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Abstract

We propose CMSMs, a novel type of
generic compositional models for syntac-
tic and semantic aspects of natural lan-
guage, based on matrix multiplication. We
argue for the structural and cognitive plau-
sibility of this model and show that it is
able to cover and combine various com-
mon compositional NLP approaches rang-
ing from statistical word space models to
symbolic grammar formalisms.

1 Introduction

In computational linguistics and information re-
trieval, Vector Space Models (Salton et al., 1975)
and its variations – such as Word Space Models
(Schütze, 1993), Hyperspace Analogue to Lan-
guage (Lund and Burgess, 1996), or Latent Se-
mantic Analysis (Deerwester et al., 1990) – have
become a mainstream paradigm for text represen-
tation. Vector Space Models (VSMs) have been
empirically justified by results from cognitive sci-
ence (Gärdenfors, 2000). They embody the distri-
butional hypothesis of meaning (Firth, 1957), ac-
cording to which the meaning of words is defined
by contexts in which they (co-)occur. Depending
on the specific model employed, these contexts
can be either local (the co-occurring words), or
global (a sentence or a paragraph or the whole doc-
ument). Indeed, VSMs proved to perform well in a
number of tasks requiring computation of seman-
tic relatedness between words, such as synonymy
identification (Landauer and Dumais, 1997), auto-
matic thesaurus construction (Grefenstette, 1994),
semantic priming, and word sense disambiguation
(Padó and Lapata, 2007).

Until recently, little attention has been paid
to the task of modeling more complex concep-
tual structures with such models, which consti-
tutes a crucial barrier for semantic vector models

on the way to model language (Widdows, 2008).
An emerging area of research receiving more and
more attention among the advocates of distribu-
tional models addresses the methods, algorithms,
and evaluation strategies for representing compo-
sitional aspects of language within a VSM frame-
work. This requires novel modeling paradigms,
as most VSMs have been predominantly used
for meaning representation of single words and
the key problem of common bag-of-words-based
VSMs is that word order information and thereby
the structure of the language is lost.

There are approaches under way to work out
a combined framework for meaning representa-
tion using both the advantages of symbolic and
distributional methods. Clark and Pulman (2007)
suggest a conceptual model which unites sym-
bolic and distributional representations by means
of traversing the parse tree of a sentence and ap-
plying a tensor product for combining vectors of
the meanings of words with the vectors of their
roles. The model is further elaborated by Clark et
al. (2008).

To overcome the aforementioned difficulties
with VSMs and work towards a tight integra-
tion of symbolic and distributional approaches,
we propose a Compositional Matrix-Space Model
(CMSM) which employs matrices instead of vec-
tors and makes use of matrix multiplication as the
one and only composition operation.

The paper is structured as follows: We start by
providing the necessary basic notions in linear al-
gebra in Section 2. In Section 3, we give a for-
mal account of the concept of compositionality,
introduce our model, and argue for the plausibil-
ity of CMSMs in the light of structural and cogni-
tive considerations. Section 4 shows how common
VSM approaches to compositionality can be cap-
tured by CMSMs while Section 5 illustrates the
capabilities of our model to likewise cover sym-
bolic approaches. In Section 6, we demonstrate
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how several CMSMs can be combined into one
model. We provide an overview of related work
in Section 7 before we conclude and point out av-
enues for further research in Section 8.

2 Preliminaries

In this section, we recap some aspects of linear
algebra to the extent needed for our considerations
about CMSMs. For a more thorough treatise we
refer the reader to a linear algebra textbook (such
as Strang (1993)).

Vectors. Given a natural number n, an n-
dimensional vector v over the reals can be seen
as a list (or tuple) containing n real numbers
r1, . . . , rn ∈ R, written v = (r1 r2 · · · rn).
Vectors will be denoted by lowercase bold font
letters and we will use the notation v(i) to refer
to the ith entry of vector v. As usual, we write
Rn to denote the set of all n-dimensional vectors
with real entries. Vectors can be added entry-
wise, i.e., (r1 · · · rn) + (r′1 · · · r′n) = (r1 +

r′1 · · · rn +r′n). Likewise, the entry-wise prod-
uct (also known as Hadamard product) is defined
by (r1 · · · rn) � (r′1 · · · r′n) = (r1 ·r′1 · · · rn ·r′n).

