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Abstract

While OOV is always a problem for most
languages in ASR, in the Chinese case the
problem can be avoided by utilizing char-
acter n-grams and moderate performances
can be obtained. However, character n-
gram has its own limitation and proper
addition of new words can increase the
ASR performance. Here we propose a dis-
criminative lexicon adaptation approach for
improved character accuracy, which not
only adds new words but also deletes some
words from the current lexicon. Different
from other lexicon adaptation approaches,
we consider the acoustic features and make
our lexicon adaptation criterion consistent
with that in the decoding process. The pro-
posed approach not only improves the ASR
character accuracy but also significantly
enhances the performance of a character-
based spoken document retrieval system.

1 Introduction

Generally, an automatic speech recognition (ASR)
system requires a lexicon. The lexicon defines the
possible set of output words and also the building
units in the language model (LM). Lexical words
offer local constraints to combine phonemes into
short chunks while the language model combines
phonemes into longer chunks by more global con-
straints. However, it’s almost impossible to include
all words into a lexicon both due to the technical
difficulty and also the fact that new words are cre-
ated continuously. The missed out words will never
be recognized, which is the well-known OOV prob-
lem. Using graphemes for OOV handling is pro-
posed in English (Bisani and Ney, 2005). Although
this sacrifices some of the lexical constraints and in-
troduces a further difficulty to combine graphemes
back into words, it is compensated by its ability for

5.8K characters 61.5K full lexicon
bigram 63.55% 73.8%
trigram 74.27% 79.28%

Table 1: Character recognition accuracy under dif-
ferent lexicons and the order of language model.

open vocabulary ASR. Morphs are another possi-
bility, which are longer than graphemes but shorter
than words, in other western languages (Hirsimäki
et al., 2005).

Chinese language, on the other hand, is quite
different from western languages. There are no
blanks between words and the definition for words
is vague. Since almost all characters in Chinese
have their own meanings and words are composed
of the characters, there is an obvious solution for
the OOV problem: simply using all characters as
the lexicon. In Table 1 we see the differences in
character recognition accuracy by using only 5.8K
characters and a full set of 61.5K lexicon. The train-
ing set and testing set are the same as those that
will be introduced in Section 4.1. It is clear that
characters alone can provide moderate recognition
accuracies while augmenting new words signifi-
cantly improves the performance. If the words’
semantic functionality can be abandoned, which
definitely can not be replaced by characters, we can
treat words as a means to enhance character recog-
nition accuracy. Such arguments stand at least for
Chinese ASR since they evaluate on character error
rate and do not add explicit blanks between words.
Here we formulate a lexicon adaptation problem
and try to discriminatively find out not only OOV
words beneficial for ASR but also those existing
words that can be deleted.

Unlike previous lexicon adaptation or construc-
tion approaches (Chien, 1997; Fung, 1998; Deligne
and Sagisaka, 2000; Saon and Padmanabhan, 2001;
Gao et al., 2002; Federico and Bertoldi, 2004), we
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consider the acoustic signals and also the whole
speech decoding structure. We propose to use
a simple approximation for the character poste-
rior probabilities (PPs), which combines acoustic
model and language model scores after decoding.
Based on the character PPs, we adapt the current
lexicon. The language model is then re-trained ac-
cording the new lexicon. Such procedure can be
iterated until convergence.

Characters, are not only the output units in Chi-
nese ASR but also have their roles in spoken docu-
ment retrieval (SDR). It has been shown that char-
acters are good indexing units. Generally, char-
acters can at least help OOV query handling; in
the subword-based confusion network (S-CN) pro-
posed by Pan et al. (2007), characters are even
better than words for in-vocabulary (IV) queries.
In addition to evaluating the proposed approach on
ASR performance, we investigate its helpfulness
when integrated with an S-CN framework.

