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Abstract

This paper examines how a new class of

nonparametric Bayesian models can be ef-

fectively applied to an open-domain event

coreference task. Designed with the pur-

pose of clustering complex linguistic ob-

jects, these models consider a potentially

infinite number of features and categorical

outcomes. The evaluation performed for

solving both within- and cross-document

event coreference shows significant im-

provements of the models when compared

against two baselines for this task.

1 Introduction

The event coreference task consists of finding

clusters of event mentions that refer to the same

event. Although it has not been extensively stud-

ied in comparison with the related problem of en-

tity coreference resolution, solving event coref-

erence has already proved its usefulness in vari-

ous applications such as topic detection and track-

ing (Allan et al., 1998), information extraction

(Humphreys et al., 1997), question answering

(Narayanan and Harabagiu, 2004), textual entail-

ment (Haghighi et al., 2005), and contradiction de-

tection (de Marneffe et al., 2008).

Previous approaches for solving event corefer-

ence relied on supervised learning methods that

explore various linguistic properties in order to de-

cide if a pair of event mentions is coreferential

or not (Humphreys et al., 1997; Bagga and Bald-

win, 1999; Ahn, 2006; Chen and Ji, 2009). In

spite of being successful for a particular labeled

corpus, these pairwise models are dependent on

the domain or language that they are trained on.

Moreover, since event coreference resolution is a

complex task that involves exploring a rich set of

linguistic features, annotating a large corpus with

event coreference information for a new language

or domain of interest requires a substantial amount

of manual effort. Also, since these models are de-

pendent on local pairwise decisions, they are un-

able to capture a global event distribution at topic

or document collection level.

To address these limitations and to provide a

more flexible representation for modeling observ-

able data with rich properties, we present two

novel, fully generative, nonparametric Bayesian

models for unsupervised within- and cross-

document event coreference resolution. The first

model extends the hierarchical Dirichlet process

(Teh et al., 2006) to take into account additional

properties associated with observable objects (i.e.,

event mentions). The second model overcomes

some of the limitations of the first model. It

uses the infinite factorial hidden Markov model

(Van Gael et al., 2008b) coupled to the infinite

hidden Markov model (Beal et al., 2002) in or-

der to (1) consider a potentially infinite number

of features associated with observable objects, (2)

perform an automatic selection of the most salient

features, and (3) capture the structural dependen-

cies of observable objects at the discourse level.

Furthermore, both models are designed to account

for a potentially infinite number of categorical out-

comes (i.e., events). These models provide addi-

tional details and experimental results to our pre-

liminary work on unsupervised event coreference

resolution (Bejan et al., 2009).

2 Event Coreference

The problem of determining if two events are iden-

tical was originally studied in philosophy. One

relevant theory on event identity was proposed by

Davidson (1969) who argued that two events are

identical if they have the same causes and effects.

Later on, a different theory was proposed by Quine

(1985) who considered that each event refers to

a physical object (which is well defined in space

and time), and therefore, two events are identical

1412



if they have the same spatiotemporal location. In

(Davidson, 1985), Davidson abandoned his sug-

gestion to embrace the Quinean theory on event

identity (Malpas, 2009).

2.1 An Example

In accordance with the Quinean theory, we con-

sider that two event mentions are coreferential if

they have the same event properties and share the

same event participants. For instance, the sen-

tences from Example 1 encode event mentions that

refer to several individuated events. These sen-

tences are extracted from a newly annotated cor-

pus with event coreference information (see Sec-

tion 4). In this corpus, we organize documents

that describe the same seminal event into topics.

In particular, the topics shown in this example de-

scribe the seminal event of buying ATI by AMD

(topic 43) and the seminal event of buying EDS

by HP (topic 44).

Although all the event mentions of interest em-

phasized in boldface in Example 1 evoke the same

generic event buy, they refer to three individu-

ated events: e1 = {em1, em2}, e2 = {em3−6,

em8}, and e3 = {em7}. For example, em1(buy)

and em3(buy) correspond to different individuated

events since they have a different AGENT ([BU-

YER(em1)=AMD] 6= [BUYER(em3)=HP]). This

organization of event mentions leads to the idea of

creating an event hierarchy which has on the first

level, event mentions, on the second level, individ-

uated events, and on the third level, generic events.

In particular, the event hierarchy corresponding to

the event mentions annotated in our example is il-

lustrated in Figure 1.

Solving the event coreference problem poses

many interesting challenges. For instance, in or-

der to solve the coreference chain of event men-

tions that refer to the event e2, we need to take

into account the following issues: (i) a coreference

chain can encode both within- and cross-document

coreference information; (ii) two mentions from

the same chain can have different word classes

(e.g., em3(buy)–verb, em4(purchase)–noun); (iii)

not all the mentions from the same chain are syn-

onymous (e.g., em3(buy) and em8(acquire)), al-

though a semantic relation might exist between

them (e.g., in WordNet (Fellbaum, 1998), the

genus of buy is acquire); (iv) partial (or all) prop-

erties and participants of an event mention can be

omitted in text (e.g., em4(purchase)). In Section

Topic 43

Document 3
s4: AMD agreed to [buy]em1

Markham, Ontario-based
ATI for around $5.4 billion in cash and stock, the
companies announced Monday.

s5: The [acquisition]em2
would turn AMD into one of

the world’s largest providers of graphics chips.