Matrices. Given two real numbers n, m, an n×m
matrix over the reals is an array of real numbers
with n rows and m columns. We will use capital
letters to denote matrices and, given a matrix M
we will write M(i, j) to refer to the entry in the ith
row and the jth column:

M =



M(1, 1) M(1, 2) · · · M(1, j) · · · M(1,m)

M(2, 1) M(2, 2)
...

...
...

M(i, 1) M(i, j)
...

...
...

M(n, 1) M(1, 2) · · · · · · · · · M(n,m)


The set of all n × m matrices with real num-
ber entries is denoted by Rn×m. Obviously, m-
dimensional vectors can be seen as 1 × m matri-
ces. A matrix can be transposed by exchanging
columns and rows: given the n × m matrix M, its
transposed version MT is a m × n matrix defined
by MT (i, j) = M( j, i).

Linear Mappings. Beyond being merely array-
like data structures, matrices correspond to certain

type of functions, so-called linear mappings, hav-
ing vectors as in- and output. More precisely, an
n × m matrix M applied to an m-dimensional vec-
tor v yields an n-dimensional vector v′ (written:
vM = v′) according to

v′(i) =

m∑
j=1

v( j) · M(i, j)

Linear mappings can be concatenated, giving
rise to the notion of standard matrix multiplica-
tion: we write M1M2 to denote the matrix that
corresponds to the linear mapping defined by ap-
plying first M1 and then M2. Formally, the matrix
product of the n× l matrix M1 and the l×m matrix
M2 is an n × m matrix M = M1M2 defined by

M(i, j) =

l∑
k=1

M1(i, k) · M2(k, j)

Note that the matrix product is associative (i.e.,
(M1M2)M3 = M1(M2M3) always holds, thus
parentheses can be omitted) but not commutative
(M1M2 = M2M1 does not hold in general, i.e., the
order matters).

Permutations. Given a natural number n, a per-
mutation on {1 . . . n} is a bijection (i.e., a map-
ping that is one-to-one and onto) Φ : {1 . . . n} →
{1 . . . n}. A permutation can be seen as a “reorder-
ing scheme” on a list with n elements: the element
at position i will get the new position Φ(i) in the
reordered list. Likewise, a permutation can be ap-
plied to a vector resulting in a rearrangement of
the entries. We write Φn to denote the permutation
corresponding to the n-fold application of Φ and
Φ−1 to denote the permutation that “undoes” Φ.

Given a permutation Φ, the corresponding per-
mutation matrix MΦ is defined by

MΦ(i, j) =

{
1 if Φ( j) = i,
0 otherwise.

Then, obviously permuting a vector according
to Φ can be expressed in terms of matrix multipli-
cation as well as we obtain for any vector v ∈ Rn:

Φ(v) = vMΦ

Likewise, iterated application (Φn) and the in-
verses Φ−n carry over naturally to the correspond-
ing notions in matrices.
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3 Compositionality and Matrices

The underlying principle of compositional seman-
tics is that the meaning of a sentence (or a word
phrase) can be derived from the meaning of its
constituent tokens by applying a composition op-
eration. More formally, the underlying idea can
be described as follows: given a mapping [[ · ]] :
Σ → S from a set of tokens (words) Σ into some
semantical space S (the elements of which we will
simply call “meanings”), we find a semantic com-
position operation ./: S∗ → S mapping sequences
of meanings to meanings such that the meaning of
a sequence of tokens σ1σ2 . . . σn can be obtained
by applying ./ to the sequence [[σ1]][[σ2]] . . . [[σn]].
This situation qualifies [[ · ]] as a homomorphism
between (Σ∗, ·) and (S, ./) and can be displayed as
follows:

σ1

[[ · ]]

��

concatenation ·

''
σ2

[[ · ]]

��

((
· · · σn

[[ · ]]

��

))
σ1σ2 . . . σn

[[ · ]]

��
[[σ1]]

composition ./

66[[σ2]] 55
· · · [[σn]] 55[[σ1σ2 . . . σn]]

A great variety of linguistic models are sub-
sumed by this general idea ranging from purely
symbolic approaches (like type systems and cate-
gorial grammars) to rather statistical models (like
vector space and word space models). At the first
glance, the underlying encodings of word seman-
tics as well as the composition operations differ
significantly. However, we argue that a great vari-
ety of them can be incorporated – and even freely
inter-combined – into a unified model where the
semantics of simple tokens and complex phrases
is expressed by matrices and the composition op-
eration is standard matrix multiplication.

