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Abstract

Most supervised language processing sys-
tems show a significant drop-off in per-
formance when they are tested on text
that comes from a domain significantly
different from the domain of the training
data. Semantic role labeling techniques
are typically trained on newswire text, and
in tests their performance on fiction is
as much as 19% worse than their perfor-
mance on newswire text. We investigate
techniques for building open-domain se-
mantic role labeling systems that approach
the ideal of a train-once, use-anywhere
system. We leverage recently-developed
techniques for learning representations of
text using latent-variable language mod-
els, and extend these techniques to ones
that provide the kinds of features that are
useful for semantic role labeling. In exper-
iments, our novel system reduces error by
16% relative to the previous state of the art
on out-of-domain text.

1 Introduction

In recent semantic role labeling (SRL) competi-
tions such as the shared tasks of CoNLL 2005 and
CoNLL 2008, supervised SRL systems have been
trained on newswire text, and then tested on both
an in-domain test set (Wall Street Journal text)
and an out-of-domain test set (fiction). All sys-
tems tested on these datasets to date have exhib-
ited a significant drop-off in performance on the
out-of-domain tests, often performing 15% worse
or more on the fiction test sets. Yet the baseline
from CoNLL 2005 suggests that the fiction texts
are actually easier than the newswire texts. Such
observations expose a weakness of current super-
vised natural language processing (NLP) technol-
ogy for SRL: systems learn to identify semantic

roles for the subset of language contained in the
training data, but are not yet good at generalizing
to language that has not been seen before.

We aim to build anopen-domainsupervised
SRL system; that is, one whose performance on
out-of-domain tests approaches the same level of
performance as that of state-of-the-art systems on
in-domain tests. Importantly, an open-domain sys-
tem must not use any new labeled data beyond
what is included in the original training text when
running on a new domain. This allows the sys-
tem to be ported to any new domain without any
manual effort. In particular, it ought to apply to
arbitrary Web documents, which are drawn from a
huge variety of domains.

Recent theoretical and empirical evidence sug-
gests that the fault for poor performance on out-of-
domain tests lies with the representations, or sets
of features, traditionally used in supervised NLP.
Building on recent efforts in domain adaptation,
we develop unsupervised techniques for learning
new representations of text. Using latent-variable
language models, we learn representations of texts
that provide novel kinds of features to our su-
pervised learning algorithms. Similar represen-
tations have proven useful in domain-adaptation
for part-of-speech tagging and phrase chunking
(Huang and Yates, 2009). We demonstrate how
to learn representations that are effective for SRL.
Experiments on out-of-domain test sets show that
our learned representations can dramatically im-
prove out-of-domain performance, and narrow the
gap between in-domain and out-of-domain perfor-
mance by half.

The next section provides background informa-
tion on learning representations for NLP tasks us-
ing latent-variable language models. Section 3
presents our experimental setup for testing open-
domain SRL. Sections 4, 5, 6 describe our SRL
system: first, how we identify predicates in open-
domain text, then how our baseline technique
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identifies and classifies arguments, and finally how
we learn representations for improving argument
identification and classification on out-of-domain
text. Section 7 presents previous work, and Sec-
tion 8 concludes and outlines directions for future
work.

2 Open-Domain Representations Using
Latent-Variable Language Models

Let X be an instance set for a learning problem;
for SRL, this is the set of all (sentence,predicate)
pairs. LetY be the space of possible labels for an
instance, and letf : X → Y be the target func-
tion to be learned. Arepresentationis a func-
tion R: X → Z, for some suitable feature space
Z (such asRd). A domain is defined as a dis-
tribution D over the instance setX . An open-
domain system observes a set of training examples
(R(x), f(x)), where instancesx ∈ X are drawn
from a sourcedomain, to learn a hypothesis for
classifying examples drawn from a separatetarget
domain.

Previous work by Ben-Davidet al.(2007; 2009)
uses Vapnik-Chervonenkis (VC) theory to prove
theoretical bounds on an open-domain learning
machine’s performance. Their analysis shows that
the choice of representation is crucial to open-
domain learning. As is customary in VC the-
ory, a good choice of representation must allow
a learning machine to achieve low error rates dur-
ing training. Just as important, however, is that
the representation must simultaneously make the
source and target domains look as similar to one
another as possible.

