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Abstract
A challenging problem in open informa-
tion extraction and text mining is the learn-
ing of the selectional restrictions of se-
mantic relations. We propose a mini-
mally supervised bootstrapping algorithm
that uses a single seed and a recursive
lexico-syntactic pattern to learn the ar-
guments and the supertypes of a diverse
set of semantic relations from the Web.
We evaluate the performance of our algo-
rithm on multiple semantic relations ex-
pressed using “verb”, “noun”, and “verb
prep” lexico-syntactic patterns. Human-
based evaluation shows that the accuracy
of the harvested information is about 90%.
We also compare our results with existing
knowledge base to outline the similarities
and differences of the granularity and di-
versity of the harvested knowledge.

1 Introduction

Building and maintaining knowledge-rich re-
sources is of great importance to information ex-
traction, question answering, and textual entail-
ment. Given the endless amount of data we have at
our disposal, many efforts have focused on mining
knowledge from structured or unstructured text,
including ground facts (Etzioni et al., 2005), se-
mantic lexicons (Thelen and Riloff, 2002), ency-
clopedic knowledge (Suchanek et al., 2007), and
concept lists (Katz et al., 2003). Researchers have
also successfully harvested relations between en-
tities, such as is-a (Hearst, 1992; Pasca, 2004) and
part-of (Girju et al., 2003). The kinds of knowl-
edge learned are generally of two kinds: ground
instance facts (New York is-a city, Rome is the cap-
ital of Italy) and general relational types (city is-a
location, engines are part-of cars).

A variety of NLP tasks involving inference or
entailment (Zanzotto et al., 2006), including QA

(Katz and Lin, 2003) and MT (Mt et al., 1988),
require a slightly different form of knowledge, de-
rived from many more relations. This knowledge
is usually used to support inference and is ex-
pressed as selectional restrictions (Wilks, 1975)
(namely, the types of arguments that may fill a
given relation, such as person live-in city and air-
line fly-to location). Selectional restrictions con-
strain the possible fillers of a relation, and hence
the possible contexts in which the patterns ex-
pressing that relation can participate in, thereby
enabling sense disambiguation of both the fillers
and the expression itself.

To acquire this knowledge two common ap-
proaches are employed: clustering and patterns.
While clustering has the advantage of being fully
unsupervised, it may or may not produce the types
and granularity desired by a user. In contrast
pattern-based approaches are more precise, but
they typically require a handful to dozens of seeds
and lexico-syntactic patterns to initiate the learn-
ing process. In a closed domain these approaches
are both very promising, but when tackling an un-
bounded number of relations they are unrealistic.
The quality of clustering decreases as the domain
becomes more continuously varied and diverse,
and it has proven difficult to create collections of
effective patterns and high-yield seeds manually.

In addition, the output of most harvesting sys-
tems is a flat list of lexical semantic expressions
such as “New York is-a city” and “virus causes
flu”. However, using this knowledge in inference
requires it to be formulated appropriately and or-
ganized in a semantic repository. (Pennacchiotti
and Pantel, 2006) proposed an algorithm for au-
tomatically ontologizing semantic relations into
WordNet. However, despite its high precision en-
tries, WordNet’s limited coverage makes it impos-
sible for relations whose arguments are not present
in WordNet to be incorporated. One would like a
procedure that dynamically organizes and extends
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its semantic repository in order to be able to ac-
commodate all newly-harvested information, and
thereby become a global semantic repository.

Given these considerations, we address in this
paper the following question: How can the selec-
tional restrictions of semantic relations be learned
automatically from the Web with minimal effort us-
ing lexico-syntactic recursive patterns?

The contributions of the paper are as follows:

• A novel representation of semantic relations
using recursive lexico-syntactic patterns.
• An automatic procedure to learn the se-

lectional restrictions (arguments and super-
types) of semantic relations from Web data.

• An exhaustive human-based evaluation of the
harvested knowledge.
• A comparison of the results with some large

existing knowledge bases.

The rest of the paper is organized as follows. In
the next section, we review related work. Section
3 addresses the representation of semantic rela-
tions using recursive patterns. Section 4 describes
the bootstrapping mechanism that learns the selec-
tional restrictions of the relations. Section 5 de-
scribes data collection. Section 6 discusses the ob-
tained results. Finally, we conclude in Section 7.