More precisely, in Compositional Marix-Space
Models, we have S = Rn×n, i.e. the semantical
space consists of quadratic matrices, and the com-
position operator ./ coincides with matrix multi-
plication as introduced in Section 2. In the follow-
ing, we will provide diverse arguments illustrating
that CMSMs are intuitive and natural.

3.1 Algebraic Plausibility –
Structural Operation Properties

Most linear-algebra-based operations that have
been proposed to model composition in language
models are associative and commutative. Thereby,
they realize a multiset (or bag-of-words) seman-
tics that makes them insensitive to structural dif-
ferences of phrases conveyed through word order.

While associativity seems somewhat acceptable
and could be defended by pointing to the stream-
like, sequential nature of language, commutativity
seems way less justifiable, arguably.

As mentioned before, matrix multiplication is
associative but non-commutative, whence we pro-
pose it as more adequate for modeling composi-
tional semantics of language.

3.2 Neurological Plausibility –
Progression of Mental States

From a very abstract and simplified perspective,
CMSMs can also be justified neurologically.

Suppose the mental state of a person at one spe-
cific moment in time can be encoded by a vector v
of numerical values; one might, e.g., think of the
level of excitation of neurons. Then, an external
stimulus or signal, such as a perceived word, will
result in a change of the mental state. Thus, the
external stimulus can be seen as a function being
applied to v yielding as result the vector v′ that
corresponds to the persons mental state after re-
ceiving the signal. Therefore, it seems sensible to
associate with every signal (in our case: token σ) a
respective function (a linear mapping, represented
by a matrix M = [[σ]] that maps mental states to
mental states (i.e. vectors v to vectors v′ = vM).

Consequently, the subsequent reception of in-
puts σ, σ′ associated to matrices M and M′

will transform a mental vector v into the vector
(vM)M′ which by associativity equals v(MM′).
Therefore, MM′ represents the mental state tran-
sition triggered by the signal sequence σσ′. Nat-
urally, this consideration carries over to sequences
of arbitrary length. This way, abstracting from
specific initial mental state vectors, our semantic
space S can be seen as a function space of mental
transformations represented by matrices, whereby
matrix multiplication realizes subsequent execu-
tion of those transformations triggered by the in-
put token sequence.
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3.3 Psychological Plausibility –
Operations on Working Memory

A structurally very similar argument can be pro-
vided on another cognitive explanatory level.
There have been extensive studies about human
language processing justifying the hypothesis of
a working memory (Baddeley, 2003). The men-
tal state vector can be seen as representation of a
person’s working memory which gets transformed
by external input. Note that matrices can per-
form standard memory operations such as storing,
deleting, copying etc. For instance, the matrix
Mcopy(k,l) defined by

Mcopy(k,l)(i, j) =

{
1 if i = j , l or i = k, j = l,
0 otherwise.

applied to a vector v, will copy its kth entry to the
lth position. This mechanism of storage and inser-
tion can, e.g., be used to simulate simple forms of
anaphora resolution.

4 CMSMs Encode Vector Space Models

In VSMs numerous vector operations have been
used to model composition (Widdows, 2008),
some of the more advanced ones being related to
quantum mechanics. We show how these com-
mon composition operators can be modeled by
CMSMs.1 Given a vector composition operation
./: Rn×Rn → Rn, we provide a surjective function
ψ./ : Rn → Rn′×n′ that translates the vector rep-
resentation into a matrix representation in a way
such that for all v1, . . . vk ∈ R

n holds

v1 ./ . . . ./ vk = ψ−1
./ (ψ./(v1) . . . ψ./(vk))

where ψ./(vi)ψ./(v j) denotes matrix multiplication
of the matrices assigned to vi and v j.