For open-domain SRL, then, the traditional rep-
resentations are problematic. Typical represen-
tations in SRL and NLP use features of the lo-
cal context to produce a representation. For in-
stance, one dimension of a traditional represen-
tation R might be +1 if the instance contains the
word “bank” as the head of a noun-phrase chunk
that occurs before the predicate in the sentence,
and 0 otherwise. Although many previous studies
have shown that these features allow learning sys-
tems to achieve impressively low error rates dur-
ing training, they also make texts from different
domains look very dissimilar. For instance, a fea-
ture based on the word “bank” or “CEO” may be
common in a domain of newswire text, but scarce
or nonexistent in, say, biomedical literature.

In our recent work (Huang and Yates, 2009) we

show how to build systems that learn new rep-
resentations for open-domain NLP using latent-
variable language models like Hidden Markov
Models (HMMs). An HMM is a generative prob-
abilistic model that generates each wordxi in the
corpus conditioned on a latent variableYi. Each
Yi in the model takes on integral values from1 to
K, and each one is generated by the latent variable
for the preceding word,Yi−1. The distribution for
a corpusx = (x1, . . . , xN ) and a set of state vec-
torss = (s1, . . . , sN ) is given by:

P (x, s) =
∏

i

P (xi|si)P (si|si−1)

Using Expectation-Maximization (Dempster et
al., 1977), it is possible to estimate the distribu-
tions forP (xi|si) andP (si|si−1) from unlabeled
data. The Viterbi algorithm (Rabiner, 1989) can
then be used to produce the optimal sequence of
latent statessi for a given instancex. The output
of this process is an integer (ranging from1 to K)
for every wordxi in the corpus. We use the inte-
ger value ofsi as a new feature for everyxi in the
sentence.

In POS-tagging and chunking experiments,
these learned representations have proven to meet
both of Ben-Davidet al.’s criteria for open-domain
representations: first, they are useful in making
predictions on the training text because the HMM
latent states categorize tokens according to dis-
tributional similarity. And second, it would be
difficult to tell two domains apart based on their
HMM labels, since the same HMM state can gen-
erate similar words from a variety of domains.
In what follows, we adapt these representation-
learning concepts to open-domain SRL.

3 Experimental Setup

We test our open-domain semantic role labeling
system using data from the CoNLL 2005 shared
task (Carreras and M̀arquez, 2005). We use the
standard training set, consisting of sections 02-21
of the Wall Street Journal (WSJ) portion of the
Penn Treebank, labeled with PropBank (Palmer
et al., 2005) annotations for predicates and argu-
ments. We perform our tests on the Brown corpus
(Kucera and Francis, 1967) test data from CoNLL
2005, consisting of 3 sections (ck01-ck03) of
propbanked Brown corpus data. This test set con-
sists of 426 sentences containing 7,159 tokens,
804 propositions, and 2,177 arguments. While the
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training data contains newswire text, the test sen-
tences are drawn from the domain of “general fic-
tion,” and contain an entirely different style (or
styles) of English. The data also includes a sec-
ond test set of in-domain text (section 23 of the
Treebank), which we refer to as the WSJ test set
and use as a reference point.

Every sentence in the dataset is automatically
annotated with a number of NLP pipeline systems,
including part-of-speech (POS) tags, phrase chunk
labels (Carreras and M̀arquez, 2003), named-
entity tags, and full parse information by multiple
parsers. These pipeline systems are important for
generating features for SRL, and one key reason
for the poor performance of SRL systems on the
Brown corpus is that the pipeline systems them-
selves perform worse. The Charniak parser, for
instance, drops from an F1 of 88.25 on the WSJ
test to a F1 of 80.84 on the Brown corpus. For
the chunker and POS tagger, the drop-offs are less
severe: 94.89 to 91.73, and 97.36 to 94.73.

