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Abstract

Combinatory Categorial Grammar (CCG)
is generally construed as a fully lexicalized
formalism, where all grammars use one and
the same universal set of rules, and cross-
linguistic variation is isolated in the lexicon.
In this paper, we show that the weak gener-
ative capacity of this ‘pure’ form of CCG is
strictly smaller than that of CCG with gram-
mar-specific rules, and of other mildly con-
text-sensitive grammar formalisms, includ-
ing Tree Adjoining Grammar (TAG). Our
result also carries over to a multi-modal
extension of CCG.

1 Introduction

Combinatory Categorial Grammar (CCG) (Steed-
man, 2001; Steedman and Baldridge, 2010) is an
expressive grammar formalism with formal roots
in combinatory logic (Curry et al., 1958) and links
to the type-logical tradition of categorial grammar
(Moortgat, 1997). It has been successfully used for
a wide range of practical tasks, such as data-driven
parsing (Hockenmaier and Steedman, 2002; Clark
and Curran, 2007), wide-coverage semantic con-
struction (Bos et al., 2004), and the modelling of
syntactic priming (Reitter et al., 2006).

It is well-known that CCG can generate lan-
guages that are not context-free (which is neces-
sary to capture natural languages), but can still
be parsed in polynomial time. Specifically, Vijay-
Shanker and Weir (1994) identified a version of
CCG that is weakly equivalent to Tree Adjoining
Grammar (TAG) (Joshi and Schabes, 1997) and
other mildly context-sensitive grammar formalisms,
and can generate non-context-free languages such
as anbncn. The generative capacity of CCG is com-
monly attributed to its flexible composition rules,
which allow it to model more complex word orders
that context-free grammar can.

The discussion of the (weak and strong) gener-
ative capacity of CCG and TAG has recently been
revived (Hockenmaier and Young, 2008; Koller and
Kuhlmann, 2009). In particular, Koller and Kuhl-
mann (2009) have shown that CCGs that are pure
(i.e., they can only use generalized composition
rules, and there is no way to restrict the instances
of these rules that may be used) and first-order
(i.e., all argument categories are atomic) can not
generate anbncn. This shows that the generative
capacity of at least first-order CCG crucially relies
on its ability to restrict rule instantiations, and is at
odds with the general conception of CCG as a fully
lexicalized formalism, in which all grammars use
one and the same set of universal rules. A question
then is whether the result carries over to pure CCG
with higher-order categories.

In this paper, we answer this question to the pos-
itive: We show that the weak generative capacity of
general pure CCG is still strictly smaller than that
of the formalism considered by Vijay-Shanker and
Weir (1994); composition rules can only achieve
their full expressive potential if their use can be
restricted. Our technical result is that every lan-
guage L that can be generated by a pure CCG has
a context-free sublanguage L0 � L such that every
string in L is a permutation of a string in L0, and
vice versa. This means that anbncn, for instance,
cannot be generated by pure CCG, as it does not
have any (non-trivial) permutation-equivalent sub-
languages. Conversely, we show that there are still
languages that can be generated by pure CCG but
not by context-free grammar.

We then show that our permutation language
lemma also holds for pure multi-modal CCG as
defined by Baldridge and Kruijff (2003), in which
the use of rules can be controlled through the lex-
icon entries by assigning types to slashes. Since
this extension was intended to do away with
the need for grammar-specific rule restrictions, it
comes as quite a surprise that pure multi-modal
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CCG in the style of Baldridge and Kruijff (2003) is
still less expressive than the CCG formalism used
by Vijay-Shanker and Weir (1994). This means that
word order in CCG cannot be fully lexicalized with
the current formal tools; some ordering constraints
must be specified via language-specific combina-
tion rules and not in lexicon entries. On the other
hand, as pure multi-modal CCG has been success-
fully applied to model the syntax of a variety of
natural languages, another way to read our results
is as contributions to a discussion about the exact
expressiveness needed to model natural language.

The remainder of this paper is structured as fol-
lows. In Section 2, we introduce the formalism
of pure CCG that we consider in this paper, and
illustrate the relevance of rule restrictions. We then
study the generative capacity of pure CCG in Sec-
tion 3; this section also presents our main result. In
Section 4, we show that this result still holds for
multi-modal CCG. Section 5 concludes the paper
with a discussion of the relevance of our findings.