4.1 Vector Addition
As a simple basic model for semantic composi-
tion, vector addition has been proposed. Thereby,
tokens σ get assigned (usually high-dimensional)
vectors vσ and to obtain a representation of the
meaning of a phrase or a sentence w = σ1 . . . σk,
the vector sum of the vectors associated to the con-
stituent tokens is calculated: vw =

∑k
i=1 vσi .

1In our investigations we will focus on VSM composi-
tion operations which preserve the format (i.e. which yield a
vector of the same dimensionality), as our notion of composi-
tionality requires models that allow for iterated composition.
In particular, this rules out dot product and tensor product.
However the convolution product can be seen as a condensed
version of the tensor product.

This kind of composition operation is subsumed
by CMSMs; suppose in the original model, a token
σ gets assigned the vector vσ, then by defining

ψ+(vσ) =


1 · · · 0 0
...

. . .
...

0 1 0
vσ 1


(mapping n-dimensional vectors to (n+1)× (n+1)
matrices), we obtain for a phrase w = σ1 . . . σk

ψ−1
+ (ψ+(vσ1) . . . ψ+(vσk )) = vσ1 + . . . + vσk = vw.

Proof. By induction on k. For k = 1, we have
vw = vσ = ψ−1

+ (ψ+(vσ1)). For k > 1, we have

ψ−1
+ (ψ+(vσ1) . . . ψ+(vσk−1)ψ+(vσk ))

= ψ−1
+ (ψ+(ψ−1

+ (ψ+(vσ1) . . . ψ+(vσk−1)))ψ+(vσk ))
i.h.
= ψ−1

+ (ψ+(
∑k−1

i=1 vσi)ψ+(vσk ))

=ψ−1
+




1 · · · 0 0...
. . .

...
0 1 0∑k−1

i=1 vσi (1)· · ·
∑k−1

i=1 vσi (n) 1




1 · · · 0 0...
. . .

...
0 1 0

vσk (1)· · · vσk (n) 1




=ψ−1
+


1 · · · 0 0...

. . .
...

0 1 0∑k
i=1vσi (1)· · ·

∑k
i=1vσi (n) 1

=

k∑
i=1

vσi

q.e.d.2

4.2 Component-wise Multiplication
On the other hand, the Hadamard product (also
called entry-wise product, denoted by �) has been
proposed as an alternative way of semantically
composing token vectors.

By using a different encoding into matrices,
CMSMs can simulate this type of composition op-
eration as well. By letting

ψ�(vσ) =


vσ(1) 0 · · · 0

0 vσ(2)
...

. . . 0
0 · · · 0 vσ(n)

 ,
we obtain an n×n matrix representation for which
ψ−1
� (ψ�(vσ1) . . . ψ�(vσk )) = vσ1 � . . . � vσk = vw.

4.3 Holographic Reduced Representations
Holographic reduced representations as intro-
duced by Plate (1995) can be seen as a refinement

2The proofs for the respective correspondences for � and
~ as well as the permutation-based approach in the following
sections are structurally analog, hence, we will omit them for
space reasons.
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of convolution products with the benefit of pre-
serving dimensionality: given two vectors v1, v2 ∈

Rn, their circular convolution product v1 ~ v2 is
again an n-dimensional vector v3 defined by

v3(i + 1) =

n−1∑
k=0

v1(k + 1) · v2((i − k mod n) + 1)

for 0 ≤ i ≤ n−1. Now let ψ~(v) be the n×n matrix
M with

M(i, j) = v(( j − i mod n) + 1).

In the 3-dimensional case, this would result in

ψ~(v(1) v(2) v(3)) =

 v(1) v(2) v(3)
v(3) v(1) v(2)
v(2) v(3) v(1)


Then, it can be readily checked that

ψ−1
~ (ψ~(vσ1) . . . ψ~(vσk )) = vσ1 ~ . . . ~ vσk = vw.