Toutanovaet al. (2008) currently have the best-
performing SRL system on the Brown corpus test
set with an F1 score of 68.81 (80.8 for the WSJ
test). They use a discriminative reranking ap-
proach to jointly predict the best set of argu-
ment boundaries and the best set of argument la-
bels for a predicate. Like the best systems from
the CoNLL 2005 shared task (Punyakanok et al.,
2008; Pradhan et al., 2005), they also use features
from multiple parses to remain robust in the face
of parser error. Owing to the established difficulty
of the Brown test set and the different domains of
the Brown test and WSJ training data, this dataset
makes for an excellent testbed for open-domain
semantic role labeling.

4 Predicate Identification

In order to perform true open-domain SRL, we
must first consider a task which is not formally
part of the CoNLL shared task: the task of iden-
tifying predicates in a given sentence. While this
task is almost trivial in the WSJ test set, where
all but two out of over 5000 predicates can be ob-
served in the training data, it is significantly more
difficult in an open-domain setting. In the Brown
test set, 6.1% of the predicates do not appear in the
training data, and 11.8% of the predicates appear
at most twice in the training data (c.f. 1.5% of the
WSJ test predicates that appear at most twice in
training). In addition, many words which appear

Baseline HMM
Freq P R F1 P R F1

0 89.1 80.4 84.5 93.5 84.388.7
0-2 87.4 84.7 86.0 91.6 88.890.2
all 87.8 92.5 90.1 90.8 96.393.5

Table 1: Using HMM features in predicate iden-
tification reduces error in out-of-domain tests by
34.3% overall, and by 27.1% for OOV predicates.
“Freq” refers to frequency in the training data.
There were 831 predicates in total; 51 never ap-
peared in training and 98 appeared at most twice.

as predicates in training may not be predicates in
the test set. In an open-domain setting, therefore,
we cannot rely solely on a catalog of predicates
from the training data.

To address the task of open-domain predicate
identification, we construct a Conditional Random
Field (CRF) (Lafferty et al., 2001) model with tar-
get labels of B-Pred, I-Pred, and O-Pred (for the
beginning, interior, and outside of a predicate).
We use an open source CRF software package to
implement our CRF models.1 We use words, POS
tags, chunk labels, and the predicate label at the
preceding and following nodes as features for our
Baseline system. To learn an open-domain repre-
sentation, we then trained an 80 state HMM on the
unlabeled texts of the training and Brown test data,
and used the Viterbi optimum states of each word
as categorical features.

The results of our Baseline and HMM systems
appear in Table 1. For predicates that never or
rarely appear in training, the HMM features in-
crease F1 by 4.2, and they increase the overall F1
of the system by 3.5 to 93.5, which approaches
the F1 of 94.7 that the Baseline system achieves
on the in-domain WSJ test set. Based on these re-
sults, we were satisfied that our system could find
predicates in open-domain text. In all subsequent
experiments, we fall back on the standard evalua-
tion in which it is assumed that the boundaries of
the predicate are given. This allows us to compare
with previous work.

5 Semantic Role Labeling with
HMM-based Representations

Following standard practice, we divide the SRL
task into two parts: argument identification and

1Available from http://sourceforge.net/projects/crf/
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argument classification. We treat both sub-tasks
as sequence-labeling problems. During argument
identification, the system must label each token
with labels that indicate either the beginning or in-
terior of an argument (B-Arg or I-Arg), or a label
that indicates the token is not part of an argument
(O-Arg). During argument classification, the sys-
tem labels each token that is part of an argument
with a class label, such as Arg0 or ArgM. Follow-
ing argument classification, multi-word arguments
may have different classification labels for each to-
ken. We post-process the labels by changing them
to match the label of the first token. We use CRFs
as our models for both tasks (Cohn and Blunsom,
2005).

Most previous approaches to SRL have relied
heavily on parsers, and especially constituency
parsers. Indeed, when SRL systems use gold stan-
dard parses, they tend to perform extremely well
(Toutanova et al., 2008). However, as several pre-
vious studies have noted (Gildea, 2001; Pradhan
et al., 2007), using parsers can cause problems for
open-domain SRL. The parsers themselves may
not port well to new domains, or the features they
generate for SRL may not be stable across do-
mains, and therefore may cause sparse data prob-
lems on new domains. Our first step is therefore
to build an SRL system that relies on partial pars-
ing, as was done in CoNLL 2004 (Carreras and
Màrquez, 2004). We then gradually add in less-
sparse alternatives for the syntactic features that
previous systems derive from parse trees.