2 Combinatory Categorial Grammar

We start by providing formal definitions for cat-
egories, syntactic rules, and grammars, and then
discuss the relevance of rule restrictions for CCG.

2.1 Categories

Given a finite set A of atomic categories, the set of
categories over A is the smallest set C such that
A � C , and .x=y/; .xny/ 2 C whenever x; y 2 C .
A category x=y represents a function that seeks a
string with category y to the right (indicated by the
forward slash) and returns a new string with cat-
egory x; a category xny instead seeks its argument
to the left (indicated by the backward slash). In
the remainder of this paper, we use lowercase sans-
serif letters such as x; y; z as variables for categor-
ies, and the vertical bar j as a variable for slashes.
In order to save some parentheses, we understand
slashes as left-associative operators, and write a
category such as .x=y/nz as x=ynz.

The list of arguments of a category c is defined
recursively as follows: If c is atomic, then it has no
arguments. If c D xjy for some categories x and y,
then the arguments of c are the slashed category jy,
plus the arguments of x. We number the arguments
of a category from outermost to innermost. The
arity of a category is the number of its arguments.
The target of a category c is the atomic category
that remains when stripping c of its arguments.

x=y y ) x forward application >

y xny ) x backward application <

x=y y=z ) x=z forward harmonic composition >B
ynz xny ) xnz backward harmonic composition <B
x=y ynz ) xnz forward crossed composition >B�
y=z xny ) x=z backward crossed composition <B�

Figure 1: The core set of rules of CCG.

2.2 Rules
The syntactic rules of CCG are directed versions
of combinators in the sense of combinatory logic
(Curry et al., 1958). Figure 1 lists a core set of
commonly assumed rules, derived from functional
application and the B combinator, which models
functional composition. When talking about these
rules, we refer to the premise containing the argu-
ment jy as the primary premise, and to the other
premise as the secondary premise of the rule.

The rules in Figure 1 can be generalized into
composition rules of higher degrees. These are
defined as follows, where n � 0 and ˇ is a variable
for a sequence of n arguments.

x=y yˇ ) xˇ generalized forward composition >n

yˇ xny ) xˇ generalized backward composition <n

We call the value n the degree of the composition
rule. Note that the rules in Figure 1 are the special
cases for n D 0 and n D 1.

Apart from the core rules given in Figure 1, some
versions of CCG also use rules derived from the S
and T combinators of combinatory logic, called
substitution and type-raising, the latter restricted
to the lexicon. However, since our main point of
reference in this paper, the CCG formalism defined
by Vijay-Shanker and Weir (1994), does not use
such rules, we will not consider them here, either.

2.3 Grammars and Derivations
With the set of rules in place, we can define a
pure combinatory categorial grammar (PCCG) as
a construct G D .A;˙;L; s/, where A is an alpha-
bet of atomic categories, s 2 A is a distinguished
atomic category called the final category, ˙ is a
finite set of terminal symbols, and L is a finite rela-
tion between symbols in ˙ and categories over A,
called the lexicon. The elements of the lexicon L
are called lexicon entries, and we represent them
using the notation � ` x, where � 2 ˙ and x
is a category over A. A category that occurs in a
lexicon entry is called a lexical category.
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A derivation in a grammar G can be represen-
ted as a derivation tree as follows. Given a string
w 2 ˙�, we choose a lexicon entry for each oc-
currence of a symbol in w, line up the respective
lexical categories from left to right, and apply ad-
missible rules to adjacent pairs of categories. After
the application of a rule, only the conclusion is
available for future applications. We iterate this
process until we end up with a single category. The
string w is called the yield of the resulting deriva-
tion tree. A derivation tree is complete, if the last
category is the final category of G. The language
generated by G, denoted by L.G/, is formed by
the yields of all complete derivation trees.

2.4 Degree Restrictions
Work on CCG generally assumes an upper bound
on the degree of composition rules that can be used
in derivations. We also employ this restriction, and
only consider grammars with compositions of some
bounded (but arbitrary) degree n � 0.1 CCG with
unbounded-degree compositions is more express-
ive than bounded-degree CCG or TAG (Weir and
Joshi, 1988).

Bounded-degree grammars have a number of
useful properties, one of which we mention here.
The following lemma rephrases Lemma 3.1 in
Vijay-Shanker and Weir (1994).