4.4 Permutation-based Approaches

Sahlgren et al. (2008) use permutations on vec-
tors to account for word order. In this approach,
given a token σm occurring in a sentence w =

σ1 . . . σk with predefined “uncontextualized” vec-
tors vσ1 . . . vσk , we compute the contextualized
vector vw,m for σm by

vw,m = Φ1−m(vσ1) + . . . + Φk−m(vσk ),

which can be equivalently transformed into

Φ1−m(
vσ1 + Φ(. . . + Φ(vσk−1 + (Φ(vσk ))) . . .)

)
.

Note that the approach is still token-centered, i.e.,
a vector representation of a token is endowed with
contextual representations of surrounding tokens.
Nevertheless, this setting can be transferred to a
CMSM setting by recording the position of the fo-
cused token as an additional parameter. Now, by
assigning every vσ the matrix

ψΦ(vσ) =


0

MΦ

...

0
vσ 1


we observe that for

Mw,m := (M−Φ)m−1ψΦ(vσ1) . . . ψΦ(vσk )

we have

Mw,m =


0

Mk−m
Φ

...

0
vw,m 1

 ,
whence ψ−1

Φ

(
(M−

Φ
)m−1ψΦ(vσ1) . . . ψΦ(vσk )

)
= vw,m.

5 CMSMs Encode Symbolic Approaches

Now we will elaborate on symbolic approaches to
language, i.e., discrete grammar formalisms, and
show how they can conveniently be embedded into
CMSMs. This might come as a surprise, as the ap-
parent likeness of CMSMs to vector-space models
may suggest incompatibility to discrete settings.

5.1 Group Theory

Group theory and grammar formalisms based on
groups and pre-groups play an important role
in computational linguistics (Dymetman, 1998;
Lambek, 1958). From the perspective of our com-
positionality framework, those approaches employ
a group (or pre-group) (G, ·) as semantical space S
where the group operation (often written as multi-
plication) is used as composition operation ./.

According Cayley’s Theorem (Cayley, 1854),
every group G is isomorphic to a permutation
group on some set S . Hence, assuming finite-
ness of G and consequently S , we can encode
group-based grammar formalisms into CMSMs in
a straightforward way by using permutation matri-
ces of size |S | × |S |.

5.2 Regular Languages

Regular languages constitute a basic type of lan-
guages characterized by a symbolic formalism.
We will show how to select the assignment [[ · ]]
for a CMSM such that the matrix associated to a
token sequence exhibits whether this sequence be-
longs to a given regular language, that is if it is
accepted by a given finite state automaton. As
usual (cf. e.g., Hopcroft and Ullman (1979)) we
define a nondeterministic finite automaton A =

(Q,Σ,∆,QI,QF) with Q = {q0, . . . , qn−1} being the
set of states, Σ the input alphabet, ∆ ⊆ Q×Σ×Q the
transition relation, and QI and QF being the sets of
initial and final states, respectively.
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Then we assign to every token σ ∈ Σ the n × n
matrix [[σ]] = M with

M(i, j) =

{
1 if (qi, σ, q j) ∈ ∆,

0 otherwise.

Hence essentially, the matrix M encodes all state
transitions which can be caused by the input σ.
Likewise, for a word w = σ1 . . . σk ∈ Σ∗, the
matrix Mw := [[σ1]] . . . [[σk]] will encode all state
transitions mediated by w. Finally, if we define
vectors vI and vF by

vI(i) =

{
1 if qi ∈ QI,

0 otherwise,
vF(i) =

{
1 if qi ∈ QF,

0 otherwise,

then we find that w is accepted by A exactly if
vIMwvT

F ≥ 1.

5.3 The General Case: Matrix Grammars
Motivated by the above findings, we now define a
general notion of matrix grammars as follows:

Definition 1 Let Σ be an alphabet. A matrix
grammar M of degree n is defined as the pair
〈 [[ · ]], AC〉 where [[ · ]] is a mapping from Σ to n×n
matrices and AC = {〈v′1, v1, r1〉, . . . , 〈v′m, vm, rm〉}

with v′1, v1, . . . , v′m, vm ∈ R
n and r1, . . . , rm ∈ R

is a finite set of acceptance conditions. The lan-
guage generated by M (denoted by L(M)) con-
tains a token sequence σ1 . . . σk ∈ Σ∗ exactly if
v′i[[σ1]] . . . [[σk]]vT

i ≥ ri for all i ∈ {1, . . . ,m}. We
will call a language L matricible if L = L(M) for
some matrix grammarM.