During argument identification we use the fea-
tures below to predict the labelAi for tokenwi:
• words: wi, wi−1, andwi+1

• parts of speech (POS): POS tagsti, ti−1,
andti+1

• chunk labels: (e.g., B-NP, I-VP, or O)
chunk tagsci, ci−1, andci+1

• combinations: citi, tiwi, citiwi

• NE: the named entity typeni of wi

• position: whether the word occurs before
or after the predicate

• distance: the number of intervening
tokens betweenwi and the target predicate

• POS before, after predicate: the POS tag
of the tokens immediately preceding and
following the predicate

• Chunk before, after predicate: the chunk
type of the tokens immediately preceding
and following the predicate

• Transition: for prediction nodeAi, we use
Ai−1andAi+1 as features

For argument classification, we add the features
below to those listed above:
• arg ID: the labelsAi produced by arg.

identification (B-Arg, I-Arg, or O)
• combination: predicate + first argument

word, predicate+ last argument word,
predicate + first argument POS, predicate
+ last argument POS

• head distance: the number of tokens
between the first token of the argument
phrase and the target predicate

• neighbors: the words immediately before
and after the argument.

We refer to the CRF model with these features as
our Baseline SRL system; in what follows we ex-
tend the Baseline model with more sophisticated
features.

5.1 Incorporating HMM-based
Representations

As a first step towards an open-domain representa-
tion, we use an HMM with 80 latent state values,
trained on the unlabeled text of the training and
test sets, to produce Viterbi-optimal state values
si for every token in the corpus. We then add the
following features to our CRFs for both argument
identification and classification:
• HMM states: HMM state valuessi, si−1,

andsi+1

• HMM states before, after predicate: the
state value of the tokens immediately
preceding and following the predicate

We call the resulting model our Baseline+HMM
system.

5.2 Path Features

Despite all of the features above, the SRL sys-
tem has very little information to help it determine
the syntactic relationship between a target predi-
cate and a potential argument. For instance, these
baseline features provide only crude distance in-
formation to distinguish between multiple argu-
ments that follow a predicate, and they make it
difficult to correctly identify clause arguments or
arguments that appear far from the predicate. Our
system needs features that can help distinguish
between different syntactic relationships, without
being overly sensitive to the domain.

As a step in this direction, we introducepath
features: features for the sequence of tokens be-
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System P R F1

Baseline 63.9 59.7 61.7
Baseline+HMM 68.5 62.7 65.5
Baseline+HMM+Paths 70.0 65.6 67.7
Toutanova et al. (2008) NR NR 68.8

Table 2: Näıve path features improve our base-
line, but not enough to match the state-of-the-art.
Toutanovaet al. do not report (NR) separate val-
ues for precision and recall on this dataset. Dif-
ferences in both precision and recall between the
baseline and the other systems are statistically sig-
nificant atp < 0.01 using the two-tailed Fisher’s
exact test.

tween a predicate and a potential argument. In
standard SRL systems, these path features usually
consist of a sequence of constituent parse nodes
representing the shortest path through the parse
tree between a word and the predicate (Gildea and
Jurafsky, 2002). We substitute paths that do not
depend on parse trees. We use four types of paths:
word paths, POS paths, chunk paths, and HMM
state paths. Given an input sentence labeled with
POS tags, and chunks, we construct path features
for a tokenwi by concatenating words (or tags or
chunk labels) betweenwi and the predicate. For
example, in the sentence “The HIV infection rate
is expected to peak in 2010,” the word path be-
tween “rate” and predicate “peak” would be “is
expected to”, and the POS path would be “VBZ
VBD TO.”

Since word, POS, and chunk paths are all sub-
ject to data sparsity for arguments that are far from
the predicate, we build less-sparse path features by
using paths of HMM states. If we use a reason-
able number of HMM states, each category label
is much more common in the training data than
the average word, and paths containing the HMM
states should be much less sparse than word paths,
and even chunk paths. In our experiments, we use
80-state HMMs.