Lemma 1 For every grammar G, every argument
in a derivation ofG is the argument of some lexical
category of G.

As a consequence, there is only a finite number
of categories that can occur as arguments in some
derivation. In the presence of a bound on the degree
of composition rules, this implies the following:

Lemma 2 For every grammar G, there is a finite
number of categories that can occur as secondary
premises in derivations of G.

Proof. The arity of a secondary premise c can be
written as mC n, where m is the arity of the first
argument of the corresponding primary premise,
and n is the degree of the rule applied. Since each
argument is an argument of some lexical category
of G (Lemma 1), and since n is assumed to be
bounded, both m and n are bounded. Hence, there
is a bound on the number of choices for c. �

Note that the number of categories that can occur
as primary premises is generally unbounded even
in a grammar with bounded degree.

1For practical grammars, n � 4.

2.5 Rule Restrictions

The rule set of pure CCG is universal: the differ-
ence between the grammars of different languages
should be restricted to different choices of categor-
ies in the lexicon. This is what makes pure CCG
a lexicalized grammar formalism (Steedman and
Baldridge, 2010). However, most practical CCG
grammars rely on the possibility to exclude or re-
strict certain rules. For example, Steedman (2001)
bans the rule of forward crossed composition from
his grammar of English, and stipulates that the rule
of backward crossed composition may be applied
only if both of its premises share the common tar-
get category s, representing sentences. Exclusions
and restrictions of rules are also assumed in much
of the language-theoretic work on CCG. In partic-
ular, they are essential for the formalism used in
the aforementioned equivalence proof for CCG and
TAG (Vijay-Shanker and Weir, 1994).

To illustrate the formal relevance of rule restric-
tions, suppose that we wanted to write a pure CCG
that generates the language

L3 D f a
nbncn j n � 1 g ,

which is not context-free. An attempt could be

G1 D .f s; a; b; c g; f a; b; c g; L; s/ ,

where the lexicon L is given as follows:

a ` a , b ` s=cna , b ` b=cna ,
b ` s=c=bna , b ` s=c=bna , c ` c .

From a few sample derivations like the one given
in Figure 2a, we can convince ourselves that G1

generates all strings of the form anbncn, for any
n � 1. However, a closer inspection reveals that it
also generates other, unwanted strings—in partic-
ular, strings of the form .ab/ncn, as witnessed by
the derivation given in Figure 2b.

Now suppose that we would have a way to only
allow those instances of generalized composition in
which the secondary premise has the form b=c=bna
or b=cna. Then the compositions

b=c=b b=c
b=c=c >1 and s=c=b b=c

s=c=c >1

would be disallowed, and it is not hard to see
that G1 would generate exactly anbncn.

As we will show in this paper, our attempt to
capture L3 with a pure CCG grammar failed not
only because we could not think of one: L3 cannot
be generated by any pure CCG.
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a...................
a

a...........
a

a...
a

b...
s=c=bna

b.......
b=c=bna

b...............
b=cna

c.......................
c

c...........................
c

c...............................
c

<0

s=c=b
>3

s=c=c=bna
<0

s=c=c=b
>2

s=c=c=cna
<0

s=c=c=c
>0

s=c=c
>0

s=c
>0

s

(a) Derivation of the string aaabbbccc.

a...........
a

b...........
s=c=bna

a...
a

b...
b=c=bna

a...
a

b...
b=cna

c...........
c

c...................
c

c.......................
c

<0

s=c=b

<0

b=c=b
<0

b=c
>1

b=c=c
>0

b=c
>1

s=c=c
>0

s=c
>0

s

(b) Derivation of the string abababccc.

Figure 2: Two derivations of the grammar G1.

3 The Generative Capacity of Pure CCG

We will now develop a formal argument showing
that rule restrictions increase the weak generative
capacity of CCG. We will first prove that pure CCG
is still more expressive than context-free grammar.
We will then spend the rest of this section working
towards the result that pure CCG is strictly less
expressive than CCG with rule restrictions. Our
main technical result will be the following:

Theorem 1 Every language that can be generated
by a pure CCG has a Parikh-equivalent context-free
sublanguage.

Here, two languages L and L0 are called Parikh-
equivalent if every string in L is the permutation
of a string in L0 and vice versa.