Then, the following proposition is a direct con-
sequence from the preceding section.

Proposition 1 Regular languages are matricible.

However, as demonstrated by the subsequent
examples, also many non-regular and even non-
context-free languages are matricible, hinting at
the expressivity of our grammar model.

Example 1 We defineM〈 [[ · ]], AC〉 with

Σ = {a, b, c} [[a]] =


3 0 0 0
0 1 0 0
0 0 3 0
0 0 0 1


[[b]] =


3 0 0 0
0 1 0 0
0 1 3 0
1 0 0 1

 [[c]] =


3 0 0 0
0 1 0 0
0 2 3 0
2 0 0 1


AC = { 〈(0 0 1 1), (1 −1 0 0), 0〉,

〈(0 0 1 1), (−1 1 0 0), 0〉}

Then L(M) contains exactly all palindromes from
{a, b, c}∗, i.e., the words d1d2 . . . dn−1dn for which
d1d2 . . . dn−1dn = dndn−1 . . . d2d1.

Example 2 We defineM = 〈 [[ · ]], AC〉 with

Σ = {a, b, c} [[a]]=


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 2 0 0
0 0 0 0 1 0
0 0 0 0 0 1


[[b]]=


0 1 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 2 0
0 0 0 0 0 1

 [[c]]=


0 0 0 0 0 0
0 0 1 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 2


AC = { 〈(1 0 0 0 0 0), (0 0 1 0 0 0), 1〉,

〈(0 0 0 1 1 0), (0 0 0 1 −1 0), 0〉,
〈(0 0 0 0 1 1), (0 0 0 0 1 −1), 0〉,
〈(0 0 0 1 1 0), (0 0 0 −1 0 1), 0〉}

Then L(M) is the (non-context-free) language
{ambmcm | m > 0}.

The following properties of matrix grammars
and matricible language are straightforward.

Proposition 2 All languages characterized by a
set of linear equations on the letter counts are ma-
tricible.

Proof. Suppose Σ = {a1, . . . an}. Given a word w,
let xi denote the number of occurrences of ai in w.
A linear equation on the letter counts has the form

k1x1 + . . . + knxn = k
(
k, k1, . . . , kn ∈ R

)
Now define [[ai]] = ψ+(ei), where ei is the ith

unit vector, i.e. it contains a 1 at he ith position and
0 in all other positions. Then, it is easy to see that
w will be mapped to M = ψ+(x1 · · · xn). Due
to the fact that en+1M = (x1 · · · xn 1) we can
enforce the above linear equation by defining the
acceptance conditions

AC = { 〈en+1, (k1 . . . kn − k), 0〉,
〈−en+1, (k1 . . . kn − k), 0〉}.

q.e.d.

Proposition 3 The intersection of two matricible
languages is again a matricible language.

Proof. This is a direct consequence of the con-
siderations in Section 6 together with the observa-
tion, that the new set of acceptance conditions is
trivially obtained from the old ones with adapted
dimensionalities. q.e.d.
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Note that the fact that the language {ambmcm |

m > 0} is matricible, as demonstrated in Ex-
ample 2 is a straightforward consequence of the
Propositions 1, 2, and 3, since the language in
question can be described as the intersection of
the regular language a+b+c+ with the language
characterized by the equations xa − xb = 0 and
xb − xc = 0. We proceed by giving another ac-
count of the expressivity of matrix grammars by
showing undecidability of the emptiness problem.

Proposition 4 The problem whether there is a
word which is accepted by a given matrix gram-
mar is undecidable.