We call the result of adding path features to
our feature set the Baseline+HMM+Paths sys-
tem((BL). Table 2 shows the performance of our
three baseline systems. In this open-domain SRL
experiment, path features improve over the Base-
line’s F1 by 6 points, and by 2.2 points over
Baseline+HMM, although the improvement is not
enough to match the state-of-the-art system by
Toutanovaet al.

Y1 Y2 Y6

The is expected to peak in 2010

Y3 Y4 Y5 Y7 Y8

HIV infection rate

Figure 1: The Span-HMM over the sentence. It
shows the span of length 3.

6 Representations for Word Spans

Despite partial success in improving our baseline
SRL system with path features, these features still
suffer from data sparsity — many paths in the
test set are never or very rarely observed during
training, so the CRF model has little or no data
points from which to estimate accurate parameters
for these features. In response, we introduce la-
tent variable models ofword spans, or sequences
of words. As with the HMM models above, the
latent states for word spans can be thought of as
probabilistic categories for the spans. And like the
HMM models, we can turn the word span models
into representations by using the state value for a
span as a feature in our supervised SRL system.
Unlike path features, the features from our models
of word spans consist of a single latent state value
rather than a concatenation of state values, and as
a consequence they tend to be much less sparse in
the training data.

6.1 Span-HMM Representations

We build our latent-variable models of word spans
using variations of Hidden Markov Models, which
we call Span-HMMs. Figure 1 shows a graphi-
cal model of a Span-HMM. Each Span-HMM be-
haves just like a regular HMM, except that it in-
cludes one node, called aspan node, that can gen-
erate an entire span rather than a single word. For
instance, in the Span-HMM of Figure 1, nodey5 is
a span node that generates a span of length 3: “is
expected to.”

Span-HMMs can be used to provide a single
categorical value for any span of a sentence us-
ing the usual Viterbi algorithm for HMMs. That
is, at test time, we generate a Span-HMM feature
for wordwj by constructing a Span-HMM that has
a span node for the sequence of words betweenwj

and the predicate. We determine the Viterbi opti-
mal state of this span node, and use that state as the
value of the new feature. In our example in Figure
1, the value of span nodey5 is used as a feature for
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the token “rate”, sincey5 generates the sequence
of words between “rate” and the predicate “peak.”

Notice that by using Span-HMMs to provide
these features, we have condensed all paths in our
data into a small number of categorical values.
Whereas there are a huge number of variations to
the spans themselves, we can constrain the number
of categories for the Span-HMM states to a rea-
sonable number such that each category is likely to
appear often in the training data. The value of each
Span-HMM state then represents a cluster of spans
with similar delimiting words; some clusters will
correlate with spans between predicates and argu-
ments, and others with spans that do not connect
predicates and arguments. As a result, Span-HMM
features are not sparse, and they correlate with the
target function, making them useful in learning an
SRL model.

6.2 Parameter Estimation

We use a variant of the Baum-Welch algorithm to
train our Span-HMMs on unlabeled text. In order
for this to work, we need to provide Baum-Welch
with a modified view of the data so that span nodes
can generate multiple consecutive words in a sen-
tence. First, we take every sentenceS in our train-
ing data and generate the setSpans(S) of all valid
spans in the sentence. For efficiency’s sake, we use
only spans of length less than 15; approximately
95% of the arguments in our dataset were within
15 words of the predicate, so even with this re-
striction we are able to supply features for nearly
all valid arguments. The second step of our train-
ing procedure is to create a separate data point for
each span ofS. For each spant ∈ Spans(S), we
construct a Span-HMM with a regular node gen-
erating each element ofS, except that a span node
generates all oft. Thus, our training data contains
many different copies of each sentenceS, with a
different Span-HMM generating each copy.

Intuitively, running Baum-Welch over this data
means that a span node with statek will be likely
to generate two spanst1 andt2 if t1 andt2 tend to
appear in similar contexts. That is, they should
appear between words that are also likely to be
generated by the same latent state. Thus, certain
values ofk will tend to appear for spans between
predicates and arguments, and others will tend
to appear between predicates and non-arguments.
This makes the valuek informative for both argu-
ment identification and argument classification.

6.3 Memory Considerations

Memory usage is a major issue for our Span-
HMM models. We represent emission distribu-
tions as multinomials over discrete observations.
Since there are millions of different spans in our
data, a straightforward implementation would re-
quire millions of parameters for each latent state
of the Span-HMM.