2 Related Work

A substantial body of work has been done in at-
tempts to harvest bits of semantic information, in-
cluding: semantic lexicons (Riloff and Shepherd,
1997), concept lists (Lin and Pantel, 2002), is-
a relations (Hearst, 1992; Etzioni et al., 2005;
Pasca, 2004; Kozareva et al., 2008), part-of re-
lations (Girju et al., 2003), and others. Knowl-
edge has been harvested with varying success both
from structured text such as Wikipedia’s infoboxes
(Suchanek et al., 2007) or unstructured text such
as the Web (Pennacchiotti and Pantel, 2006; Yates
et al., 2007). A variety of techniques have been
employed, including clustering (Lin and Pantel,
2002), co-occurrence statistics (Roark and Char-
niak, 1998), syntactic dependencies (Pantel and
Ravichandran, 2004), and lexico-syntactic pat-
terns (Riloff and Jones, 1999; Fleischman and
Hovy, 2002; Thelen and Riloff, 2002).

When research focuses on a particular relation,
careful attention is paid to the pattern(s) that ex-
press it in various ways (as in most of the work
above, notably (Riloff and Jones, 1999)). But it

has proven a difficult task to manually find ef-
fectively different variations and alternative pat-
terns for each relation. In contrast, when re-
search focuses on any relation, as in TextRun-
ner (Yates et al., 2007), there is no standardized
manner for re-using the pattern learned. TextRun-
ner scans sentences to obtain relation-independent
lexico-syntactic patterns to extract triples of the
form (John, fly to, Prague). The middle string de-
notes some (unspecified) semantic relation while
the first and third denote the learned arguments of
this relation. But TextRunner does not seek spe-
cific semantic relations, and does not re-use the
patterns it harvests with different arguments in or-
der to extend their yields.

Clearly, it is important to be able to specify both
the actual semantic relation sought and use its tex-
tual expression(s) in a controlled manner for max-
imal benefit.

The objective of our research is to combine the
strengths of the two approaches, and, in addition,
to provide even richer information by automati-
cally mapping each harvested argument to its su-
pertype(s) (i.e., its semantic concepts). For in-
stance, given the relation destination and the pat-
tern X flies to Y, automatically determining that
John, Prague) and (John, conference) are two
valid filler instance pairs, that (RyanAir, Prague)
is another, as well as that person and airline are
supertypes of the first argument and city and event
of the second. This information provides the se-
lectional restrictions of the given semantic rela-
tion, indicating that living things like people can
fly to cities and events, while non-living things like
airlines fly mainly to cities. This is a significant
improvement over systems that output a flat list
of lexical semantic knowledge (Thelen and Riloff,
2002; Yates et al., 2007; Suchanek et al., 2007).

Knowing the sectional restrictions of a semantic
relation supports inference in many applications,
for example enabling more accurate information
extraction. (Igo and Riloff, 2009) report that pat-
terns like “attack on 〈NP〉” can learn undesirable
words due to idiomatic expressions and parsing er-
rors. Over time this becomes problematic for the
bootstrapping process and leads to significant de-
terioration in performance. (Thelen and Riloff,
2002) address this problem by learning multiple
semantic categories simultaneously, relying on the
often unrealistic assumption that a word cannot
belong to more than one semantic category. How-
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ever, if we have at our disposal a repository of se-
mantic relations with their selectional restrictions,
the problem addressed in (Igo and Riloff, 2009)
can be alleviated.

In order to obtain selectional restriction classes,
(Pennacchiotti and Pantel, 2006) made an attempt
to ontologize the harvested arguments of is-a,
part-of, and cause relations. They mapped each
argument of the relation into WordNet and identi-
fied the senses for which the relation holds. Un-
fortunately, despite its very high precision en-
tries, WordNet is known to have limited cover-
age, which makes it impossible for algorithms to
map the content of a relation whose arguments
are not present in WordNet. To surmount this
limitation, we do not use WordNet, but employ
a different method of obtaining superclasses of a
filler term: the inverse doubly-anchored patterns
DAP−1 (Hovy et al., 2009), which, given two ar-
guments, harvests its supertypes from the source
corpus. (Hovy et al., 2009) show that DAP−1 is
reliable and it enriches WordNet with additional
hyponyms and hypernyms.