Proof. The undecidable Post correspondence
problem (Post, 1946) is described as follows:
given two lists of words u1, . . . , un and v1, . . . , vn

over some alphabet Σ′, is there a sequence of num-
bers h1, . . . , hm (1 ≤ h j ≤ n) such that uh1 . . . uhm =

vh1 . . . vhm?
We now reduce this problem to the emptiness

problem of a matrix grammar. W.l.o.g., let Σ′ =

{a1, . . . , ak}. We define a bijection # from Σ′∗ to N
by

#(an1an2 . . . anl) =

l∑
i=1

(ni − 1) · k(l−i)

Note that this is indeed a bijection and that for
w1,w2 ∈ Σ′∗, we have

#(w1w2) = #(w1) · k|w2 | + #(w2).

Now, we defineM as follows:

Σ = {b1, . . . bn} [[bi]] =

 k|ui | 0 0
0 k|vi | 0

#(ui) #(vi) 1


AC = { 〈(0 0 1), (1 − 1 0), 0〉,

〈(0 0 1), (−1 1 0), 0〉}

Using the above fact about # and a simple induc-
tion on m, we find that

[[ah1]] . . . [[ahm]] =

 k|uh1...uhm | 0 0
0 k|vh1...vhm | 0

#(uh1 . . .uhm) #(vh1 . . .vhm) 1


Evaluating the two acceptance conditions, we
find them satisfied exactly if #(uh1 . . . uhm) =

#(vh1 . . . vhm). Since # is a bijection, this is the
case if and only if uh1 . . . uhm = vh1 . . . vhm . There-
foreM accepts bh1 . . . bhm exactly if the sequence

h1, . . . , hm is a solution to the given Post Corre-
spondence Problem. Consequently, the question
whether such a solution exists is equivalent to
the question whether the language L(M) is non-
empty. q.e.d.

These results demonstrate that matrix grammars
cover a wide range of formal languages. Never-
theless some important questions remain open and
need to be clarified next:
Are all context-free languages matricible? We
conjecture that this is not the case.3 Note that this
question is directly related to the question whether
Lambek calculus can be modeled by matrix gram-
mars.
Are matricible languages closed under concatena-
tion? That is: given two arbitrary matricible lan-
guages L1, L2, is the language L = {w1w2 | w1 ∈

L1,w2 ∈ L2} again matricible? Being a property
common to all language types from the Chomsky
hierarchy, answering this question is surprisingly
non-trivial for matrix grammars.

In case of a negative answer to one of the above
questions it might be worthwhile to introduce an
extended notion of context grammars to accom-
modate those desirable properties. For example,
allowing for some nondeterminism by associating
several matrices to one token would ensure closure
under concatenation.
How do the theoretical properties of matrix gram-
mars depend on the underlying algebraic struc-
ture? Remember that we considered matrices con-
taining real numbers as entries. In general, ma-
trices can be defined on top of any mathemati-
cal structure that is (at least) a semiring (Golan,
1992). Examples for semirings are the natural
numbers, boolean algebras, or polynomials with
natural number coefficients. Therefore, it would
be interesting to investigate the influence of the
choice of the underlying semiring on the prop-
erties of the matrix grammars – possibly non-
standard structures turn out to be more appropri-
ate for capturing certain compositional language
properties.

6 Combination of Different Approaches

Another central advantage of the proposed matrix-
based models for word meaning is that several
matrix models can be easily combined into one.

3For instance, we have not been able to find a matrix
grammar that recognizes the language of all well-formed
parenthesis expressions.
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Again assume a sequence w = σ1 . . . σk of
tokens with associated matrices [[σ1]], . . . , [[σk]]
according to one specific model and matrices
([σ1]), . . . , ([σk]) according to another.

Then we can combine the two models into one
{[ · ]} by assigning to σi the matrix

{[σi]} =



0 · · · 0

[[σi]]
...

. . .

0 0
0 · · · 0
...

. . . ([σi])
0 0


By doing so, we obtain the correspondence

{[σ1]} . . . {[σk]} =



0 · · · 0

[[σ1]] . . . [[σk]]
...

. . .

0 0
0 · · · 0
...

. . . ([σ1]) . . . ([σk])
0 0


In other words, the semantic compositions belong-
ing to two CMSMs can be executed “in parallel.”
Mark that by providing non-zero entries for the up-
per right and lower left matrix part, information
exchange between the two models can be easily
realized.