2 Related Work

Previous works for lexicon adaptation were focused
on OOV rate reduction. Given an adaptation cor-
pus, the standard way is to first identify OOV words.
These OOV words are selected into the current lex-
icon based on the criterion of frequency or recency
(Federico and Bertoldi, 2004). The language model
is also re-estimated according to the new corpus
and new derived words.

For Chinese, it is more difficult to follow the
same approach since OOV words are not readily
identifiable. Several methods have been proposed
to extract OOV words from the new corpus based
on different statistics, which include associate norm
and context dependency (Chien, 1997), mutual in-
formation (Gao et al., 2002), morphological and
statistical rules (Chen and Ma, 2002), and strength
and spread measure (Fung, 1998). The used statis-
tics generally help find sequences of characters
that are consistent to the general concept of words.
However, if we focus on ASR performance, the
constraint of the extracted character strings to be
word-like is unnecessary.

Yang et al. (1998) proposed a way to select new
character strings based on average character per-
plexity reduction. The word-like constraint is not
required and they show a significant improvement
on character-based perplexity. Similar ideas were
found to use mutual probability as an effective mea-
sure to combine two existing lexicon words into a

new word (Saon and Padmanabhan, 2001). Though
proposed for English, this method is effective for
Chinese ASR (Chen et al., 2004). Gao et al. (2002)
combined an information gain-like metric and the
perplexity reduction criterion for lexicon word se-
lection. The application is on Chinese pinyin-to-
character conversion, which has very good correla-
tion with the underlying language model perplexity.

The above works actually are all focused on the
text level and only consider perplexity effect. How-
ever, as pointed by Rosenfeld (2000), lower per-
plexity does not always imply lower ASR error rate.
Here we try to face the lexicon adaptation problem
from another aspect and take the acoustic signals
involved in the decoding procedure into account.

3 Proposed Approach

3.1 Overall Picture
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Figure 1: The flow chart of the proposed approach.

We show the complete flow chart in Figure 1. At
the beginning we are given an adaptation spoken
corpus and manual transcriptions. Based on a base-
line lexicon (Lex0) and a language model (LM0)
we perform ASR on the adaptation corpus and con-
struct corresponding word lattices. We then build
character-based confusion networks (CCNs) (Fu
et al., 2006; Qian et al., 2008). On the CCNs we
perform the proposed algorithm to add and delete
words into/from the current lexicon. The LM train-
ing corpora joined with the adaptation corpus is
then segmented using Lex1 and the language model
is in turn re-trained, which gives LM1. This pro-
cedure can be iterated to give Lexi and LMi until
convergence.

3.2 Character Posterior Probability and
Character-based Confusion Network
(CCN)

Consider a word W as shown in Figure 2 with
characters {c1c2c3} corresponding to the edge e
starting at time τ and ending at time t in a word
lattice. During decoding the boundaries between c1
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Figure 2: An edge e of word W composed of char-
acters c1c2c3 starting at time τ and ending at time
t.

and c2, and c2 and c3 are recorded respectively as t1
and t2. The posterior probability (PP) of the edge e
given the acoustic features A, P (e|A), is (Wessel
et al., 2001):

P (e|A) =
α(τ) · P (xt

τ |W ) · PLM (W ) · β(t)
βstart

,

(1)
where α(τ) and β(t) denote the forward and back-
ward probability masses accumulated up to time τ
and t obtained by the standard forward-backward
algorithm, P (xt

τ |W ) is the acoustic likelihood
function, PLM (W ) the language model score, and
βstart the sum of all path scores in the lattice. Equa-
tion (1) can be extended to the PP of a character of
W , say c1 with edge e1:

P (e1|A) =
α(τ) · P (xt1

τ |c1) · PLM (c1) · β(t1)
βstart

.