We use two related techniques to get around this
problem. In both cases, we use a second HMM
model, which we call the base HMM to distin-
guish from our Span-HMM, to back-off from the
explicit word sequence. We use the largest num-
ber of states for HMMs that can be fit into mem-
ory. LetS be a sentence, and letŝ be the sequence
of optimal latent state values forS produced by
our base HMM. Our first approach trains the Span-
HMM on Spans(ŝ), rather thanSpans(S). If
we use a small enough number of latent states in
the base HMM (in experiments, we use 10 latent
states), we drastically reduce the number of differ-
ent spans in the data set, and therefore the num-
ber of parameters required for our model. We call
this representation Span-HMM-Base10. As with
our other HMM-based models, we use the largest
number of latent states that will allow the result-
ing model to fit in our machine’s memory — our
previous experiments on representations for part-
of-speech tagging suggest that more latent states
are usually better.

While our first technique solves the memory is-
sue, it also loses some of the power of our orig-
inal Span-HMM model by using a very coarse-
grained base HMM clustering of the text into 10
categories. Our second approach trains a separate
Span-HMM model for spans of different lengths.
Since we need only one model in memory at a
time, this allows each one to consume more mem-
ory. We therefore use base HMM models with
more latent states (up to 20) to annotate our sen-
tences, and then train on the resultingSpans(ŝ)
as before. With this technique, we produce fea-
tures that are combinations of the state value for
span nodes and the length of the span, in order
to indicate which of our Span-HMM models the
state value came from. We call this representation
Span-HMM-BaseByLength.

6.4 Combining Multiple Span-HMMs

So far, our Span-HMM models produce one new
feature for every token during argument identifi-
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System P R F1

Baseline+HMM+Paths 70.0 65.6 67.7
Toutanovaet al. NR NR 68.8
Span-HMM-Base10 74.5 69.3 71.8
Span-HMM-BaseByLength 76.3 70.2 73.1
Multi-Span-HMM 77.0 70.9 73.8

Table 3: Span-HMM features significantly im-
prove over state-of-the-art results in out-of-
domain SRL. Differences in both precision and re-
call between the baseline and the Span-HMM sys-
tems are statistically significant atp < 0.01 using
the two-tailed Fisher’s exact test.

cation and classification. While these new fea-
tures may be very helpful, ideally we would like
our learned representations to produce multiple
useful features for the CRF model, so that the
CRF can combine the signals from each feature
to learn a sophisticated model. Towards this goal,
we train N independent versions of our Span-
HMM-BaseByLength models, each with a ran-
dom initialization for the Baum-Welch algorithm.
Since Baum-Welch is a hill-climbing algorithm,
it should find local, but not necessarily global,
optima for the parameters of each Span-HMM-
BaseByLength model. When we decode each of
the models on training and test texts, we will ob-
tain N different sequences of latent states, one
for each locally-optimized model. Thus we obtain
N different, independent sources of features. We
call the CRF model with theseN Span-HMM fea-
tures the Multi-Span-HMM model(MSH); in ex-
periments we useN = 5.

6.5 Results and Discussion

Results for the Span-HMM models on the CoNLL
2005 Brown corpus are shown in Table 3. All three
versions of the Span-HMM outperform Toutanova
et al.’s system on the Brown corpus, with the
Multi-Span-HMM gaining 5 points in F1. The
Multi-Span-HMM model improves over the Base-
line+HMM+Paths model by 7 points in precision,
and 5.3 points in recall. Among the Span-HMM
models, the use of more states in the Span-HMM-
BaseByLength model evidently outweighed the
cost of splitting the model into separate versions
for different length spans. Using multiple in-
dependent copies of the Span-HMMs provides a
small (0.7) gain in precision and recall. Dif-
ferences among the different Span-HMM models

System WSJ Brown Diff

Multi-Span-HMM 79.2 73.8 5.4
Toutanovaet al. (2008) 80.8 68.8 12.0
Pradhanet al. (2005) 78.6 68.4 10.2
Punyakanoket al. (2008) 79.4 67.8 11.6

Table 4: Multi-Span-HMM has a much smaller
drop-off in F1 than comparable systems on out-
of-domain test data vs in-domain test data.

were not statistically significant, except that the
difference in precision between the Multi-Span-
HMM and the Span-HMM-Base10 is significant
atp < .1.