Topic 44

Document 2
s1: Hewlett-Packard is negotiating to [buy]em3

technol-
ogy services provider Electronic Data Systems.

s8: With a market value of about $115 billion, HP
could easily use its own stock to finance the [pur-
chase]em4

.
s9: If the [deal]em5

is completed, it would be HP’s
biggest [acquisition]em6

since it [bought]em7
Com-

paq Computer Corp. for $19 billion in 2002.

Document 5
s2: Industry sources have confirmed to eWEEK that

Hewlett-Packard will [acquire]em8
Electronic Data

Systems for about $13 billion.

Example 1: Examples of event mention annotations.

buy

em7

e2 e3e1

em5 em6em3em2em1 em4 em8

Figure 1: Fragment from the event hierarchy.

5, we discuss additional aspects of the event coref-

erence problem that are not revealed in Example 1.

2.2 Linguistic Features

The events representing coreference clusters of

event mentions are characterized by a large set of

linguistic features. To compute an accurate event

distribution for event coreference resolution, we

associate the following categories of linguistic fea-

tures with each annotated event mention.

Lexical Features (LF) We capture the lexical con-

text of an event mention by extracting the follow-

ing features: the head word (HW), the lemmatized

head word (HL), the lemmatized left and right

words surrounding the mention (LHL,RHL), and

the HL features corresponding to the left and right

mentions (LHE,RHE). For instance, the lexical fea-

tures extracted for the event mention em7(bought)

from our example are HW:bought, HL:buy, LHL:it,

RHL:Compaq, LHE:acquisition, and RHE:acquire.

Class Features (CF) These features aim to group

mentions into several types of classes: the part-

of-speech of the HW feature (POS), the word class

of the HW feature (HWC), and the event class of

the mention (EC). The HWC feature can take one

of the following values: VERB, NOUN, ADJEC-
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TIVE, and OTHER. As values for the EC feature,

we consider the seven event classes defined in

the TimeML specification language (Pustejovsky

et al., 2003a): OCCURRENCE, PERCEPTION, RE-

PORTING, ASPECTUAL, STATE, I ACTION, and

I STATE. In order to extract the event classes cor-

responding to the event mentions from a given

dataset, we employed the event extractor described

in (Bejan, 2007). This extractor is trained on

the TimeBank corpus (Pustejovsky et al., 2003b),

which is a TimeML resource encoding temporal

elements such as events, time expressions, and

temporal relations.

WordNet Features (WF) In our efforts to create

clusters of event mention attributes as close as pos-

sible to the true attribute clusters of the individu-

ated events, we build two sets of word clusters us-

ing the entire lexical information from the Word-

Net database. After creating these sets of clusters,

we then associate each event mention with only

one cluster from each set. The first set uses the

transitive closure of the WordNet SYNONYMOUS

relation to form clusters with all the words from

WordNet (WNS). For instance, the verbs buy and

purchase correspond to the same cluster ID be-

cause there exist a chain of SYNONYMOUS rela-

tions between them in WordNet. The second set

considers as grouping criteria the categorization

of words from the WordNet lexicographer’s files

(WNL). In addition, for each word that is not cov-

ered in WordNet, we create a new cluster ID in

each set of clusters.

Semantic Features (SF) To extract features that

characterize participants and properties of event

mentions, we use the semantic parser described

in (Bejan and Hathaway, 2007). One category of

semantic features that we identify for event men-

tions is the predicate argument structures encoded

in PropBank annotations (Palmer et al., 2005).

In PropBank, the predicate argument structures

are represented by events expressed as verbs in

text and by the semantic roles, or predicate argu-

ments, associated with these events. For example,

ARG0 annotates a specific type of semantic role

which represents the AGENT, DOER, or ACTOR

of a specific event. Another argument is ARG1,

which plays the role of the PATIENT, THEME,

or EXPERIENCER of an event. In particular, the

predicate arguments associated to the event men-

tion em8(bought) from Example 1 are ARG0:[it],

ARG1:[Compaq Computer Corp.], ARG3:[for $19

billion], and ARG-TMP:[in 2002].

Event mentions are not only expressed as verbs

in text, but also as nouns and adjectives. There-

fore, for a better coverage of semantic features,

we also employ the semantic annotations encoded

in the FrameNet corpus (Baker et al., 1998).

FrameNet annotates word expressions capable of

evoking conceptual structures, or semantic frames,

which describe specific situations, objects, or

events (Fillmore, 1982). The semantic roles as-

sociated with a word in FrameNet, or frame ele-

ments, are locally defined for the semantic frame

evoked by the word. In general, the words anno-

tated in FrameNet are expressed as verbs, nouns,

and adjectives.