(2)
Here we need two new probabilities, PLM (c1)
and β(t1). Since neither is easy to estimate, we
make some approximations. First, we assume
PLM (c1) ≈ PLM (W ). Of course this is not true,
the actual relation being PLM (c1) ≥ PLM (W ),
since the set of events having c1 given its his-
tory includes a set of events having W given the
same history. We used the above approximation
for easier implementation. Second, we assume
that after c1 there is only one path from t1 to
t: through c2 and c3. This is more reasonable
since we restrain the hypotheses space to be in-
side the word lattice, and pruned paths are sim-
ply neglected. With this approximation we have
β(t1) = P (xt

t1 |c2c3) · β(t). Substituting these
two approximate values for PLM (c1) and β(t1) in
Equation (2), the result turns out to be very sim-
ple: P (e1|A) ≈ P (e|A). With similar assump-
tions for the character edges e2 and e3, we have
P (e2|A) ≈ P (e3|A) ≈ P (e|A). Similar results
were obtained by Yao et al. (2008) from a different
point of view.

The result that P (ei|A) ≈ P (e|A) seems to
diverge from the intuition: approximating an

n-segment word by splitting the probability of
the entire edge over the segments – P (ei|A) ≈
n
√

P (e|A). The basic meaning of Equation (1) is
to calculate the ratio of the paths going through a
specific edge divided by the total paths while each
path is weighted properly. Of course the paths go-
ing through a sub-edge ei should be definitely more
than the paths through the corresponding full-edge
e. As a result, P (ei|A) should usually be greater
than P (e|A), as implied by the intuition. However,
the inter-connectivity between all sub-edges and
the proper weights of them are not easy to be han-
dled well. Here we constrain the inter-connectivity
of sub-edges to be only inside its own word edge
and also simplify the calculation of the weights
of paths. This offers a tractable solution and the
performance is quite acceptable.

After we obtain the PPs for each character arc
in the lattice, such as P (ei|A) as mentioned above,
we can perform the same clustering method pro-
posed by Mangu et al. (2000) to convert the word
lattice to a strict linear sequence of clusters, each
consisting of a set of alternatives of character hy-
potheses, or a character-based confusion network
(CCN) (Fu et al., 2006; Qian et al., 2008). In CCN
we collect the PPs for all character arc c with begin-
ning time τ and end time t as P ([c; τ, t]|A) (based
on the above mentioned approximation):

P ([c; τ, t]|A) =

∑
H = w1 . . . wN ∈ lattice :

∃i ∈ {1 . . . N} :
wi contains [c; τ, t]

P (H)P (A|H)

∑
path H′ ∈ lattice

P (H ′)P (A|H ′)
,

(3)
where H stands for a path in the word lattice. P (H)
is the language model score of H (after proper scal-
ing) and P (A|H) is the acoustic model score. CCN
was known to be very helpful in reducing character
error rate (CER) since it minimizes the expected
CER (Fu et al., 2006; Qian et al., 2008). Given
a CCN, we simply choose the characters with the
highest PP from each cluster as the recognition
results.

3.3 Lexicon Adaptation with Improved
Character Accuracy (LAICA)

In Figure 3 we show a piece of a character-based
confusion network (CCN) aligned with the corre-
sponding manual transcription characters. Such
alignment can be implemented by an efficient dy-
namic programming method. The CCN is com-
posed of several strict linear ordering clusters of
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Figure 3: A character-based confusion network
(CCN) and corresponding reference manual tran-
scription characters.

character alternatives. In the figure, Calign(m)

is a specific cluster aligned with the mth char-
acter in the reference, which contains characters
{s . . . o . . .} (The alphabets n, o . . . u are symbols
for specific Chinese characters) . The characters in
each cluster of CCN are well sorted according to
the PP, and in each cluster a special null character
ε with its PP being equal to 1 minus the summation
of PPs for all character hypotheses in that cluster.
The clusters with ε ranked first are neglected in the
alignment.