3 Recursive Patterns

A singly-anchored pattern contains one example
of the seed term (the anchor) and one open posi-
tion for the term to be learned. Most researchers
use singly-anchored patterns to harvest semantic
relations. Unfortunately, these patterns run out of
steam very quickly. To surmount this obstacle, a
handful of seeds is generally used, and helps to
guarantee diversity in the extraction of new lexico-
syntactic patterns (Riloff and Jones, 1999; Snow et
al., 2005; Etzioni et al., 2005).

Some algorithms require ten seeds (Riloff and
Jones, 1999; Igo and Riloff, 2009), while others
use a variation of 5, 10, to even 25 seeds (Taluk-
dar et al., 2008). Seeds may be chosen at ran-
dom (Davidov et al., 2007; Kozareva et al., 2008),
by picking the most frequent terms of the desired
class (Igo and Riloff, 2009), or by asking humans
(Pantel et al., 2009). As (Pantel et al., 2009) show,
picking seeds that yield high numbers of differ-
ent terms is difficult. Thus, when dealing with
unbounded sets of relations (Banko and Etzioni,
2008), providing many seeds becomes unrealistic.

Interestingly, recent work reports a class of pat-
terns that use only one seed to learn as much infor-
mation with only one seed. (Kozareva et al., 2008;
Hovy et al., 2009) introduce the so-called doubly-

anchored pattern (DAP) that has two anchor seed
positions “〈type〉 such as 〈seed〉 and *”, plus one
open position for the terms to be learned. Learned
terms can then be replaced into the seed position
automatically, creating a recursive procedure that
is reportedly much more accurate and has much
higher final yield. (Kozareva et al., 2008; Hovy et
al., 2009) have successfully applied DAP for the
learning of hyponyms and hypernyms of is-a rela-
tions and report improvements over (Etzioni et al.,
2005) and (Pasca, 2004).

Surprisingly, this work was limited to the se-
mantic relation is-a. No other study has described
the use or effect of recursive patterns for differ-
ent semantic relations. Therefore, going beyond
(Kozareva et al., 2008; Hovy et al., 2009), we here
introduce recursive patterns other than DAP that
use only one seed to harvest the arguments and su-
pertypes of a wide variety of relations.

(Banko and Etzioni, 2008) show that seman-
tic relations can be expressed using a handful
of relation-independent lexico-syntactic patterns.
Practically, we can turn any of these patterns into
recursive form by giving as input only one of the
arguments and leaving the other one as an open
slot, allowing the learned arguments to replace the
initial seed argument directly. For example, for
the relation “fly to”, the following recursive pat-
terns can be built: “* and 〈seed〉 fly to *”, “〈seed〉
and * fly to *”, “* fly to 〈seed〉 and *”, “* fly to *
and 〈seed〉”, “〈seed〉 fly to *” or “* fly to 〈seed〉”,
where 〈seed〉 is an example like John or Ryanair,
and (∗) indicates the position on which the ar-
guments are learned. Conjunctions like and, or
are useful because they express list constructions
and extract arguments similar to the seed. Poten-
tially, one can explore all recursive pattern varia-
tions when learning a relation and compare their
yield, however this study is beyond the scope of
this paper.

We are particularly interested in the usage of re-
cursive patterns for the learning of semantic re-
lations not only because it is a novel method,
but also because recursive patterns of the DAP
fashion are known to: (1) learn concepts with
high precision compared to singly-anchored pat-
terns (Kozareva et al., 2008), (2) use only one
seed instance for the discovery of new previously
unknown terms, and (3) harvest knowledge with
minimal supervision.
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4 Bootstrapping Recursive Patterns

4.1 Problem Formulation
The main goal of our research is:

Task Definition: Given a seed and a semantic relation ex-
pressed using a recursive lexico-syntactic pattern, learn in
bootstrapping fashion the selectional restrictions (i.e., the
arguments and supertypes) of the semantic relation from
an unstructured corpus such as the Web.

Figure 1 shows an example of the task and the
types of information learned by our algorithm.

* and John fly to *

seed = John
relation = fly to     

Brian
Kate

politicians
peopleartists

Delta
Alaska

airlines
carriers

beesanimals

party event

Italy
France

countries

New York

city

flowers
trees

plants

Figure 1: Bootstrapping Recursive Patterns.