To preserve the consistency of semantic role

features, we align frame elements to predicate ar-

guments by running the PropBank semantic parser

on the manual annotations from FrameNet; con-

versely, we also run the FrameNet parser on the

manual annotations from PropBank. Moreover, to

obtain a better alignment of semantic roles, we

run both parsers on a large amount of unlabeled

text. The result of this process is a map with all

frame elements statistically aligned to all predi-

cate arguments. For instance, in 99.7% of the

cases the frame element BUYER of the semantic

frame COMMERCE BUY is mapped to ARG0, and

in the remaining 0.3% of the cases to ARG1. Ad-

ditionally, we use this map to create a more gen-

eral semantic feature which assigns to each predi-

cate argument a frame element label. In particular,

the features for em8(acquire) are FEA0:BUYER,

FEA1:GOODS, FEA3:MONEY, and FEATMP:TIME.

Two additional semantic features used in our ex-

periments are: (1) the semantic frame (FR) evoked

by every mention;1 and (2) the WNS feature ap-

plied to the head word of every semantic role (e.g.,

WSA0, WSA1).

Feature Combinations (FC) We also explore var-

ious combinations of the features presented above.

Examples include HW+HWC, HL+FR, FR+ARG1,

LHL+RHL, etc.

It is worth noting that there exist event mentions

for which not all the features can be extracted. For

example, the LHE and RHE features are missing

for the first and last event mentions in a document,

respectively. Also, many semantic roles can be ab-

sent for an event mention in a given context.

1 The reason for extracting this feature is given by the fact
that, in general, frames are able to capture properties of
generic events (Lowe et al., 1997).
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3 Nonparametric Bayesian Models

As input for our models, we consider a collection

of I documents, where each document i has Ji

event mentions. For features, we make the dis-

tinction between feature types and feature values

(e.g., POS is a feature type and has values such

as NN and VB). Each event mention is charac-

terized by L feature types, FT, and each feature

type is represented by a finite vocabulary of fea-

ture values, fv. Thus, we can represent the ob-

servable properties of an event mention as a vec-

tor of L feature type – feature value pairs 〈(FT1 :
fv1i), . . . , (FTL : fvLi)〉, where each feature value

index i ranges in the feature value space associated

with a feature type.

3.1 A Finite Feature Model

We present an extension of the hierarchical Dirich-

let process (HDP) model which is able to represent

each observable object (i.e., event mention) by a

finite number of feature types L. Our HDP ex-

tension is also inspired from the Bayesian model

proposed by Haghighi and Klein (2007). How-

ever, their model is strictly customized for entity

coreference resolution, and therefore, extending it

to include additional features for each observable

object is a challenging task (Ng, 2008; Poon and

Domingos, 2008).

In the HDP model, a Dirichlet process (DP)

(Ferguson, 1973) is associated with each docu-

ment, and each mixture component (i.e., event) is

shared across documents. To describe its exten-

sion, we consider Z the set of indicator random

variables for indices of events, φz the set of param-

eters associated with an event z, φ a notation for

all model parameters, and X a notation for all ran-

dom variables that represent observable features.2

Given a document collection annotated with event

mentions, the goal is to find the best assignment

of event indices Z
∗, which maximize the poste-

rior probability P (Z|X). In a Bayesian approach,

this probability is computed by integrating out all

model parameters:

P (Z|X)=

∫

P (Z, φ|X)dφ=

∫

P (Z|X, φ)P (φ|X)dφ

Our HDP extension is depicted graphically in

Figure 2(a). Similar to the HDP model, the dis-

tribution over events associated with each docu-

ment, β, is generated by a Dirichlet process with a

2 In this subsection, the feature term is used in context of a
feature type.

concentration parameter α > 0. Since this setting

enables a clustering of event mentions at the doc-

ument level, it is desirable that events be shared

across documents and the number of events K be

inferred from data. To ensure this flexibility, a

global nonparametric DP prior with a hyperparam-

eter γ and a global base measure H can be consid-

ered for β (Teh et al., 2006). The global distri-

bution drawn from this DP prior, denoted as β0

in Figure 2(a), encodes the event mixing weights.

Thus, same global events are used for each docu-

ment, but each event has a document specific dis-

tribution βi that is drawn from a DP prior centered

on the global weights β0.

To infer the true posterior probability of

P (Z|X), we follow (Teh et al., 2006) and use

the Gibbs sampling algorithm (Geman and Ge-

man, 1984) based on the direct assignment sam-

pling scheme. In this sampling scheme, the pa-

rameters β and φ are integrated out analytically.