After the alignment, there are only three pos-
sibilities corresponding to each reference charac-
ter. (1) The reference character is ranked first in
the corresponding cluster (Rm−1 and the cluster
Calign(m−1)). In this case the reference charac-
ter can be correctly recognized. (2) The refer-
ence character is included in the corresponding
cluster but not ranked first. ([Rm . . . Rm+2] and
{Calign(m), . . . , Calign(m+2)}) (3) The reference
character is not included in the corresponding clus-
ter (Rm+3 and Calign(m+3)). For cases (2) and (3),
the reference character will be incorrectly recog-
nized.

The basic idea of the proposed lexicon adapta-
tion with an improved character accuracy (LAICA)
approach is to enhance the PPs of those incorrectly
recognized characters by adding new words and
deleting existing words in the lexicon. Here we
only focus on those characters of case (2) men-
tioned above. This is primarily motivated by the
minimum classification error (MCE) discriminative
training approach proposed by Juang et al. (1997),
where a sigmoid function was used to suppress the
impacts of those perfectly and very poorly recog-
nized training samples. In our approach, the case

(1) is the perfect case and case (3) is the very poor
one. Another motivation is that for characters in
case (1), since they are already correctly recognized
we do not try to enhance their PPs.

The procedure of LAICA then becomes simple.
Among the aligned reference characters and clus-
ters of CCN, case (1) and (3) are anchors. The
reference characters between two anchors then be-
come our focus segment and their PPs should be en-
hanced. By investigating Equation (3), to enhance
the PP of a specific character we can adjust the
language model (P (H)), and the acoustic model
(P (A|H)), or we can simply modify the lexicon
(the constraint under summation). We should add
new words to cover the characters of case (2) to
enlarge the numerator of Equation (3) and at the
same time delete some existing words to suppress
the denominator.

In Figure 3, reference characters
[RmRm+1Rm+2=opq] and the clusters
{Calign(m), . . . , Calign(m+2)} show an exam-
ple of our focus segment. For each such segment,
we at most add one new word and delete an
existing word. From the string [opq] we choose
the longest OOV part from it as a new word.
To select a word to be deleted, we choose the
longest in-vocabulary (IV) part from the top
ranked competitors of [opq], which are then [stu]
in clusters {Calign(m), . . . , Calign(m+2)}. This is
also motivated by MCE that we only suppress the
strongest competitors’ probabilities. Note that we
do not delete single-characters in the procedure.

The “at most one” constraint here is motivated
by previous language model adaptation works (Fed-
erico, 1999) which usually try to introduce new ev-
idences in the adaptation corpus but with the least
modification of the original model. Of course the
modification of language models led by the addi-
tion and deletion of words is hard to quantify and
we choose to add and delete as fewer words as pos-
sible, which is just a simple heuristic. On the other
hand, adding fewer words means that longer words
are added. It has been shown that longer words are
more helpful for ASR (Gao et al., 2004; Saon and
Padmanabhan, 2001).

The proposed LAICA approach can be regarded
as a discriminative one since it not only considers
the reference characters but also those wrongly rec-
ognized characters. This can be beneficial since it
reduces potential ambiguities existing in the lexi-
con.
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The Expectation-Maximization algorithm
1. Bootstrap initial word segmentation by

maximum-matching algorithm
(Wong and Chan, 1996)

2. Estimate unigram LM
3. Expectation: Re-segment according

to the unigram LM
4. Maximization: Estimate the n-gram LM
5. Expectation: Re-segment according to

the n-gram LM
6. Go to step 4 until convergence

Table 2: EM algorithm for word segmentation and
LM estimation

3.4 Word Segmentation and Language
Model Training

If we regard the word segmentation process as a
hidden variable, then we can apply EM algorithm
(Dempster et al., 1977) to train the underlying n-
gram language model. The procedure is described
in Table 2. In the algorithm we can see two ex-
pectation phases. This is natural since at the be-
ginning the bootstrap segmentation can not give
reliable statistics for higher order n-gram and we
choose to only use the unigram marginal probabili-
ties. The procedure was well established by Hwang
et al. (2006).