Given a seed John and a semantic relation fly to
expressed using the recursive pattern “* and John
fly to *”, our algorithm learns the left side argu-
ments {Brian, Kate, bees, Delta, Alaska} and the
right side arguments {flowers, trees, party, New
York, Italy, France}. For each argument, the algo-
rithm harvests supertypes such as {people, artists,
politicians, airlines, city, countries, plants, event}
among others. The colored links between the right
and left side concepts denote the selectional re-
strictions of the relation. For instance, people fly
to events and countries, but never to trees or flow-
ers.

4.2 System Architecture
We propose a minimally supervised bootstrap-
ping algorithm based on the framework adopted in
(Kozareva et al., 2008; Hovy et al., 2009). The al-
gorithm has two phases: argument harvesting and
supertype harvesting. The final output is a ranked
list of interlinked concepts which captures the se-
lectional restrictions of the relation.

4.2.1 Argument Harvesting
In the argument extraction phase, the first boot-
strapping iteration is initiated with a seed Y and a
recursive pattern “X∗ and Y verb+prep|verb|noun

Z∗”, where X∗ and Z∗ are the placeholders for the
arguments to be learned. The pattern is submit-
ted to Yahoo! as a web query and all unique snip-
pets matching the query are retrieved. The newly
learned and previously unexplored arguments on
the X∗ position are used as seeds in the subse-
quent iteration. The arguments on the Z∗ posi-
tion are stored at each iteration, but never used
as seeds since the recursivity is created using the
terms on X and Y . The bootstrapping process is
implemented as an exhaustive breadth-first algo-
rithm which terminates when all arguments are ex-
plored.

We noticed that despite the specific lexico-
syntactic structure of the patterns, erroneous in-
formation can be acquired due to part-of-speech
tagging errors or flawed facts on the Web. The
challenge is to identify and separate the erroneous
from the true arguments. We incorporate the har-
vested arguments on X and Y positions in a di-
rected graph G = (V,E), where each vertex
v ∈ V is a candidate argument and each edge
(u, v) ∈ E indicates that the argument v is gener-
ated by the argument u. An edge has weight w cor-
responding to the number of times the pair (u, v)
is extracted from different snippets. A node u

is ranked by u=
∑

∀(u,v)∈E
w(u,v)+

∑
∀(v,u)∈E

w(v,u)

|V |−1
which represents the weighted sum of the outgo-
ing and incoming edges normalized by the total
number of nodes in the graph. Intuitively, our con-
fidence in a correct argument u increases when the
argument (1) discovers and (2) is discovered by
many different arguments.

Similarly, to rank the arguments standing on
the Z position, we build a bipartite graph G′ =
(V ′, E′) that has two types of vertices. One set
of vertices represents the arguments found on the
Y position in the recursive pattern. We will call
these Vy. The second set of vertices represents the
arguments learned on the Z position. We will call
these Vz . We create an edge e′(u′, v′) ∈ E′ be-
tween u′ ∈ Vy and v′ ∈ Vz when the argument on
the Z position represented by v′ was harvested by
the argument on the Y position represented by u′.
The weight w′ of the edge indicates the number
of times an argument on the Y position found Z.

Vertex v′ is ranked as v′=
∑

∀(u′,v′)∈E′ w(u′,v′)

|V ′|−1 . In
a very large corpus, like the Web, we assume that
a correct argument Z is the one that is frequently
discovered by various arguments Y .
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4.2.2 Supertype Harvesting

In the supertype extraction phase, we take all
<X,Y> argument pairs collected during the argu-
ment harvesting stage and instantiate them in the
inverse DAP−1 pattern “* such as X and Y”. The
query is sent to Yahoo! as a web query and all 1000
snippets matching the pattern are retrieved. For
each <X,Y> pair, the terms on the (*) position are
extracted and considered as candidate supertypes.

To avoid the inclusion of erroneous supertypes,
again we build a bipartite graph G′′ = (V ′′, E′′).
The set of vertices Vsup represents the supertypes,
while the set of vertices Vp corresponds to the
〈X,Y〉 pair that produced the supertype. An edge
e′′(u′′, v′′) ∈ E′′, where u′′ ∈ Vp and v′′ ∈ Vsup

shows that the pair 〈X,Y〉 denoted as u′′ harvested
the supertype represented by v′′.