Moreover, to reduce the complexity of comput-

ing P (Z|X), we make the naı̈ve Bayes assump-

tion that the feature variables X are conditionally

independent given Z. This allows us to factorize

the joint distribution of feature variables X condi-

tioned on Z into product of marginals. Thus, by

Bayes rule, the formula for sampling an event in-

dex for mention j from document i, Zi,j , is:3

P (Zi,j | Z
−i,j,X) ∝ P (Zi,j | Z

−i,j)
∏

X∈X

P (Xi,j |Z,X−i,j)

where Xi,j represents the feature value of a feature

type corresponding to the event mention j from the

document i.
In the process of generating an event mention,

an event index z is first sampled by using a mech-

anism that facilitates sampling from a prior for in-

finite mixture models called the Chinese restau-

rant franchise (CRF) representation, as reported in

(Teh et al., 2006):

P (Zi,j = z | Z−i,j, β0) ∝

{

αβu
0 , if z = znew

nz + αβz
0 , otherwise

Here, nz is the number of event mentions with

event index z, znew is a new event index not used

already in Z
−i,j , βz

0 are the global mixing propor-

tions associated with the K events, and βu
0 is the

weight for the unknown mixture component.

Next, to generate a feature value x (with the fea-

ture type X) of the event mention, the event z is

3
Z
−i,j represents a notation for Z− {Zi,j}.
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Figure 2: Graphical representation of our models: nodes correspond to random variables; shaded nodes denote observable
variables; a rectangle captures the replication of the structure it contains, where the number of replications is indicated in the
bottom-right corner. The model in (a) illustrates a flat representation of a limited number of features in a generalized framework
(henceforth, HDPflat). The model in (b) captures a simple example of structured network topology of three feature variables
(henceforth, HDPstruct). The dependencies involving parameters φ and θ in these models are omitted for clarity. The model
from (c) shows the representation of the iFHMM-iHMM model as well as the main phases of its generative process.

associated with a multinomial emission distribu-

tion over the feature values of X having the pa-

rameters φ= 〈φx
Z〉. We assume that this emission

distribution is drawn from a symmetric Dirichlet

distribution with concentration λX :

P (Xi,j = x | Z,X−i,j) ∝ nx,z + λX

where Xi,j is the feature type of the mention j
from the document i, and nx,z is the number of

times the feature value x has been associated with

the event index z in (Z,X−i,j). We also apply the

Lidstone’s smoothing method to this distribution.

In cases when only a feature type is considered

(e.g., X = 〈HL〉), the HDPflat model is identical

with the original HDP model. We denote this one

feature model by HDP1f .

When dependencies between feature variables

exist (e.g., in our case, frame elements are de-

pendent on the semantic frames that define them,

and frames are dependent on the words that evoke

them), various global distributions are involved for

computing P (Z|X). For the model depicted in

Figure 2(b), for instance, the posterior probability

is given by:

P (Zi,j)P (FRi,j |HLi,j,θ)
∏

X∈X

P (Xi,j |Z)

In this formula, P (FRi,j|HLi,j ,θ) is a global dis-

tribution parameterized by θ, and X is a feature

variable from the set X = 〈HL,POS,FR〉. For

the sake of clarity, we omit the conditioning com-

ponents of Z, HL, FR, and POS.

3.2 An Infinite Feature Model

To relax some of the restrictions of the first model,

we devise an approach that combines the infinite

factorial hidden Markov model (iFHMM) with the

infinite hidden Markov model (iHMM) to form

the iFHMM-iHMM model.

The iFHMM framework uses the Markov In-

dian buffet process (mIBP) (Van Gael et al.,

2008b) in order to represent each object as a sparse

subset of a potentially unbounded set of latent fea-

tures (Griffiths and Ghahramani, 2006; Ghahra-

mani et al., 2007; Van Gael et al., 2008a).4 Specif-

ically, the mIBP defines a distribution over an un-

bounded set of binary Markov chains, where each

chain can be associated with a binary latent fea-

ture that evolves over time according to Markov

dynamics. Therefore, if we denote by M the to-

tal number of feature chains and by T the num-

ber of observable components, the mIBP defines

a probability distribution over a binary matrix F

with T rows, which correspond to observations,

and an unbounded number of columns M , which

correspond to features. An observation yt con-

tains a subset from the unbounded set of features

{f1, f2, . . . , fM} that is represented in the matrix

by a binary vector Ft =〈F 1
t , F 2

t , . . . , FM
t 〉, where

F i
t = 1 indicates that f i is associated with yt. In

other words, F decomposes the observations and

represents them as feature factors, which can then

be associated with hidden variables in an iFHMM

model as depicted in Figure 2(c).

4 In this subsection, a feature will be represented by a (fea-
ture type:feature value) pair.
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Although the iFHMM allows a more flexible

representation of the latent structure by letting the

number of parallel Markov chains M be learned

from data, it cannot be used as a framework where

the number of clustering components K is infi-

nite. On the other hand, the iHMM represents

a nonparametric extension of the hidden Markov

model (HMM) (Rabiner, 1989) that allows per-

forming inference on an infinite number of states

K . To further increase the representational power

for modeling discrete time series data, we propose

a nonparametric extension that combines the best

of the two models, and lets the parameters M and

K be learned from data.