3.1 CFG ¨ PCCG

Proposition 1 The class of languages generated
by pure CCG properly includes the class of context-
free languages.

Proof. To see the inclusion, it suffices to note that
pure CCG when restricted to application rules is
the same as AB-grammar, the classical categorial
formalism investigated by Ajdukiewicz and Bar-
Hillel (Bar-Hillel et al., 1964). This formalism is
weakly equivalent to context-free grammar.

To see that the inclusion is proper, we can go
back to the grammarG1 that we gave in Section 2.5.
We have already discussed that the language L3 is
included inL.G1/. We can also convince ourselves
that all strings generated by the grammar G1 have
an equal number of as, bs and cs. Consider now
the regular language R D a�b�c�. From our ob-
servations, it follows that L.G1/\R D L3. Since
context-free languages are closed under intersec-
tion with regular languages, we find that L.G1/

can be context-free only if L3 is. Since L3 is not
context-free, we therefore conclude that L.G1/ is
not context-free, either. �

Two things are worth noting. First, our result shows
that the ability of CCG to generate non-context-free
languages does not hinge on the availability of sub-
stitution and type-raising rules: The derivations
of G1 only use generalized compositions. Neither
does it require the use of functional argument cat-
egories: The grammarG1 is first-order in the sense
of Koller and Kuhlmann (2009).

Second, it is important to note that if the com-
position degree n is restricted to 0 or 1, pure CCG
actually collapses to context-free expressive power.
This is clear for n D 0 because of the equivalence
to AB grammar. For n D 1, observe that the arity
of the result of a composition is at most as high as
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that of each premise. This means that the arity of
any derived category is bounded by the maximal
arity of lexical categories in the grammar, which
together with Lemma 1 implies that there is only
a finite set of derivable categories. The set of all
valid derivations can then be simulated by a con-
text-free grammar. In the presence of rules with
n � 2, the arities of derived categories can grow
unboundedly.

3.2 Active and Inactive Arguments
In the remainder of this section, we will develop
the proof of Theorem 1, and use it to show that the
generative capacity of PCCG is strictly smaller than
that of CCG with rule restrictions. For the proof,
we adopt a certain way to view the information
flow in CCG derivations. Consider the following
instance of forward harmonic composition:

a=b b=c ) a=c
This rule should be understood as obtaining its con-
clusion a=c from the primary premise a=b by the
removal of the argument =b and the subsequent
transfer of the argument =c from the secondary
premise. With this picture in mind, we will view
the two occurrences of =c in the secondary premise
and in the conclusion as two occurrences of one
and the same argument. Under this perspective,
in a given derivation, an argument has a lifespan
that starts in a lexical category and ends in one
of two ways: either in the primary or in the sec-
ondary premise of a composition rule. If it ends
in a primary premise, it is because it is matched
against a subcategory of the corresponding second-
ary premise; this is the case for the argument =b
in the example above. We will refer to such argu-
ments as active. If an argument ends its life in a
secondary premise, it is because it is consumed as
part of a higher-order argument. This is the case
for the argument =c in the secondary premise of
the following rule instance:

a=.b=c/ b=c=d ) a=d
(Recall that we assume that slashes are left-associ-
ative.) We will refer to such arguments as inactive.
Note that the status of an argument as either active
or inactive is not determined by the grammar, but
depends on a concrete derivation.

The following lemma states an elementary prop-
erty in connection with active and inactive argu-
ments, which we will refer to as segmentation:
Lemma 3 Every category that occurs in a CCG
derivation has the general form a˛ˇ, where a is an

atomic category, ˛ is a sequence of inactive argu-
ments, and ˇ is a sequence of active arguments.

Proof. The proof is by induction on the depth of a
node in the derivation. The property holds for the
root (which is labeled with the final category), and
is transferred from conclusions to premises. �

3.3 Transformation

The fundamental reason for why the example gram-
mar G1 from Section 2.5 overgenerates is that in
the absence of rule restrictions, we have no means
to control the point in a derivation at which a cat-
egory combines with its arguments. Consider the
examples in Figure 2: It is because we cannot en-
sure that the bs finish combining with the other bs
before combining with the cs that the undesirable
word order in Figure 2b has a derivation. To put
it as a slogan: Permuting the words allows us to
saturate arguments prematurely.