For example, imagine that the argument X∗=
Ryanair was harvested in the previous phase by
the recursive pattern “X∗ and EasyJet fly to Z∗”.
Then the pair 〈Ryanair,EasyJet〉 forms a new Web
query “* such as Ryanair and EasyJet” which
learns the supertypes “airlines” and “carriers”.
The bipartite graph has two vertices v′′1 and v′′2 for
the supertypes “airlines” and “carriers”, one ver-
tex u′′3 for the argument pair 〈Ryanair, EasyJet〉,
and two edges e′′1(u

′′
3, v
′′
1) and e′′2(u

′′
3, v
′′
1). A vertex

v′′ ∈ Vsup is ranked by v′′=
∑

∀(u′′,v′′)∈E′′ w(u′′,v′′)

|V ′′|−1 .
Intuitively, a supertype which is discovered mul-
tiple times by various argument pairs is ranked
highly.

However, it might happen that a highly ranked
supertype actually does not satisfy the selectional
restrictions of the semantic relation. To avoid such
situations, we further instantiate each supertype
concept in the original pattern1. For example,
“aircompanies fly to *” and “carriers fly to *”. If
the candidate supertype produces many web hits
for the query, then this suggests that the term is a
relevant supertype.

Unfortunately, to learn the supertypes of the Z
arguments, currently we have to form all possi-
ble combinations among the top 150 highly ranked
concepts, because these arguments have not been
learned through pairing. For each pair of Z argu-
ments, we repeat the same procedure as described
above.

1Except for the “dress” and “person” relations, where
the targeted arguments are adjectives, and the supertypes are
nouns.

5 Semantic Relations

So far, we have described the mechanism that
learns from one seed and a recursive pattern the
selectional restrictions of any semantic relation.
Now, we are interested in evaluating the per-
formance of our algorithm. A natural question
that arises is: “How many patterns are there?”.
(Banko and Etzioni, 2008) found that 95% of the
semantic relations can be expressed using eight
lexico-syntactic patterns. Space prevents us from
describing all of them, therefore we focus on the
three most frequent patterns which capture a large
diversity of semantic relations. The relative fre-
quency of these patterns is 37.80% for “verbs”,
22.80% for “noun prep”, and 16.00% for “verb
prep”.

5.1 Data Collection

Table 1 shows the lexico-syntactic pattern and the
initial seed we used to express each semantic rela-
tion. To collect data, we ran our knowledge har-
vesting algorithm until complete exhaustion. For
each query submitted to Yahoo!, we retrieved the
top 1000 web snippets and kept only the unique
ones. In total, we collected 30GB raw data which
was part-of-speech tagged and used for the argu-
ment and supertype extraction. Table 1 shows the
obtained results.

recursive pattern seed X arg Z arg #iter
X and Y work for Z Charlie 2949 3396 20

X and Y fly to Z EasyJet 772 1176 19
X and Y go to Z Rita 18406 27721 13

X and Y work in Z John 4142 4918 13
X and Y work on Z Mary 4126 5186 7
X and Y work at Z Scott 1084 1186 14
X and Y live in Z Harry 8886 19698 15
X and Y live at Z Donald 1102 1175 15

X and Y live with Z Peter 1344 834 11
X and Y cause Z virus 12790 52744 19

X and Y celebrate Jim 6033 – 12
X and Y drink Sam 1810 – 13
X and Y dress nice 1838 – 8

X and Y person scared 2984 – 17

Table 1: Total Number of Harvested Arguments.

An interesting characteristic of the recursive
patterns is the speed of leaning which can be mea-
sured in terms of the number of unique argu-
ments acquired during each bootstrapping itera-
tion. Figure 2 shows the bootstrapping process for
the “cause” and “dress” relations. Although both
relations differ in terms of the total number of it-
erations and harvested items, the overall behavior
of the learning curves is similar. Learning starts
of very slowly and as bootstrapping progresses a
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rapid growth is observed until a saturation point is
reached.
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Figure 2: Items extracted in 10 iterations.

The speed of leaning is related to the connectiv-
ity behavior of the arguments of the relation. In-
tuitively, a densely connected graph takes shorter
time (i.e., fewer iterations) to be learned, as in the
“work on” relation, while a weakly connected net-
work takes longer time to harvest the same amount
of information, as in the “work for” relation.