As shown in Figure 2(c), each step in the new

iHMM-iFHMM generative process is performed

in two phases: (i) the latent feature variables from

the iFHMM framework are sampled using the

mIBP mechanism; and (ii) the features sampled so

far, which become observable during this second

phase, are used in an adapted version of the beam

sampling algorithm (Van Gael et al., 2008a) to in-

fer the clustering components (i.e., latent events).

In the first phase, the stochastic process for sam-

pling features in F is defined as follows. The first

component samples a number of Poisson(α′) fea-

tures. In general, depending on the value that was

sampled in the previous step (t− 1), a feature fm

is sampled for the tth component according to the

P (Fm
t = 1 |Fm

t−1 = 1) and P (Fm
t = 1 |Fm

t−1 = 0)
probabilities.5 After all features are sampled for

the tth component, a number of Poisson(α′/t)
new features are assigned for this component, and

M gets incremented accordingly.

To describe the adapted beam sampler, which

is employed in the second phase of the generative

process, we introduce additional notations. We de-

note by (s1, . . . , sT ) the sequence of hidden states

corresponding to the sequence of event mentions

(y1, . . . , yT ), where each state st belongs to one

of the K events, st ∈ {1, . . . ,K}, and each men-

tion yt is represented by a sequence of latent fea-

tures 〈F 1
t , F 2

t , . . . , FM
t 〉. One element of the tran-

sition probability π is defined as πij = P (st = j |
st−1 = i), and a mention yt is generated according

to a likelihood model F that is parameterized by a

state-dependent parameter φst (yt | st ∼ F(φst)).
The observation parameters φ are drawn indepen-

dently from an identical prior base distribution H .

The beam sampling algorithm combines the

5 Technical details for computing these probabilities are de-
scribed in (Van Gael et al., 2008b).

ideas of slice sampling and dynamic program-

ming for an efficient sampling of state trajectories.

Since in time series models the transition probabil-

ities have independent priors (Beal et al., 2002),

Van Gael and colleagues (2008a) also used the

HDP mechanism to allow couplings across transi-

tions. For sampling the whole hidden state trajec-

tory s, this algorithm employs a forward filtering-

backward sampling technique.

In the forward step of our adapted beam sam-

pler, for each mention yt, we sample features us-

ing the mIBP mechanism and the auxiliary vari-

able ut ∼ Uniform(0, πst−1st). As explained in

(Van Gael et al., 2008a), the auxiliary variables u

are used to filter only those trajectories s for which

πst−1st ≥ ut for all t. Also, in this step, we com-

pute the probabilities P (st |y1:t, u1:t) for all t:

P (st|y1:t,u1:t)∝P (yt|st)
∑

st−1:ut<πst−1st

P (st−1|y1:t−1,u1:t−1)

Here, the dependencies involving parameters π

and φ are omitted for clarity.

In the backward step, we first sample the

event for the last state sT directly from P (sT |
y1:T , u1:T ) and then, for all t : T−1 . . . 1, we sam-

ple each state st given st+1 by using the formula

P (st | st+1, y1:T , u1:T) ∝ P (st | y1:t, u1:t)P (st+1 |
st, ut+1). To sample the emission distribution

φ efficiently, and to ensure that each mention is

characterized by a finite set of representative fea-

tures, we set the base distribution H to be con-

jugate with the data distribution F in a Dirichlet-

multinomial model with the multinomial parame-

ters (o1, . . . , oK) defined as:

ok =

T∑

t=1

∑

fm∈Bt

nmk

In this formula, nmk counts how many times the

feature fm was sampled for the event k, and Bt

stores a finite set of features for yt.

The mechanism for building a finite set of rep-

resentative features for the mention yt is based on

slice sampling (Neal, 2003). Letting qm be the

number of times the feature fm was sampled in the

mIBP, and vt an auxiliary variable for yt such that

vt ∼ Uniform(1, max{qm : Fm
t = 1}), we define

the finite feature set Bt for the observation yt as

Bt = {fm : Fm
t = 1∧qm ≥ vt}. The finiteness of

this feature set is based on the observation that, in

the generative process of the mIBP, only a finite set
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of features are sampled for a component. We de-

note this model as iFHMM-iHMMuniform. Also,

it is worth mentioning that, by using this type of

sampling, only the most representative features of

yt get selected in Bt.

Furthermore, we explore the mechanism for

selecting a finite set of features associated with

an observation by: (1) considering all the ob-

servation’s features whose corresponding feature

counter qm ≥ 1 (unfiltered); (2) selecting only

the higher half of the feature distribution consist-

ing of the observation’s features that were sampled

at least once in the mIBP model (median); and

(3) sampling vt from a discrete distribution of the

observation’s features that were sampled at least

once in the mIBP (discrete).