Table 4 shows the performance drop-off for top
SRL systems when applied to WSJ test data and
Brown corpus test data. The Multi-Span-HMM
model performs near the state-of-the-art on the
WSJ test set, and its F1 on out-of-domain data
drops only about half as much as comparable sys-
tems. Note that several of the techniques used
by other systems, such as using features from k-
best parses or jointly modeling the dependencies
among arguments, are complementary to our tech-
niques, and may boost the performance of our sys-
tem further.

Table 5 breaks our results down by argument
type. Most of our improvement over the Baseline
system comes from the core arguments A0 and
A1, but also from a few adjunct types like AM-
TMP and AM-LOC. Figure 2 shows that when the
argument is close to the predicate, both systems
perform well, but as the distance from the predi-
cate grows, our Multi-Span-HMM system is bet-
ter able to identify and classify arguments than the
Baseline+HMM+Paths system.

Table 6 provides results for argument identifi-
cation and classification separately. As Pradhanet
al.previously showed (Pradhan et al., 2007), SRL
systems tend to have an easier time with porting
argument identification to new domains, but are
less strong at argument classification on new do-
mains. Our baseline system decreases in F-score
from 81.5 to 78.9 for argument identification, but
suffers a much larger 8% drop in argument classi-
fication. The Multi-Span-HMM model improves
over the Baseline in both tasks and on both test
sets, but the largest improvement (6%) is in argu-
ment classification on the Brown test set.

To help explain the success of the Span-HMM
techniques, we measured the sparsity of our path
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Overall A0 A1 A2 A3 A4 ADV DIR DIS LOC MNR MOD NEG PNC TMP R-A0 R-A1

Num 2177 566 676 147 12 15 143 53 22 85 110 91 50 17 112 25 21
BL 67.7 76.2 70.6 64.8 59.0 71.2 52.7 54.8 71.9 67.5 58.3 90.9 90.0 50.0 76.5 76.5 71.3
MSH 73.8 82.5 73.6 63.9 60.3 73.3 50.8 52.9 70.0 70.3 52.7 94.2 92.9 51.6 81.6 84.475.7

Table 5: SRL results (F1) on the Brown test corpus broken down by roletype. BL is the Base-
line+HMM+Paths model, MSH is the Multi-Span-HMM model. Column 8 to 16 are all adjuncts (AM-).
We omit roles with ten or fewer examples.
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Figure 2: The Multi-Span-HMM (MSH) model
is better able to identify and classify arguments
that are far from the predicate than the Base-
line+HMM+Paths (BL) model.

Test Id.F1 Accuracy

BL WSJ 81.5 93.7
Brown 78.9 85.8

MSH WSJ 83.9 94.4
Brown 80.3 91.9

Table 6: Baseline (BL) and Multi-Span-HMM
(MSH) performance on argument identification
(Id.F1) and argument classification.

and Span-HMM features. Figure 3 shows the per-
centage of feature values in the Brown corpus that
appear more than twice, exactly twice, or exactly
once in the training data. While word path fea-
tures can be highly valuable when there is train-
ing data available for them, only about 11% of the
word paths in the Brown test set also appeared at
all in the training data. POS and chunk paths fared
a bit better (22% and 33% respectively), but even
then nearly 70% of all feature values had no avail-
able training data. HMM and Span-HMM-Base10
paths achieved far better success in this respect.
Importantly, the improvement is mostly due to fea-
tures that are seenoftenin training, rather than fea-
tures that were seen just once or twice. Thus Span-
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Figure 3: HMM path and Span-HMM features are
far more likely to appear often in training data than
the word, POS, and chunk path features. Over
70% of Span-HMM-Base10 features in the Brown
corpus appear at least three times during training;
in contrast, fewer than 33% of chunk path features
in the Brown corpus appear at all during training.

HMMs derive their power as representations for
open-domain SRL from the fact that they provide
features that are mostly the same across domains;
80% of the features of our Span-HMM-Base10 in
the Brown corpus were observed at least once in
the training data.