6 Results

In this section, we evaluate the results of our
knowledge harvesting algorithm. Initially, we de-
cided to conduct an automatic evaluation compar-
ing our results to knowledge bases that have been
extracted in a similar way (i.e., through pattern ap-
plication over unstructured text). However, it is
not always possible to perform a complete com-
parison, because either researchers have not fully
explored the same relations we have studied, or for
those relations that overlap, the gold standard data
was not available.

The online demo of TextRunner2 (Yates et al.,
2007) actually allowed us to collect the arguments
for all our semantic relations. However, due to
Web based query limitations, TextRunner returns
only the first 1000 snippets. Since we do not have
the complete and ranked output of TextRunner,
comparing results in terms of recall and precision
is impossible.

Turning instead to results obtained from struc-
tured sources (which one expects to have high
correctness), we found that two of our relations
overlap with those of the freely available ontology
Yago (Suchanek et al., 2007), which was harvested
from the Infoboxes tables in Wikipedia. In addi-
tion, we also had two human annotators judge as
many results as we could afford, to obtain Preci-
sion. We conducted two evaluations, one for the
arguments and one for the supertypes.

2http://www.cs.washington.edu/research/textrunner/

6.1 Human-Based Argument Evaluation

In this section, we discuss the results of the har-
vested arguments. For each relation, we selected
the top 200 highly ranked arguments. We hired
two annotators to judge their correctness. We cre-
ated detailed annotation guidelines that define the
labels for the arguments of the relations, as shown
in Table 2. (Previously, for the same task, re-
searchers have not conducted such an exhaustive
and detailed human-based evaluation.) The anno-
tation was conducted using the CAT system3.

TYPE LABEL EXAMPLES
Correct Person John, Mary

Role mother, president
Group team, Japanese
Physical yellow, shabby
NonPhysical ugly, thought
NonLiving airplane
Organization IBM, parliament
Location village, New York, in the house
Time at 5 o’clock
Event party, prom, earthquake
State sick, anrgy
Manner live in happiness
Medium work on Linux, Word
Fixed phrase go to war

Incorrect Error wrong part-of-speech tag
Other none of the above

Table 2: Annotation Labels.

We allow multiple labels to be assigned to the
same concept, because sometimes the concept can
appear in different contexts that carry various con-
ceptual representations. Although the labels can
be easily collapsed to judge correct and incorrect
terms, the fine-grained annotation shown here pro-
vides a better overview of the information learned
by our algorithm.

We measured the inter-annotator agreement for
all labels and relations considering that a single
entry can be tagged with multiple labels. The
Kappa score is around 0.80. This judgement is
good enough to warrant using these human judge-
ments to estimate the accuracy of the algorithm.
We compute Accuracy as the number of examples
tagged as Correct divided by the total number of
examples.

Table 4 shows the obtained results. The over-
all accuracy of the argument harvesting phase is
91%. The majority of the occurred errors are due
to part-of-speech tagging. Table 3 shows a sam-
ple of 10 randomly selected examples from the top
200 ranked and manually annotated arguments.

3http://cat.ucsur.pitt.edu/default.aspx
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Relation Arguments
(X) Dress: stylish, comfortable, expensive, shabby, gorgeous

silver, clean, casual, Indian, black
(X) Person: honest, caring, happy, intelligent, gifted

friendly, responsible, mature, wise, outgoing
(X) Cause: pressure, stress, fire, bacteria, cholesterol

flood, ice, cocaine, injuries, wars
GoTo (Z): school, bed, New York, the movies, the park, a bar

the hospital, the church, the mall, the beach
LiveIn (Z): peace, close proximity, harmony, Chicago, town

New York, London, California, a house, Australia
WorkFor (Z): a company, the local prison, a gangster, the show

a boss, children, UNICEF, a living, Hispanics

Table 3: Examples of Harvested Arguments.

6.2 Comparison against Existing Resources

In this section, we compare the performance of our
approach with the semantic knowledge base Yago4

that contains 2 million entities5, 95% of which
were manually confirmed to be correct. In this
study, we compare only the unique arguments of
the “live in” and “work at” relations. We provide
Precision scores using the following measures:

PrY ago = #terms found in Y ago
#terms harvested by system

PrHuman = #terms judged correct by human
#terms harvested by system

NotInY ago = #terms judged correct by human but not in Y ago

Table 5 shows the obtained results.
We carefully analyzed those arguments that

were found by one of the systems but were miss-
ing in the other. The recursive patterns learn infor-
mation about non-famous entities like Peter and
famous entities like Michael Jordan. In contrast,
Yago contains entries mostly about famous enti-
ties, because this is the predominant knowledge in
Wikipedia. For the “live in” relation, both repos-
itories contain the same city and country names.
However, the recursive pattern learned arguments
like pain, effort which express a manner of living,
and locations like slums, box. This information is
missing from Yago. Similarly for the “work at”
relation, both systems learned that people work
at universities. In addition, the recursive pattern
learned a diversity of company names absent from
Yago.