Actually, the EM algorithm proposed here is sim-
ilar to the n-multigram model training procedure
proposed by Deligne and Sagisaka (2000). The role
of multigrams can be regarded as the words here,
except that multigrams begin from scratch while
here we have an initial lexicon and use maximum-
matching algorithm to offer an acceptable initial
unigram probability distributions. If the initial lex-
icon is not available, the procedure proposed by
Deligne and Sagisaka (2000) is preferred.

4 Experimental Results

4.1 Baseline Lexicon, Corpora and Language
Models

The baseline lexicon was automatically constructed
from a 300 MB Chinese news text corpus ranging
from 1997 to 1999 using the widely applied PAT-
tree-based word extraction method (Chien, 1997).
It includes 61521 words in total, of which 5856
are single-characters. The key principles of the
PAT-tree-based approach to extract a sequence of
characters as a word are: (1) high enough frequency
count; (2) high enough mutual information between

component characters; (3) large enough number of
context variations on both sides; (4) not dominated
by the most frequent context among all context
variations. In general the words extracted have high
frequencies and clear boundaries, thus very often
they have good semantic meanings. Since all the
above statistics of all possible character sequences
in a raw corpus are combinatorially too many, we
need an efficient data structure such as the PAT-tree
to record and access all such information.

With the baseline lexicon, we performed the EM
algorithm as in Table 2 to train the trigram LM.
Here we used a 313 MB LM training corpus, which
contains text news articles in 2000 and 2001. Note
that in the following Sections, the pronunciations
of the added words were automatically labeled by
exhaustively generating all possible pronunciations
from all component characters’ canonical pronun-
ciations.

4.2 ASR Character Accuracy Results

A set of broadcast news corpus collected from a
Chinese radio station from January to September,
2001 was used as the speech corpus. It contained
10K utterances. We separated these utterances into
two parts randomly: 5K as the adaptation corpus
and 5K as the testing set. We show the ASR char-
acter accuracy results after lexicon adaptation by
the proposed approach in Table 3.

LAICA-1 LAICA-2
A D A+D A D A+D

Baseline +1743 -1679 +1743 +409 -112 +314
-1679 -88

79.28 80.48 79.31 80.98 80.58 79.33 81.21

Table 3: ASR character accuracies for the baseline
and the proposed LAICA approach. Two iterations
are performed, each with three versions. A: only
add new words, D: only delete words and A+D: si-
multaneously add and delete words. + and - means
the number of words added and deleted, respec-
tively.

For the proposed LAICA approach, we show
the results for one (LAICA-1) and two (LAICA-
2) iterations respectively, each of which has three
different versions: (A) only add new words into
the current lexicon, (D) only delete words, (A+D)
simultaneously add and delete words. The num-
ber of added or deleted words are also included in
Table 3.

There are some interesting observations. First,
we see that deletion of current words brought much
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less benefits than adding new words. We try to give
some explanations. Deleting existing words in the
lexicon actually is a passive assistance for recog-
nizing reference characters correctly. Of course
we eliminate some strong competitive characters
in this way but we can not guarantee that refer-
ence characters will then have high enough PP
to be ranked first in its own cluster. Adding new
words into the lexicon, on the other hand, offers
explicit reinforcement in PP of the reference char-
acters. Such reinforcement offers the main positive
boosting for the PP of reference characters. These
boosted characters are under some specific con-
texts which normally correspond to OOV words
and sometimes in-vocabulary (IV) words that are
hard to be recognized.

From the model training aspect, adding new
words gives the maximum-likelihood flavor while
deleting existing words provides discriminant abil-
ity. It has been shown that discriminative train-
ing does not necessarily outperform maximum-
likelihood training until we have enough training
data (Ng and Jordan, 2001). So it is possible that
discriminatively trained model performs worse than
that trained by maximum likelihood. In our case,
adding and deleting words seem to compliment
each other well. This is an encouraging result.