Table 7 shows examples of spans that were
clustered into the same Span-HMM state, along
with word to either side. All four examples
are cases where the Span-HMM-Base10 model
correctly tagged the following argument, but the
Baseline+HMM+Paths model did not. We can see
that the paths of these four examples are com-
pletely different, but the words surrounding them
are very similar. The emission from a span node
are very sparse, so the Span-HMM has unsurpris-
ingly learned to cluster spans according to the
HMM states that precede and follow the span
node. This is by design, as this kind of distri-
butional clustering is helpful for identifying and
classifying arguments. One potentially interesting
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Predicate Span B-Arg

picked the things up from
passed through the barbed wire at
come down from Sundays to
sat over his second rock in

Table 7: Example spans labeled with the same
Span-HMM state. The examples are taken from
sentences where the Span-HMM-Base10 model
correctly identified the argument on the right, but
the Baseline+HMM+Paths model did not.

question for future work is whether a less sparse
model of the spans themselves, such as a Naı̈ve
Bayes model for the span node, would yield a bet-
ter clustering for producing features for semantic
role labeling.

7 Previous Work

Deschact and Moens (2009) use a latent-variable
language model to provide features for an SRL
system, and they show on CoNLL 2008 data that
they can significantly improve performance when
little labeled training data is available. They do
not report on out-of-domain tests. They use HMM
language models trained on unlabeled text, much
like we use in our baseline systems, but they do not
consider models of word spans, which we found to
be most beneficial. Downeyet al. (2007b) also in-
corporate HMM-based representations into a sys-
tem for the related task of Web information extrac-
tion, and are able to show that the system improves
performance on rare terms.

Fürstenau and Lapata (2009b; 2009a) use semi-
supervised techniques to automatically annotate
data for previously unseen predicates with seman-
tic role information. This task differs from ours
in that it focuses on previously unseen predicates,
which may or may not be part of text from a new
domain. Their techniques also result in relatively
lower performance (F1 between 15 and 25), al-
though their tests are on a more difficult and very
different corpus. Westonet al. (2008) use deep
learning techniques based on semi-supervised em-
beddings to improve an SRL system, though their
tests are on in-domain data. Unsupervised SRL
systems (Swier and Stevenson, 2004; Grenager
and Manning, 2006; Abend et al., 2009) can natu-
rally be ported to new domains with little trouble,
but their accuracy thus far falls short of state-of-
the-art supervised and semi-supervised systems.

The disparity in performance between in-
domain and out-of-domain tests is by no means
restricted to SRL. Past research in a variety of
NLP tasks has shown that parsers (Gildea, 2001),
chunkers (Huang and Yates, 2009), part-of-speech
taggers (Blitzer et al., 2006), named-entity tag-
gers (Downey et al., 2007a), and word sense dis-
ambiguation systems (Escudero et al., 2000) all
suffer from a similar drop-off in performance on
out-of-domain tests. Numerous domain adapta-
tion techniques have been developed to address
this problem, including self-training (McClosky et
al., 2006) and instance weighting (Bacchiani et al.,
2006) for parser adaptation and structural corre-
spondence learning for POS tagging (Blitzer et al.,
2006). Of these techniques, structural correspon-
dence learning is closest to our technique in that it
is a form of representation learning, but it does not
learn features for word spans. None of these tech-
niques have been successfully applied to SRL.

8 Conclusion and Future Work

We have presented novel representation-learning
techniques for building an open-domain SRL sys-
tem. By incorporating learned features from
HMMs and Span-HMMs trained on unlabeled
text, our SRL system is able to correctly iden-
tify predicates in out-of-domain text with an F1
of 93.5, and it can identify and classify argu-
ments to predicates with an F1 of 73.8, out-
performing comparable state-of-the-art systems.
Our successes so far on out-of-domain tests bring
hope that supervised NLP systems may eventually
achieve the ideal where they no longer need new
manually-labeled training data for every new do-
main. There are several potential avenues for fur-
ther progress towards this goal, including the de-
velopment of more portable SRL pipeline systems,
and especially parsers. Developing techniques that
can incrementally adapt to new domains without
the computational expense of retraining the CRF
model every time would help make open-domain
SRL more practical.
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