While it is expected that our algorithm finds
many terms not contained in Yago—specifically,
the information not deemed worthy of inclusion
in Wikipedia—we are interested in the relatively
large number of terms contained in Yago but not
found by our algorithm. To our knowledge, no

4http://www.mpi-inf.mpg.de/yago-naga/yago/
5Names of cities, people, organizations among others.

X WorkFor A1 A2 WorkFor Z A1 A2
Person 148 152 Organization 111 110
Role 5 7 Person 60 60

Group 12 14 Event 4 2
Organization 8 7 Time 4 5
NonPhysical 22 23 NonPhysical 18 19

Other 5 5 Other 3 4
Acc. .98 .98 Acc. .99 .98

X Cause A1 A2 Cause Z A1 A2
PhysicalObj 82 75 PhysicalObj 15 20

NonPhysicalObj 69 66 NonPhysicalObj 89 91
Event 21 24 Event 72 72
State 29 31 State 50 50
Other 3 4 Other 5 4
Acc. .99 .98 Acc. .98 .98

X GoTo A1 A2 GoTo Z A1 A2
Person 190 188 Location 163 155
Role 4 4 Event 21 30

Group 3 3 Person 11 13
NonPhysical 1 3 NonPhysical 2 1

Other 2 2 Other 3 1
Acc. .99 .99 Acc. .99 .99

X FlyTo A1 A2 FlyTo Z A1 A2
Person 140 139 Location 199 198

Organization 54 57 Event 1 2
NonPhysical 2 2 Person 0 0

Other 4 2 Other 0 0
Acc. .98 .99 Acc. 1 1

X WorkOn A1 A2 WorkOn Z A1 A2
Person 173 172 Location 110 108
Role 2 3 Organization 27 25

Group 4 5 Manner 38 40
Organization 6 6 Time 4 4
NonPhysical 15 14 NonPhysical 18 21

Error 1 1 Medium 8 8
Other 1 1 Other 13 15
Acc. .99 .99 Acc. .94 .93

X WorkIn A1 A2 WorkIn Z A1 A2
Person 117 118 Location 104 111
Group 10 9 Organization 10 25

Organization 3 3 Manner 39 40
Fixed 3 1 Time 4 4

NonPhysical 55 59 NonPhysical 22 21
Error 12 10 Medium 8 8
Other 0 0 Error 13 15
Acc. .94 .95 Acc. .94 .93

X WorkAt A1 A2 WorkAt Z A1 A2
Person 193 192 Organization 189 190
Role 1 1 Manner 5 4

Group 1 1 Time 3 3
Organization 0 0 Error 3 2

Other 5 6 Other 0 1
Acc. .98 .97 Acc. .99 .99

X LiveIn A1 A2 LiveIn Z A1 A2
Person 185 185 Location 182 186
Role 3 4 Manner 6 8

Group 9 8 Time 1 2
NonPhysical 1 2 Fixed 5 2

Other 2 1 Other 6 2
Acc. .99 .99 Acc. .97 .99

X LiveAt A1 A2 LiveAt Z A1 A2
Person 196 195 Location 158 157
Role 1 1 Person 5 7

NonPhysical 0 1 Manner 1 2
Other 3 3 Error 36 34
Acc. .99 .99 Acc. .82 .83

X LiveWith A1 A2 LiveWith Z A1 A2
Person 188 187 Person 165 163
Role 6 6 Animal 2 4

Group 2 2 Manner 15 15
NonPhysical 2 3 NonPhysical 15 15

Other 2 2 Other 3 3
Acc. .99 .99 Acc. .99 .99

X Dress A1 A2 X Person A1 A2
Physical 72 59 Physical 8 2

NonPhysical 120 136 NonPhysical 188 194
Other 8 5 Other 4 4
Acc .96 .98 Acc. .98 .98