Another good property is that the proposed ap-
proach converged quickly. The number of words to
be added or deleted dropped significantly in the sec-
ond iteration, compared to the first one. Generally
the fewer words to be changed the fewer recogni-
tion improvement can be expected. Actually we
have tried the third iteration and simply obtained
dozens of words to be added and no words to be
deleted, which resulted in negligible changes in
ASR recognition accuracy.

4.3 Comparison with other Lexicon
Adaptation Methods

In this section we compare our method with two
other traditionally used approaches: one is the PAT-
tree-based as introduced in Section 4.1 and the
other is based on mutual probability (Saon and Pad-
manabhan, 2001), which is the geometrical average
of the direct and reverse bigram:

PM (wi, wj) =
√

Pf (wj |wi)Pr(wi|wj),

where the direct (Pf (·) and reverse bigram (Pr(·))
can be estimated as:

Pf (wj |wi) =
P (Wt+1 = wj ,Wt = wi)

P (Wt = wi)
,

Pr(wj |wi) =
P (Wt+1 = wj ,Wt = wi)

P (Wt+1 = wj)
.

PM (wi, wj) is used as a measure about whether to
combine wi and wj as a new word. By properly
setting a threshold, we may iteratively combine
existing characters and/or words to produce the re-
quired number of new words. For both the PAT-tree-
and mutual-information-based approaches, we use
the manual transcriptions of the development 5K
utterances to collect the required statistics and we
extract 2159 and 2078 words respectively to match
the number of added words by the proposed LAICA
approach after 2 iterations (without word deletion).
The language model is also re-trained as described
in Section 3.4. The results are shown in Table 4,
where we also include the results of our approach
with 2 iterations and adding words only for refer-
ence.

PAT-
tree

Mutual
Probability LAICA-2(A)

Character
Accuracy 79.33 80.11 80.58

Table 4: ASR character accuracies on the lexicon
adapted by different approaches.

From the results we observe that the PAT-tree-
based approach did not give satisfying improve-
ments while the mutual probability-based one
worked well. This may be due to the sparse adap-
tation data, which includes only 81K characters.
PAT-tree-based approach relies on the frequency
count, and some terms which occur only once in
the adaptation data will not be extracted. Mutual
probability-based approach, on the other hand, con-
siders two simple criterion: the components of a
new word occur often together and rarely in con-
junction with other words (Saon and Padmanabhan,
2001). Compared with the proposed approach, both
PAT-tree and mutual probability do not consider the
decoding structure.

Some new words are clearly good for human
sense and definitely convey novel semantic infor-
mation, but they can be useless for speech recogni-
tion. That is, character n-gram may handle these
words equally well due to the low ambiguities with
other words. The proposed LAICA approach tries
to focus on those new words which can not be han-
dled well by simple character n-grams. Moreover,
the two methods discussed here do not offer pos-
sible ways to delete current words, which can be
considered as a further advantage of the proposed
LAICA approach.
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4.4 Application: Character-based Spoken
Document Indexing and Retrieval

Pan et al. (2007) recently proposed a new Subword-
based Confusion Network (S-CN) indexing struc-
ture for SDR, which significantly outperforms
word-based methods for IV or OOV queries. Here
we apply S-CN structure to investigate the effec-
tiveness of improved character accuracy for SDR.
Here we choose characters as the subword units,
and then the S-CN structure is exactly the same as
CCN, which was introduced in Section 3.2.

For the SDR back-end corpus, the same 5K test
utterances as used for the ASR experiment in Sec-
tion 4.2 were used. The previously mentioned lexi-
con adaptation approaches and corresponding lan-
guage models were used in the same speech recog-
nizer for the spoken document indexing. We auto-
matically choose 139 words and terms as queries
according to the frequency (at least six times in the
5K utterances). The SDR performance is evaluated
by mean average precision (MAP) calculated by
the trec eval1 package. The results are shown
in Table 5.