In this section, we show that this property applies
to all pure CCGs. More specifically, we show that,
in a derivation of a pure CCG, almost all active
arguments of a category can be saturated before
that category is used as a secondary premise; at
most one active argument must be transferred to
the conclusion of that premise. Conversely, any
derivation that still contains a category with at least
two active arguments can be transformed into a
new derivation that brings us closer to the special
property just characterized.

We formalize this transformation by means of a
system of rewriting rules in the sense of Baader and
Nipkow (1998). The rules are given in Figure 3. To
see how they work, let us consider the first rule, R1;
the other ones are symmetric. This rules states that,
whenever we see a derivation in which a category
of the form x=y (here marked as A) is combined
with a category of the form yˇ=z (marked as B),
and the result of this combination is combined with
a category of the form z (C), then the resulting
category can also be obtained by ‘rotating’ the de-
rivation to first saturate =z by combining B with C,
and only then do the combination with A. When ap-
plying these rotations exhaustively, we end up with
a derivation in which almost all active arguments of
a category are saturated before that category is used
as a secondary premise. Applying the transform-
ation to the derivation in Figure 2a, for instance,
yields the derivation in Figure 2b.

We need the following result for some of the
lemmas we prove below. We call a node in a deriv-
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A x=y B yˇ=z
xˇ=z C z

xˇ

R1
H) x=y

yˇ=z z
yˇ

xˇ

B yˇ=z A xny
xˇ=z C z

xˇ

R2
H)

yˇ=z z
yˇ xny

xˇ

C z

A x=y B yˇnz
xˇnz

xˇ

R3
H) x=y

z yˇnz
yˇ

xˇ

C z

B yˇnz A xny
xˇnz

xˇ

R4
H)

z yˇnz
yˇ xny

xˇ

Figure 3: Rewriting rules used in the transformation. Here,  represents a (possibly empty) sequence of
arguments, and ˇ represents a sequence of arguments in which the first (outermost) argument is active.

ation critical if its corresponding category contains
more than one active argument and it is the second-
ary premise of a rule. We say that u is a highest
critical node if there is no other critical node whose
distance to the root is shorter.

Lemma 4 If u is a highest critical node, then we
can apply one of the transformation rules to the
grandparent of u.

Proof. Suppose that the category at u has the form
yˇ=z, where =z is an active argument, and the first
argument in ˇ is active as well. (The other possible
case, in which the relevant occurrence has the form
yˇnz, can be treated symmetrically.) Since u is a
secondary premise, it is involved in an inference of
one of the following two forms:

x=y yˇ=z
xˇ=z

yˇ=z xny
xˇ=z

Since u is a highest critical node, the conclusion
of this inference is not a critical node itself; in
particular, it is not a secondary premise. Therefore,
the above inferences can be extended as follows:

x=y yˇ=z
xˇ=z z

xˇ

yˇ=z xny
xˇ=z z

xˇ

These partial derivations match the left-hand side of
the rewriting rules R1 and R2, respectively. Hence,
we can apply a rewriting rule to the derivation. �

We now show that the transformation is well-
defined, in the sense that it terminates and trans-
forms derivations of a grammar G into new deriva-
tions of G.

Lemma 5 The rewriting of a derivation tree ends
after a finite number of steps.

Proof. We assign natural numbers to the nodes
of a derivation tree as follows. Each leaf node
is assigned the number 0. For an inner node u,

which corresponds to the conclusion of a composi-
tion rule, let m; n be the numbers assigned to the
nodes corresponding to the primary and second-
ary premise, respectively. Then u is assigned the
number 1C 2mCn. Suppose now that we have as-
sociated premise A with the number x, premise B
with the number y, and premise C with the num-
ber z. It is then easy to verify that the conclusion
of the partial derivation on the left-hand side of
each rule has the value 3 C 4x C 2y C z, while
the conclusion of the right-hand side has the value
2C 2x C 2y C z. Thus, each step decreases the
value of a derivation tree under our assignment by
the amount 1C 2x. Since this value is positive for
all choices of x, the rewriting ends after a finite
number of steps. �

To convince ourselves that our transformation does
not create ill-formed derivations, we need to show
that none of the rewriting rules necessitates the use
of composition operations whose degree is higher
than the degree of the operations used in the ori-
ginal derivation.