4 Experiments

Datasets One dataset we employed is the au-

tomatic content extraction (ACE) (ACE-Event,

2005). However, the utilization of the ACE corpus

for the task of solving event coreference is lim-

ited because this resource provides only within-

document event coreference annotations using a

restricted set of event types such as LIFE, BUSI-

NESS, CONFLICT, and JUSTICE. Therefore, as a

second dataset, we created the EventCorefBank

(ECB) corpus6 to increase the diversity of event

types and to be able to evaluate our models for

both within- and cross-document event corefer-

ence resolution. One important step in the cre-

ation process of this corpus consists in finding sets

of related documents that describe the same semi-

nal event such that the annotation of coreferential

event mentions across documents is possible. For

this purpose, we selected from the GoogleNews

archive7 various topics whose description contains

keywords such as commercial transaction, attack,

death, sports, terrorist act, election, arrest, natu-

ral disaster, etc. The entire annotation process for

creating the ECB resource is described in (Bejan

and Harabagiu, 2008). Table 1 lists several basic

statistics extracted from these two corpora.

Evaluation For a more realistic approach, we not

only trained the models on the manually annotated

event mentions (i.e., true mentions), but also on all

the possible mentions encoded in the two datasets.

To extract all event mentions, we ran the event

identifier described in (Bejan, 2007). The men-

tions extracted by this system (i.e., system men-

6 ECB is available at http://www.hlt.utdallas.edu/∼ady.
7 http://news.google.com/

ACE ECB

Number of topics – 43
Number of documents 745 482
Number of within-topic events – 339
Number of cross-document events – 208
Number of within-document events 4946 1302
Number of true mentions 6553 1744
Number of system mentions 45289 21175
Number of distinct feature values 391798 237197

Table 1: Statistics of the ACE and ECB corpora.

tions) were able to cover all the true mentions from

both datasets. As shown in Table 1, we extracted

from ACE and ECB corpora 45289 and 21175 sys-

tem mentions, respectively.

We report results in terms of recall (R), preci-

sion (P), and F-score (F) by employing the men-

tion-based B3 metric (Bagga and Baldwin, 1998),

the entity-based CEAF metric (Luo, 2005), and the

pairwise F1 (PW) metric. All the results are av-

eraged over 5 runs of the generative models. In

the evaluation process, we considered only the

true mentions of the ACE test dataset, and the

event mentions of the test sets derived from a 5-

fold cross validation scheme on the ECB dataset.

For evaluating the cross-document coreference an-

notations, we adopted the same approach as de-

scribed in (Bagga and Baldwin, 1999) by merg-

ing all the documents from the same topic into a

meta-document and then scoring this document as

performed for within-document evaluation. For

both corpora, we considered a set of 132 feature

types, where each feature type consists on average

of 3900 distinct feature values.

Baselines We consider two baselines for event

coreference resolution (rows 1&2 in Tables 2&3).

One baseline groups each event mention by its

event class (BLeclass). Therefore, for this baseline,

we cluster mentions according to their correspond-

ing EC feature value. Similarly, the second base-

line uses as grouping criteria for event mentions

their corresponding WNS feature value (BLsyn).

HDP Extensions Due to memory limitations, we

evaluated the HDP models on a restricted set of

manually selected feature types. In general, the

HDP1f model with the feature type HL, which

plays the role of a baseline for the HDPflat and

HDPstruct models, outperforms both baselines on

the ACE and ECB datasets. For the HDPflat mod-

els (rows 4–7 in Tables 2&3), we classified the ex-

periments according to the set of feature types de-

scribed in Section 2. Our experiments reveal that

the best configuration of features for this model
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Model configuration
B3 CEAF PW B3 CEAF PW

R P F R P F R P F R P F R P F R P F
ECB | WD ECB | CD

1 BLeclass 97.7 55.8 71.0 44.5 80.1 57.2 93.7 25.4 39.8 93.8 49.6 64.9 36.6 72.7 48.7 90.7 28.6 43.3
2 BLsyn 91.5 57.4 70.5 45.7 75.9 57.0 65.3 21.9 32.6 84.6 48.1 61.3 32.8 63.6 43.3 66.2 26.0 37.3

3 HDP1f (HL) 84.3 89.0 86.5 83.4 79.6 81.4 36.6 53.4 42.6 67.0 86.2 75.3 76.2 57.1 65.2 34.9 58.9 43.5

4 HDPflat (LF) 81.4 98.2 89.0 92.7 77.2 84.2 24.7 82.8 37.7 63.8 97.3 77.0 84.9 54.3 66.1 27.2 88.5 41.5
5 (LF+CF) 81.5 98.0 89.0 92.8 77.9 84.7 24.6 80.7 37.4 64.6 97.3 77.6 85.3 55.6 67.2 27.6 88.7 42.0
6 (LF+CF+WF) 82.0 98.9 89.6 93.7 78.4 85.3 26.8 89.9 41.0 65.8 98.0 78.7 86.7 57.1 68.8 29.6 93.0 44.8
7 (LF+CF+WF+SF) 82.1 99.2 89.8 93.9 78.2 85.3 27.0 92.4 41.3 65.0 98.7 78.3 86.9 56.0 68.0 29.2 95.1 44.4