Character
Accuracy MAP

Baseline 79.28 0.8145
PAT-tree 79.33 0.8203
Mutual

Probability 80.11 0.8378

LAICA-2(A+D) 81.21 0.8628

Table 5: ASR character accuracies and SDR MAP
performances under S-CN structure.

From the results, we see that generally the
increasing of character recognition accuracy im-
proves the SDR MAP performance. This seems
trivial but we have to note the relative improve-
ments. Actually the transformation ratios from the
relative increased character accuracy to the relative
increased MAP for the three lexicon adaptation ap-
proaches are different. A key factor making the
proposed LAICA approach advantageous is that
we try to extensively raise the incorrectly recog-
nized character posterior probabilities, by means
of adding effective OOV words and deleting am-
biguous words. Actually S-CN is relying on the
character posterior probability for indexing, which
is consistent with our criterion and makes our ap-
proach beneficial. The degree of the raise of char-
acter posterior probabilities can be visualized more
clearly in the following experiment.

1http://trec.nist.gov/

4.5 Further Investigation: the Improved
Rank in Character-based Confusion
Networks

In this experiment, we have the same setup as in
Section 4.2. After decoding, we have character-
based confusion networks (CCNs) for each test
utterance. Rather than taking the top ranked char-
acters in each cluster as the recognition result, we
investigate the ranks of the reference characters in
these clusters. This can be achieved by the same
alignment as we did in Section 3.3. The results are
shown in Table 6.

# of ranked
reference
characters

Average
Rank

baseline 70993 1.92
PAT-tree 71038 1.89
Mutual

Probability
71054 1.81

LAICA-2(A+D) 71083 1.67

Table 6: Average ranks of reference characters in
the confusion networks constructed by different
lexicons and corresponding language models

In Table 6 we only evaluate ranks on those ref-
erence characters that can be found in its corre-
sponding confusion network cluster (case (1) and
(2) as described in Section 3.3). The number of
those evaluated reference characters depends on
the actual CCN and is also included in the results.
Generally, over 93% of reference characters are in-
cluded (the total number is 75541). Such ranks are
critical for lattice-based spoken document indexing
approaches such as S-CN since they directly affect
retrieval precision. The advantage of the proposed
LAICA approach is clear. The results here provide
a more objective point of view since SDR evalua-
tion is inevitably effected by the selected queries.

5 Conclusion and Future Work

Characters together is an interesting and distinct
language unit for Chinese. They can be simultane-
ously viewed as words and subwords, which offer
a special means for OOV handling. While relying
only on characters gives moderate performances in
ASR, properly augmenting new words significantly
increases the accuracy. An interesting question
would then be how to choose words to augment.
Here we formulate the problem as an adaptation
one and try to find the best way to alter the current
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lexicon for improved character accuracy.
This is a new perspective for lexicon adaptation.

Instead of identifying OOV words from adaptation
corpus to reduce OOV rate, we try to pick out word
fragments hidden in the adaptation corpus that help
ASR. Furthermore, we delete some existing words
which may result in ambiguities. Since we directly
match our criterion with that in decoding, the pro-
posed approach is expected to have more consistent
improvements than perplexity based criterions.

Characters also play an important role in spoken
document retrieval. This extends the applicability
of the proposed approach and we found that the
S-CN structure proposed by Pan et al. for spoken
document indexing fitted well with the proposed
LAICA approach.

However, there still remain lots to be improved.
For example, considering Equation 3, the language
model score and the summation constraint are not
independent. After we alter the lexicon, the LM is
different accordingly and there is no guarantee that
the obtained posterior probabilities for those incor-
rectly recognized characters would be increased.
We increased the path alternatives for those refer-
ence characters but this can not guarantee to in-
crease total path probability mass. This can be
amended by involving the discriminative language
model adaptation in the iteration, which results in
a unified language model and lexicon adaptation
framework. This can be our future work. Moreover,
the same procedure can be used in the construction.
That is, beginning with only characters in the lexi-
con and using the training data to alter the current
lexicon in each iteration. This is also an interesting
direction.
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