Lemma 6 Applying the rewriting rules from the
top down does not increase the degree of the com-
position operations.

Proof. The first composition rule used in the left-
hand side of each rewriting rule has degree jˇj C 1,
the second rule has degree j j; the first rule used in
the right-hand side has degree j j, the second rule
has degree jˇjC j j. To prove the claim, it suffices
to show that j j � 1. This is a consequence of the
following two observations.

1. In the category xˇ , the arguments in  occur
on top of the arguments in ˇ, the first of which is
active. Using the segmentation property stated in
Lemma 3, we can therefore infer that  does not
contain any inactive arguments.
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2. Because we apply rules top-down, premise B
is a highest critical node in the derivation (by
Lemma 4). This means that the category at
premise C contains at most one active argument;
otherwise, premise C would be a critical node
closer to the root than premise B. �

We conclude that, if we rewrite a derivation d of G
top-down until exhaustion, then we obtain a new
valid derivation d 0. We call all derivations d 0 that
we can build in this way transformed. It is easy to
see that a derivation is transformed if and only if it
contains no critical nodes.

3.4 Properties of Transformed Derivations
The special property established by our transform-
ation has consequences for the generative capacity
of pure CCG. In particular, we will now show that
the set of all transformed derivations of a given
grammar yields a context-free language. The cru-
cial lemma is the following:

Lemma 7 For every grammar G, there is some
k � 0 such that no category in a transformed
derivation of G has arity greater than k.

Proof. The number of inactive arguments in the
primary premise of a rule does not exceed the num-
ber of inactive arguments in the conclusion. In
a transformed derivation, a symmetric property
holds for active arguments: Since each second-
ary premise contains at most one active argument,
the number of active arguments in the conclusion
of a rule is not greater than the number of act-
ive arguments in its primary premise. Taken to-
gether, this implies that the arity of a category that
occurs in a transformed derivation is bounded by
the sum of the maximal arity of a lexical category
(which bounds the number of active arguments),
and the maximal arity of a secondary premise
(which bounds the number of inactive arguments).
Both of these values are bounded in G. �

Lemma 8 The yields corresponding to the set of
all transformed derivations of a pure CCG form a
context-free language.

Proof. Let G be a pure CCG. We construct a con-
text-free grammar GT that generates the yields of
the set of all transformed derivations of G.

As the set of terminals of GT , we use the set of
terminals ofG. To form the set of nonterminals, we
take all categories that can occur in a transformed
derivation of G, and mark each argument as either
‘active’ (C) or ‘inactive’ (�), in all possible ways

that respect the segmentation property stated in
Lemma 3. Note that, because of Lemma 7 and
Lemma 1, the set of nonterminals is finite. As the
start symbol, we use s, the final category of G.

The set of productions of GT is constructed as
follows. For each lexicon entry � ` c of G, we in-
clude all productions of the form x ! � , where x
is some marked version of c. These productions
represent all valid guesses about the activity of the
arguments of c during a derivation of G. The re-
maining productions encode all valid instantiations
of composition rules, keeping track of active and
inactive arguments to prevent derivations with crit-
ical nodes. More specifically, they have the form

xˇ ! x=yC yˇ or xˇ ! yˇ xnyC ,

where the arguments in the y-part of the secondary
premise are all marked as inactive, the sequence ˇ
contains at most one argument marked as active,
and the annotations of the left-hand side nonter-
minal are copied over from the corresponding an-
notations on the right-hand side.

The correctness of the construction ofGT can be
proved by induction on the length of a transformed
derivation of G on the one hand, and the length of
a derivation of GT on the other hand. �

3.5 PCCG ¨ CCG

We are now ready to prove our main result, repeated
here for convenience.

Theorem 1 Every language that can be generated
by a pure CCG grammar has a Parikh-equivalent
context-free sublanguage.

Proof. Let G be a pure CCG, and let LT be the
set of yields of the transformed derivations of G.
Inspecting the rewriting rules, it is clear that every
string of L.G/ is the permutation of a string in LT :
the transformation only rearranges the yields. By
Lemma 8, we also know that LT is context-free.
Since every transformed derivation is a valid deriv-
ation of G, we have LT � L.G/. �

As an immediate consequence, we find:

Proposition 2 The class of languages generated
by pure CCG cannot generate all languages that
can be generated by CCG with rule restrictions.