7 Related Work

We are not the first to suggest an extension of
classical VSMs to matrices. Distributional mod-
els based on matrices or even higher-dimensional
arrays have been proposed in information retrieval
(Gao et al., 2004; Antonellis and Gallopoulos,
2006). However, to the best of our knowledge, the
approach of realizing compositionality via matrix
multiplication seems to be entirely original.

Among the early attempts to provide more com-
pelling combinatory functions to capture word or-
der information and the non-commutativity of lin-
guistic compositional operation in VSMs is the
work of Kintsch (2001) who is using a more so-
phisticated addition function to model predicate-
argument structures in VSMs.

Mitchell and Lapata (2008) formulate seman-
tic composition as a function m = f (w1,w2,R,K)
where R is a relation between w1 and w2 and K
is additional knowledge. They evaluate the model

with a number of addition and multiplication op-
erations for vector combination on a sentence sim-
ilarity task proposed by Kintsch (2001). Widdows
(2008) proposes a number of more advanced vec-
tor operations well-known from quantum mechan-
ics, such as tensor product and convolution, to
model composition in vector spaces. He shows
the ability of VSMs to reflect the relational and
phrasal meanings on a simplified analogy task.
Giesbrecht (2009) evaluates four vector compo-
sition operations (+, �, tensor product, convolu-
tion) on the task of identifying multi-word units.
The evaluation results of the three studies are not
conclusive in terms of which vector operation per-
forms best; the different outcomes might be at-
tributed to the underlying word space models; e.g.,
the models of Widdows (2008) and Giesbrecht
(2009) feature dimensionality reduction while that
of Mitchell and Lapata (2008) does not. In the
light of these findings, our CMSMs provide the
benefit of just one composition operation that is
able to mimic all the others as well as combina-
tions thereof.

8 Conclusion and Future Work

We have introduced a generic model for compo-
sitionality in language where matrices are associ-
ated with tokens and the matrix representation of a
token sequence is obtained by iterated matrix mul-
tiplication. We have given algebraic, neurological,
and psychological plausibility indications in favor
of this choice. We have shown that the proposed
model is expressive enough to cover and combine
a variety of distributional and symbolic aspects of
natural language. This nourishes the hope that ma-
trix models can serve as a kind of lingua franca for
compositional models.

This having said, some crucial questions remain
before CMSMs can be applied in practice:
How to acquire CMSMs for large token sets and
specific purposes? We have shown the value
and expressivity of CMSMs by providing care-
fully hand-crafted encodings. In practical cases,
however, the number of token-to-matrix assign-
ments will be too large for this manual approach.
Therefore, methods to (semi-)automatically ac-
quire those assignments from available data are re-
quired. To this end, machine learning techniques
need to be investigated with respect to their ap-
plicability to this task. Presumably, hybrid ap-
proaches have to be considered, where parts of
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the matrix representation are learned whereas oth-
ers are stipulated in advance guided by external
sources (such as lexical information).

In this setting, data sparsity may be overcome
through tensor methods: given a set T of tokens
together with the matrix assignment [[]] : T →
Rn×n, this datastructure can be conceived as a 3-
dimensional array (also known as tensor) of size
n×n×|T |wherein the single token-matrices can be
found as slices. Then tensor decomposition tech-
niques can be applied in order to find a compact
representation, reduce noise, and cluster together
similar tokens (Tucker, 1966; Rendle et al., 2009).
First evaluation results employing this approach to
the task of free associations are reported by Gies-
brecht (2010).
How does linearity limit the applicability of
CMSMs? In Section 3, we justified our model by
taking the perspective of tokens being functions
which realize mental state transitions. Yet, us-
ing matrices to represent those functions restricts
them to linear mappings. Although this restric-
tion brings about benefits in terms of computabil-
ity and theoretical accessibility, the limitations in-
troduced by this assumption need to be investi-
gated. Clearly, certain linguistic effects (like a-
posteriori disambiguation) cannot be modeled via
linear mappings. Instead, we might need some
in-between application of simple nonlinear func-
tions in the spirit of quantum-collapsing of a "su-
perposed" mental state (such as the winner takes
it all, survival of the top-k vector entries, and so
forth). Thus, another avenue of further research is
to generalize from the linear approach.
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