the stream.2 This results
in an overall cost of O(ndf) for the streaming al-
gorithm, where n is the length of the stream. The
memory footprint of our algorithm isO(n0d+m),
where n0 is the number of distinct words in the
stream and m is the size of the pool of normally
distributed values. In comparison, the original
LSH algorithm computes signatures at a cost of
O(nf + n0dF) updates and O(n0F + dF + n0d)
memory, where F is the (large) number of unique

2For the bigram features used in § 4, f = 2.

232

features. Our algorithm is superior in terms of
memory (because of the pooling trick), and has the
benefit of supporting similarity queries online.

3.2 Pooling Normally-distributed Values
We now discuss why it is possible to use a
fixed pool of random values instead of generating
unique ones for each feature. Let g be the c.d.f.
of the distribution N(0, 1). It is easy to see that
picking x ∈ (0, 1) uniformly results in g−1(x) be-
ing chosen with distribution N(0, 1). Now, if we
select for our pool the values

g−1(1/m), g−1(2/m), . . . , g−1(1− 1/m),

for some sufficiently large m, then this is identical
to sampling from N(0, 1) with the caveat that the
accuracy of the sample is limited. More precisely,
the deviation from sampling from this pool is off
from the actual value by at most

max
i=1,...,m−2

{g−1((i+ 1)/m)− g−1(i/m)}.

By choosing m to be sufficiently large, we can
bound the error of the approximate sample from
a true sample (i.e., the loss in precision expressed
above) to be a small fraction (e.g., 1%) of the ac-
tual value. This would result in the same relative
error in the computation of the dot product (i.e.,
1%), which would almost never affect the sign of
the final value. Hence, pooling as above should
give results almost identical to the case where all
the random values were chosen independently. Fi-
nally, we make the observation that, for large m,
randomly choosing m values from N(0, 1) results
in a set of values that are distributed very similarly
to the pool described above. An interesting avenue
for future work is making this analysis more math-
ematically precise.

3.3 Extensions
Decay The algorithm can be extended to support
temporal decay in the stream, where recent obser-
vations are given higher relative weight, by mul-
tiplying the current sums by a decay value (e.g.,
0.9) on a regular interval (e.g., once an hour, once
a day, once a week, etc.).

Distributed The algorithm can be easily dis-
tributed across multiple machines in order to pro-
cess different parts of a stream, or multiple differ-
ent streams, in parallel, such as in the context of
the MapReduce framework (Dean and Ghemawat,

(a)

(b)

Figure 1: Predicted versus actual cosine values for 50,000
pairs, using LSH signatures generated online, with d = 32 in
Fig. 1(a) and d = 256 in Fig. 1(b).

2004). The underlying operation is a linear op-
erator that is easily composed (i.e., via addition),
and the randomness between machines can be tied
based on a shared seed s. At any point in process-
ing the stream(s), current results can be aggregated
by summing the d-dimensional vectors for each
word, from each machine.

4 Experiments

Similar to the experiments of Ravichandran et
al. (2005), we evaluated the fidelity of signature
generation in the context of calculating distribu-
tional similarity between words across a large
text collection: in our case, articles taken from
the NYTimes portion of the Gigaword corpus
(Graff, 2003). The collection was processed as a
stream, sentence by sentence, using bigram fea-

233

d 16 32 64 128 256
SLSH 0.2885 0.2112 0.1486 0.1081 0.0769

LSH 0.2892 0.2095 0.1506 0.1083 0.0755

Table 1: Mean absolute error when using signatures gener-
ated online (StreamingLSH), compared to offline (LSH).

tures. This gave a stream of 773,185,086 tokens,
with 1,138,467 unique types. Given the number
of types, this led to a (sparse) feature space with
dimension on the order of 2.5 million.

After compiling signatures, fifty-thousand
〈x, y〉 pairs of types were randomly sampled
by selecting x and y each independently, with
replacement, from those types with at least 10 to-
kens in the stream (where 310,327 types satisfied
this constraint). The true cosine values between
each such x and y was computed based on offline
calculation, and compared to the cosine similarity
predicted by the Hamming distance between the
signatures for x and y. Unless otherwise specified,
the random pool size was fixed at m = 10, 000.

Figure 1 visually reaffirms the trade-off in LSH
between the number of bits and the accuracy of
cosine prediction across the range of cosine val-
ues. As the underlying vectors are strictly posi-
tive, the true cosine is restricted to [0, 1]. Figure 2
shows the absolute error between truth and predic-
tion for a similar sample, measured using signa-
tures of a variety of bit lengths. Here we see hori-
zontal bands arising from truly orthogonal vectors
leading to step-wise absolute error values tracked
to Hamming distance.

Table 1 compares the online and batch LSH al-
gorithms, giving the mean absolute error between
predicted and actual cosine values, computed for
the fifty-thousand element sample, using signa-
tures of various lengths. These results confirm that
we achieve the same level of accuracy with online
updates as compared to the standard method.

Figure 3 shows how a pool size as low as m =
100 gives reasonable variation in random values,
and that m = 10, 000 is sufficient. When using a
standard 32 bit floating point representation, this
is just 40 KBytes of memory, as compared to, e.g.,
the 2.5 GBytes required to store 256 random vec-
tors each containing 2.5 million elements.