Proof. The CCG formalism considered by Vijay-
Shanker and Weir (1994) can generate the non-con-
text-free language L3. However, the only Parikh-
equivalent sublanguage of that language isL3 itself.
From Theorem 1, we therefore conclude that L3

cannot be generated by pure CCG. �

540



In the light of the equivalence result established
by Vijay-Shanker and Weir (1994), this means that
pure CCG cannot generate all languages that can
be generated by TAG.

4 Multi-Modal CCG

We now extend Theorem 1 to multi-modal CCG.
We will see that at least for a popular version
of multi-modal CCG, the B&K-CCG formalism
presented by Baldridge and Kruijff (2003), the
proof can be adapted quite straightforwardly. This
means that even B&K-CCG becomes less express-
ive when rule restrictions are disallowed.

4.1 Multi-Modal CCG

The term ‘multi-modal CCG’ (MM-CCG) refers to
a family of extensions to CCG which attempt to
bring some of the expressive power of Categorial
Type Logic (Moortgat, 1997) into CCG. Slashes in
MM-CCG have slash types, and rules can be restric-
ted to only apply to arguments that have slashes
of the correct type. The idea behind this extension
is that many constraints that in ordinary CCG can
only be expressed in terms of rule restrictions can
now be specified in the lexicon entries by giving
the slashes the appropriate types.

The most widely-known version of multi-modal
CCG is the formalism defined by Baldridge and
Kruijff (2003) and used by Steedman and Baldridge
(2010); we refer to it as B&K-CCG. This formalism
uses an inventory of four slash types, f?;�;˘; � g,
arranged in a simple type hierarchy: ? is the most
general type, � the most specific, and � and ˘ are
in between. Every slash in a B&K-CCG lexicon is
annotated with one of these slash types.

The combinatory rules in B&K-CCG, given in
Figure 4, are defined to be sensitive to the slash
types. In particular, slashes with the types ˘ and �
can only be eliminated by harmonic and crossed
compositions, respectively.2 Thus, a grammar
writer can constrain the application of harmonic
and crossed composition rules to certain categor-
ies by assigning appropriate types to the slashes
of this category in the lexicon. Application rules
apply to slashes of any type. As before, we call
an MM-CCG grammar pure if it only uses applic-
ation and generalized compositions, and does not
provide means to restrict rule applications.

2Our definitions of generalized harmonic and crossed com-
position are the same as the ones used by Hockenmaier and
Young (2008), but see the discussion in Section 4.3.

x=?y y ) x forward application
y xn?y ) x backward application

x=˘y y=˘zˇ ) x=˘zˇ forward harmonic composition
x=�y yn�zˇ ) xn�zˇ forward crossed composition
yn˘zˇ xn˘y ) xn˘zˇ backward harmonic composition
y=�zˇ xn�y ) x=�zˇ backward crossed composition

Figure 4: Rules in B&K-CCG.

4.2 Rule Restrictions in B&K-CCG
We will now see what happens to the proof of The-
orem 1 in the context of pure B&K-CCG. There
is only one point in the entire proof that could be
damaged by the introduction of slash types, and
that is the result that if a transformation rule from
Figure 3 is applied to a correct derivation, then the
result is also grammatical. For this, it must not
only be the case that the degree on the composition
operations is preserved (Lemma 6), but also that
the transformed derivation remains consistent with
the slash types. Slash types make the derivation
process sensitive to word order by restricting the
use of compositions to categories with the appropri-
ate type, and the transformation rules permute the
order of the words in the string. There is a chance
therefore that a transformed derivation might not
be grammatical in B&K-CCG.

We now show that this does not actually happen,
for rule R3; the other three rules are analogous.
Using s1; s2; s3 as variables for the relevant slash
types, rule R3 appears in B&K-CCG as follows:

z
x=s1

y yjs2
wˇns3

z
xjs2

wˇns3
z

xjs2
wˇ

R3
H) x=s1

y
z yjs2

wˇns3
z

yjs2
wˇ

xjs2
wˇ

Because the original derivation is correct, we know
that, if the slash of w is forward, then s1 and s2 are
subtypes of ˘; if the slash is backward, they are
subtypes of �. A similar condition holds for s3 and
the first slash in  ; if  is empty, then s3 can be
anything because the second rule is an application.