8 HDPstruct (HL→FR→FEA) 84.3 97.1 90.2 92.7 81.1 86.5 34.4 83.0 48.6 69.3 95.8 80.4 86.2 60.1 70.8 37.5 85.6 52.1

9 iFHMM-iHMMunfiltered 82.6 97.7 89.5 92.7 78.5 85.0 28.5 82.4 41.8 67.2 96.4 79.1 85.6 58.0 69.1 32.5 87.7 47.2
10 iFHMM-iHMMdiscrete 82.6 98.1 89.7 93.2 79.0 85.5 29.7 85.4 44.0 66.2 96.2 78.4 84.8 57.2 68.3 32.2 88.1 47.1
11 iFHMM-iHMMmedian 82.6 97.8 89.5 92.9 78.8 85.3 29.3 83.7 43.0 67.0 96.5 79.0 86.1 58.3 69.5 33.1 88.1 47.9
12 iFHMM-iHMMuniform 82.5 98.1 89.6 93.1 78.8 85.3 29.4 86.6 43.7 67.0 96.4 79.0 85.5 58.0 69.1 33.3 88.3 48.2

Table 2: Results for within-document (WD) and cross-document (WD) coreference resolution on the ECB dataset.

B3 CEAF PW

R P F R P F R P F
ACE | WD

1 97.9 25.0 39.9 14.7 64.4 24.0 93.5 8.2 15.2
2 89.3 36.7 52.1 25.1 64.8 36.2 63.8 10.5 18.1
3 86.0 70.6 77.5 62.3 76.4 68.6 50.5 27.7 35.8
4 82.9 82.6 82.7 74.9 75.8 75.3 42.4 41.9 42.1
5 82.0 84.9 83.4 77.8 75.3 76.6 37.9 45.1 41.2
6 83.3 83.6 83.4 76.3 76.2 76.3 42.2 43.9 43.0
7 83.4 84.2 83.8 76.9 76.5 76.7 43.3 47.1 45.1
8 86.2 76.9 81.3 69.0 77.5 73.0 53.2 38.1 44.4
9 82.8 83.6 83.2 75.8 75.0 75.4 41.4 42.6 42.0

10 83.1 81.5 82.3 73.7 75.1 74.4 41.9 40.1 41.0
11 83.0 81.3 82.1 73.2 75.2 74.2 40.7 39.0 39.8
12 81.9 82.2 82.1 74.6 74.5 74.5 37.2 39.0 38.1

Table 3: Results for WD coreference resolution on ACE.

consists of a combination of feature types from

all the categories of features (row 7). For the

HDPstruct experiments, we considered the set of

features of the best HDPflat experiment as well as

the dependencies between HL, FR, and FEA. Over-

all, we can assert that HDPflat achieved the best

performance results on the ACE test dataset (Ta-

ble 3), whereas HDPstruct proved to be more ef-

fective on the ECB dataset (Table 2). Moreover,

the results of the HDPflat and HDPstruct models

show an F-score increase by 4-10% over HDP1f ,

and therefore, the results prove that the HDP ex-

tension provides a more flexible representation for

clustering objects with rich properties.

We also plot the evolution of our generative

processes. For instance, Figure 3(a) shows that

the HDPflat model corresponding to row 7 in Ta-

ble 3 converges in 350 iteration steps to a posterior

distribution over event mentions from ACE with

around 2000 latent events. Additionally, our ex-

periments with different values of the λ parame-

ter for the Lidstone’s smoothing method indicate

that this smoothing method is useful for improv-

ing the performance of the HDP models. How-

ever, we could not find a λ value in our experi-

ments that brings a major improvement over the

non-smoothed HDP models. Figure3(b) shows the

performances of HDPstruct on ECB with various λ
values.8 The HDP results from Tables 2&3 corre-

spond to a λ value of 10−4 and 10−2 for HDPflat

and HDPstruct, respectively.

iFHMM-iHMM In spite of the fact that the

iFHMM-iHMM model employs automatic feature

selection, its results remain competitive against

the results of the HDP models, where the fea-

ture types were manually tuned. When compar-

ing the strategies for filtering feature values in this

framework, we could not find a distinct separation

between the results obtained by the unfiltered,

discrete, median, and uniform models. As ob-

served from Tables 2&3, most of the iFHMM-

iHMM results fall in between the HDPflat and

HDPstruct results. The results were obtained by

automatically selecting only up to 1.5% of distinct

feature values. Figure 3(c) shows the percents of

features employed by this model for various val-

ues of the parameter α′ that controls the number

of sampled features. The best results (also listed

in Tables 2&3) were obtained for α′ = 10 (0.05%)

on ACE and α′ = 150 (0.91%) on ECB.