Table 2 is based on taking an example for each
of three part-of-speech categories, and reporting
the resultant top-5 words as according to approx-
imated cosine similarity. Depending on the in-
tended application, these results indicate a range

Figure 2: Absolute error between predicted and true co-
sine for a sample of pairs, when using signatures of length
log2(d) ∈ {4, 5, 6, 7, 8}, drawn with added jitter to avoid
overplotting.

Pool Size

M
ea

n
A

bs
ol

ut
e

E
rr

or

0.2

0.4

0.6

0.8
●

●

●
●

● ● ●

101 102 103 104 105

Figure 3: Error versus pool size, when using d = 256.

of potentially sufficient signature lengths.

5 Conclusions

We have shown that when updates to a feature vec-
tor are additive, it is possible to convert the offline
LSH signature generation method into a stream-
ing algorithm. In addition to allowing for on-
line querying of signatures, our approach leads to
space efficiencies, as it does not require the ex-
plicit representation of either the feature vectors,
nor the random matrix. Possibilities for future
work include the pairing of this method with algo-
rithms for dynamic clustering, as well as exploring
algorithms for different distances (e.g., L2) and es-
timators (e.g., asymmetric estimators (Dong et al.,
2009)).

234

London
Milan.97, Madrid.96, Stockholm.96, Manila.95, Moscow.95

ASHER0, Champaign0, MANS0, NOBLE0, come0

Prague1, Vienna1, suburban1, synchronism1, Copenhagen2

Frankfurt4, Prague4, Taszar5, Brussels6, Copenhagen6

Prague12, Stockholm12, Frankfurt14, Madrid14, Manila14

Stockholm20, Milan22, Madrid24, Taipei24, Frankfurt25
in

during.99, on.98, beneath.98, from.98, onto.97

Across0, Addressing0, Addy0, Against0, Allmon0

aboard0, mishandled0, overlooking0, Addressing1, Rejecting1

Rejecting2, beneath2, during2, from3, hamstringing3

during4, beneath5, of6, on7, overlooking7

during10, on13, beneath15, of17, overlooking17

sold
deployed.84, presented.83, sacrificed.82, held.82, installed.82

Bustin0, Diors0, Draining0, Kosses0, UNA0

delivered2, held2, marks2, seared2, Ranked3

delivered5, rendered5, presented6, displayed7, exhibited7

held18, rendered18, presented19, deployed20, displayed20

presented41, rendered42, held47, leased47, reopened47

Table 2: Top-5 items based on true cosine (bold), then using
minimal Hamming distance, given in top-down order when
using signatures of length log2(d) ∈ {4, 5, 6, 7, 8}. Ties bro-
ken lexicographically. Values given as subscripts.

Acknowledgments

Thanks to Deepak Ravichandran, Miles Osborne,
Sasa Petrovic, Ken Church, Glen Coppersmith,
and the anonymous reviewers for their feedback.
This work began while the first author was at the
University of Rochester, funded by NSF grant IIS-
1016735. The second author was supported in
part by NSF grant CNS-0905169, funded under
the American Recovery and Reinvestment Act of
2009.

References
Moses Charikar. 2002. Similarity estimation tech-

niques from rounding algorithms. In Proceedings
of STOC.

Jeffrey Dean and Sanjay Ghemawat. 2004. MapRe-
duce: Simplified Data Processing on Large Clusters.
In Proceedings of OSDI.

Wei Dong, Moses Charikar, and Kai Li. 2009. Asym-
metric distance estimation with sketches for similar-
ity search in high-dimensional spaces. In Proceed-
ings of SIGIR.

Michel X. Goemans and David P. Williamson. 1995.
Improved approximation algorithms for maximum
cut and satisfiability problems using semidefinite
programming. JACM, 42:1115–1145.

Amit Goyal, Hal Daumé III, and Suresh Venkatasub-
ramanian. 2009. Streaming for large scale NLP:
Language Modeling. In Proceedings of NAACL.

David Graff. 2003. English Gigaword. Linguistic
Data Consortium, Philadelphia.

Piotr Indyk and Rajeev Motwani. 1998. Approximate
nearest neighbors: towards removing the curse of di-
mensionality. In Proceedings of STOC.

Abby Levenberg and Miles Osborne. 2009. Stream-
based Randomised Language Models for SMT. In
Proceedings of EMNLP.

Ping Li, Kenneth W. Church, and Trevor J. Hastie.
2008. One Sketch For All: Theory and Application
of Conditional Random Sampling. In Advances in
Neural Information Processing Systems 21.

Sasa Petrovic, Miles Osborne, and Victor Lavrenko.
2010. Streaming First Story Detection with appli-
cation to Twitter. In Proceedings of NAACL.

Deepak Ravichandran, Patrick Pantel, and Eduard
Hovy. 2005. Randomized Algorithms and NLP:
Using Locality Sensitive Hash Functions for High
Speed Noun Clustering. In Proceedings of ACL.

David Talbot. 2009. Succinct approximate counting of
skewed data. In Proceedings of IJCAI.

Benjamin Van Durme and Ashwin Lall. 2009a. Proba-
bilistic Counting with Randomized Storage. In Pro-
ceedings of IJCAI.

Benjamin Van Durme and Ashwin Lall. 2009b.
Streaming Pointwise Mutual Information. In Ad-
vances in Neural Information Processing Systems
22.

235