X Drink A1 A2 X Celebrate A1 A2
Living 165 174 Living 157 164

NonLiving 8 2 NonLiving 42 35
Error 27 24 Error 1 1
Acc .87 .88 Acc. .99 .99

Table 4: Harvested Arguments.
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PrY ago PrHuman NotInYago
X LiveIn .19 (2863/14705) .58 (5165)/8886 2302
LiveIn Z .10 (495/4754) .72 (14248)/19698 13753

X WorkAt .12(167/1399) .88 (959)/1084 792
WorkAt Z .3(15/525) .95 (1128)/1186 1113

Table 5: Comparison against Yago.

other automated harvesting algorithm has ever
been compared to Yago, and our results here form
a baseline that we aim to improve upon. And in
the future, one can build an extensive knowledge
harvesting system combining the wisdom of the
crowd and Wikipedia.

6.3 Human-Based Supertype Evaluation

In this section, we discuss the results of harvest-
ing the supertypes of the learned arguments. Fig-
ure 3 shows the top 100 ranked supertypes for the
“cause” and “work on” relations. The x-axis in-
dicates a supertype, the y-axis denotes the number
of different argument pairs that lead to the discov-
ery of the supertype.
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Figure 3: Ranked Supertypes.

The decline of the curve indicates that certain
supertypes are preferred and shared among differ-
ent argument pairs. It is interesting to note that the
text on the Web prefers a small set of supertypes,
and to see what they are. These most-popular har-
vested types tend to be the more descriptive terms.
The results indicate that one does not need an elab-
orate supertype hierarchy to handle the selectional
restrictions of semantic relations.

Since our problem definition differs from avail-
able related work, and WordNet does not contain
all harvested arguments as shown in (Hovy et al.,
2009), it is not possible to make a direct compar-
ison. Instead, we conduct a manual evaluation of
the most highly ranked supertypes which normally
are the top 20. The overall accuracy of the super-
types for all relations is 92%. Table 6 shows the

Relation Arguments
(Supx) Celebrate: men, people, nations, angels, workers, children

countries, teams, parents, teachers
(Supx) Dress: colors, effects, color tones, activities, patterns

styles, materials, size, languages, aspects
(Supx) FlyTo: airlines, carriers, companies, giants, people

competitors, political figures, stars, celebs
Cause (Supz): diseases, abnormalities, disasters, processes, isses

disorders, discomforts, emotions, defects, symptoms
WorkFor (Supz) organizations, industries, people, markets, men

automakers, countries, departments, artists, media
GoTo (Supz) : countries, locations, cities, people, events

men, activities, games, organizations,
FlyTo (Supz) places, countries, regions, airports, destinations

locations, cities, area, events

Table 6: Examples of Harvested Supertypes.

top 10 highly ranked supertypes for six of our re-
lations.

7 Conclusion

We propose a minimally supervised algorithm that
uses only one seed example and a recursive lexico-
syntactic pattern to learn in bootstrapping fash-
ion the selectional restrictions of a large class of
semantic relations. The principal contribution of
the paper is to demonstrate that this kind of pat-
tern can be applied to almost any kind of se-
mantic relation, as long as it is expressible in
a concise surface pattern, and that the recursive
mechanism that allows each newly acquired term
to restart harvesting automatically is a signifi-
cant advance over patterns that require a handful
of seeds to initiate the learning process. It also
shows how one can combine free-form but undi-
rected pattern-learning approaches like TextRun-
ner with more-controlled but effort-intensive ap-
proaches like commonly used.

In our evaluation, we show that our algorithm is
capable of extracting high quality non-trivial in-
formation from unstructured text given very re-
stricted input (one seed). To measure the perfor-
mance of our approach, we use various semantic
relations expressed with three lexico-syntactic pat-
terns. For two of the relations, we compare results
with the freely available ontology Yago, and con-
duct a manual evaluation of the harvested terms.

We will release the annotated and the harvested
data to the public to be used for comparison by
other knowledge harvesting algorithms.

The success of the proposed framework opens
many challenging directions. We plan to use the
algorithm described in this paper to learn the se-
lectional restrictions of numerous other relations,
in order to build a rich knowledge repository
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that can support a variety of applications, includ-
ing textual entailment, information extraction, and
question answering.
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