To show the usefulness of the sampling schemes

considered for this model, we also compare in

Table 4 the results obtained by an iFHMM-

iHMM model that considers all the feature values

associated with an observable object (iFHMM-

iHMMall) against the iFHMM-iHMM models that

employ the mIBP sampling scheme together with

the unfiltered, discrete, median, and uniform
filtering schemes. Because of the memory limi-

tation constraints, we performed the experiments

listed in Table 4 by selecting only a subset from

8 A configuration λ = 0 in the Lidstone’s smoothing method
is equivalent with a non-smoothed version of the model on
which it is applied.
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Figure 3: (a) Evolution of K and log-likelihood in the HDPflat model. (b) Evaluation of the Lidstone’s smoothing method in
the HDPstruct model. (c) Counts of features employed by the iFHMM-iHMM model for various α′ values.

Model
B3 CEAF PW

R P F R P F R P F

ACE | WD

all 89.3 39.8 55.0 30.2 68.8 42.0 62.7 9.1 15.9
unfiltered 83.3 77.7 80.4 70.6 75.9 73.2 42.1 34.6 38.0
discrete 83.8 80.7 82.2 73.0 75.8 74.4 43.9 39.1 41.4
median 83.5 80.2 81.8 72.2 75.3 73.7 42.7 38.2 40.3
uniform 82.8 80.7 81.7 72.8 75.2 73.9 41.4 39.3 40.3

ECB | WD

all 89.5 62.5 73.6 53.3 76.5 62.8 60.7 22.9 33.2
unfiltered 82.6 96.6 89.0 92.0 79.1 85.1 28.4 75.6 41.0
discrete 83.1 96.7 89.4 91.6 79.2 84.9 30.5 79.0 43.9
median 82.5 97.3 89.3 92.8 78.9 85.3 29.2 78.8 42.0
uniform 82.7 96.0 88.9 91.1 79.0 84.6 29.3 74.9 41.6

ECB | CD

all 79.3 54.4 64.5 43.3 61.3 50.7 59.6 26.2 36.4
unfiltered 67.2 94.5 78.5 84.7 59.2 69.6 32.8 82.5 46.8
discrete 67.6 94.8 78.9 83.8 58.3 68.8 34.3 85.3 48.9
median 66.7 95.2 78.4 84.5 57.7 68.5 32.2 83.7 46.3
uniform 67.7 93.6 78.4 83.6 59.2 69.2 33.6 79.5 46.9

Table 4: Feature non-sampling vs. feature sampling in the
iFHMM-iHMM model.

the feature types which proved to be salient in

the HDP experiments. As listed in Table 4,

all the iFHMM-iHMM models that used a fea-

ture sampling scheme significantly outperform

the iFHMM-iHMMall model; this proves that all

the sampling schemes considered in the iFHMM-

iHMM framework are able to successfully filter

out noisy and redundant feature values.

The closest comparison to prior work is the

supervised approach described in (Chen and Ji,

2009) that achieved a 92.2% B3 F-measure on the

ACE corpus. However, for this result, ground truth

event mentions as well as a manually tuned coref-

erence threshold were employed.

5 Error Analysis

One frequent error occurs when a more complex

form of semantic inference is needed to find a cor-

respondence between two event mentions of the

same individuated event. For instance, since all

properties and participants of em3(deal) are omit-

ted in our example and no common features ex-

ist between em3(buy) and em1(buy) to indicate a

similarity between these mentions, they will most

probably be assigned to different clusters. This ex-

ample also suggests the need for a better modeling

of the discourse salience for event mentions.

Another common error is made when match-

ing the semantic roles corresponding to coref-

erential event mentions. Although we simu-

lated entity coreference by using various seman-

tic features, the task of matching participants of

coreferential event mentions is not completely

solved. This is because, in many coreferen-

tial cases, partonomic relations between seman-

tic roles need to be inferred.9 Examples of

such relations extracted from ECB are Israeli

forces
PART OF
−−−−→Israel, an Indian warship

PART OF
−−−−→the

Indian navy, his cell
PART OF
−−−−→Sicilian jail. Simi-

larly for event properties, many coreferential ex-

amples do not specify a clear location and time

interval (e.g., Jabaliya refugee camp
PART OF
−−−−→Gaza,

Tuesday
PART OF
−−−−→this week). In future work, we

plan to build relevant clusters using partonomies

and taxonomies such as the WordNet hierarchies

built from MERONYMY/HOLONYMY and HYPER-

NYMY/HYPONYMY relations, respectively.10

6 Conclusion

We have presented two novel, nonparametric

Bayesian models that are designed to solve com-

plex problems that require clustering objects char-

acterized by a rich set of properties. Our experi-

ments for event coreference resolution proved that

these models are able to solve real data applica-

tions in which the feature and cluster numbers are

treated as free parameters, and the selection of fea-

ture values is performed automatically.

9 This observation was also reported in (Hasler and Orasan,
2009). 10 This task is not trivial since, if applying the tran-
sitive closure on these relations, all words will end up being
part from the same cluster with entity for instance.
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