After the transformation, the argument =s1
y is

used to compose with yjs2
wˇ . The direction of

the slash in front of the w is the same as before,
so the (harmonic or crossed) composition is still
compatible with the slash types s1 and s2. An
analogous argument shows that the correctness of
combining ns3

z with  carries over from the left to
the right-hand side. Thus the transformation maps
grammatical derivations into grammatical deriva-
tions. The rest of the proof in Section 3 continues
to work literally, so we have the following result:
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Theorem 2 Every language that can be generated
by a pure B&K-CCG grammar contains a Parikh-
equivalent context-free sublanguage.

This means that pure B&K-CCG is just as unable
to generate L3 as pure CCG is. In other words,
the weak generative capacity of CCG with rule
restrictions, and in particular that of the formalism
considered by Vijay-Shanker and Weir (1994), is
strictly greater than the generative capacity of pure
B&K-CCG—although we conjecture (but cannot
prove) that pure B&K-CCG is still more expressive
than pure non-modal CCG.

4.3 Towards More Expressive MM-CCGs

To put the result of Theorem 2 into perspective, we
will now briefly consider ways in which B&K-CCG
might be modified in order to obtain a pure multi-
modal CCG that is weakly equivalent to CCG in
the style of Vijay-Shanker and Weir (1994). Such
a modification would have to break the proof in
Section 4.2, which is harder than it may seem at
first glance. For instance, simply assuming a more
complex type system will not do it, because the
arguments ns3

z and =s1
y are eliminated using the

same rules in the original and the transformed deriv-
ations, so if the derivation step was valid before, it
will still be valid after the transformation. Instead,
we believe that it is necessary to make the composi-
tion rules sensitive to the categories inside ˇ and 
instead of only the arguments ns3

z and =s1
y, and

we can see two ways how to do this.
First, one could imagine a version of multi-

modal CCG with unary modalities that can be used
to mark certain category occurrences. In such an
MM-CCG, the composition rules for a certain slash
type could be made sensitive to the presence or
absence of unary modalities in ˇ. Say for instance
that the slash type s1 in the modalized version of
R3 in Section 4.2 would require that no category in
the secondary argument is marked with the unary
modality ‘�’, but ˇ contains a category marked
with ‘�’. Then the transformed derivation would
be ungrammatical.

A second approach concerns the precise defin-
ition of the generalized composition rules, about
which there is a surprising degree of disagreement.
We have followed Hockenmaier and Young (2008)
in classifying instances of generalized forward
composition as harmonic if the innermost slash of
the secondary argument is forward and crossed if
it is backward. However, generalized forward com-

position is sometimes only accepted as harmonic
if all slashes of the secondary argument are for-
ward (see e.g. Baldridge (2002) (40, 41), Steedman
(2001) (19)). At the same time, based on the prin-
ciple that CCG rules should be derived from proofs
of Categorial Type Logic as Baldridge (2002) does,
it can be argued that generalized composition rules
of the form x=y y=znw ) x=znw, which we
have considered as harmonic, should actually be
classified as crossed, due to the presence of a slash
of opposite directionality in front of the w. This
definition would break our proof. Thus our res-
ult might motivate further research on the ‘correct’
definition of generalized composition rules, which
might then strengthen the generative capacity of
pure MM-CCG.

5 Conclusion

In this paper, we have shown that the weak generat-
ive capacity of pure CCG and even pure B&K-CCG
crucially depends on the ability to restrict the ap-
plication of individual rules. This means that these
formalisms cannot be fully lexicalized, in the sense
that certain languages can only be described by
selecting language-specific rules.

Our result generalizes Koller and Kuhlmann’s
(2009) result for pure first-order CCG. Our proof
is not as different as it looks at first glance, as
their construction of mapping a CCG derivation to
a valency tree and back to a derivation provides a
different transformation on derivation trees. Our
transformation is also technically related to the nor-
mal form construction for CCG parsing presented
by Eisner (1996).

Of course, at the end of the day, the issue that is
more relevant to computational linguistics than a
formalism’s ability to generate artificial languages
such as L3 is how useful it is for modeling natural
languages. CCG, and multi-modal CCG in partic-
ular, has a very good track record for this. In this
sense, our formal result can also be understood as
a contribution to a discussion about the expressive
power that is needed to model natural languages.
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