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Abstract

It is usually assumed that the kind of noise
existing in annotated data is random clas-
sification noise. Yet there is evidence
that differences between annotators are not
always random attention slips but could
result from different biases towards the
classification categories, at least for the
harder-to-decide cases. Under an annota-
tion generation model that takes this into
account, there is a hazard that some of the
training instances are actually hard cases
with unreliable annotations. We show
that these are relatively unproblematic for
an algorithm operating under the 0-1 loss
model, whereas for the commonly used
voted perceptron algorithm, hard training
cases could result in incorrect prediction
on the uncontroversial cases at test time.

1 Introduction

It is assumed, often tacitly, that the kind of
noise existing in human-annotated datasets used in
computational linguistics is random classification
noise (Kearns, 1993; Angluin and Laird, 1988),
resulting from annotator attention slips randomly
distributed across instances. For example, Os-
borne (2002) evaluates noise tolerance of shallow
parsers, with random classification noise taken to
be “crudely approximating annotation errors.” It
has been shown, both theoretically and empiri-
cally, that this type of noise is tolerated well by
the commonly used machine learning algorithms
(Cohen, 1997; Blum et al., 1996; Osborne, 2002;
Reidsma and Carletta, 2008).

Yet this might be overly optimistic. Reidsma
and op den Akker (2008) show that apparent dif-
ferences between annotators are not random slips
of attention but rather result from different biases
annotators might have towards the classification

categories. When training data comes from one
annotator and test data from another, the first an-
notator’s biases are sometimes systematic enough
for a machine learner to pick them up, with detri-
mental results for the algorithm’s performance on
the test data. A small subset of doubly anno-
tated data (for inter-annotator agreement check)
and large chunks of singly annotated data (for
training algorithms) is not uncommon in compu-
tational linguistics datasets; such a setup is prone
to problems if annotators are differently biased.1

Annotator bias is consistent with a number of
noise models. For example, it could be that an
annotator’s bias is exercised on each and every in-
stance, making his preferred category likelier for
any instance than in another person’s annotations.
Another possibility, recently explored by Beigman
Klebanov and Beigman (2009), is that some items
are really quite clear-cut for an annotator with any
bias, belonging squarely within one particular ca-
tegory. However, some instances – termed hard
cases therein – are harder to decide upon, and this
is where various preferences and biases come into
play. In a metaphor annotation study reported by
Beigman Klebanov et al. (2008), certain markups
received overwhelming annotator support when
people were asked to validate annotations after a
certain time delay. Other instances saw opinions
split; moreover, Beigman Klebanov et al. (2008)
observed cases where people retracted their own
earlier annotations.

To start accounting for such annotator behavior,
Beigman Klebanov and Beigman (2009) proposed
a model where instances are either easy, and then
all annotators agree on them, or hard, and then
each annotator flips his or her own coin to de-

1The different biases might not amount to much in the
small doubly annotated subset, resulting in acceptable inter-
annotator agreement; yet when enacted throughout a large
number of instances they can be detrimental from a machine
learner’s perspective.
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cide on a label (each annotator can have a different
“coin” reflecting his or her biases). For annota-
tions generated under such a model, there is a dan-
ger of hard instances posing as easy – an observed
agreement between annotators being a result of all
coins coming up heads by chance. They therefore
define the expected proportion of hard instances in
agreed items as annotation noise. They provide
an example from the literature where an annota-
tion noise rate of about 15% is likely.

The question addressed in this article is: How
problematic is learning from training data with an-
notation noise? Specifically, we are interested in
estimating the degree to which performance on
easy instances at test time can be hurt by the pre-
sence of hard instances in training data.

Definition 1 The hard case bias, τ , is the portion
of easy instances in the test data that are misclas-
sified as a result of hard instances in the training
data.

This article proceeds as follows. First, we show
that a machine learner operating under a 0-1 loss
minimization principle could sustain a hard case
bias of θ( 1√

N
) in the worst case. Thus, while an-

notation noise is hazardous for small datasets, it is
better tolerated in larger ones. However, 0-1 loss
minimization is computationally intractable for
large datasets (Feldman et al., 2006; Guruswami
and Raghavendra, 2006); substitute loss functions
are often used in practice. While their tolerance to
random classification noise is as good as for 0-1
loss, their tolerance to annotation noise is worse.
For example, the perceptron family of algorithms
handle random classification noise well (Cohen,
1997). We show in section 3.4 that the widely
used Freund and Schapire (1999) voted percep-
tron algorithm could face a constant hard case bias
when confronted with annotation noise in training
data, irrespective of the size of the dataset. Finally,
we discuss the implications of our findings for the
practice of annotation studies and for data utiliza-
tion in machine learning.

2 0-1 Loss

Let a sample be a sequence x1, . . . , xN drawn uni-
formly from the d-dimensional discrete cube Id =
{−1, 1}d with corresponding labels y1, . . . , yN ∈
{−1, 1}. Suppose further that the learning al-
gorithm operates by finding a hyperplane (w,ψ),
w ∈ Rd, ψ ∈ R, that minimizes the empirical er-
rorL(w,ψ) =

∑
j=1...N [yj−sgn(

∑
i=1...d x

i
jw

i−

ψ)]2. Let there be H hard cases, such that the an-
notation noise is γ = H

N .2

Theorem 1 In the worst case configuration of in-
stances a hard case bias of τ = θ( 1√

N
) cannot be

ruled out with constant confidence.

Idea of the proof : We prove by explicit con-
struction of an adversarial case. Suppose there is
a plane that perfectly separates the easy instances.
The θ(N) hard instances will be concentrated in
a band parallel to the separating plane, that is
near enough to the plane so as to trap only about
θ(
√
N) easy instances between the plane and the

band (see figure 1 for an illustration). For a ran-
dom labeling of the hard instances, the central
limit theorem shows there is positive probability
that there would be an imbalance between +1 and
−1 labels in favor of −1s on the scale of

√
N ,

which, with appropriate constants, would lead to
the movement of the empirically minimal separa-
tion plane to the right of the hard case band, mis-
classifying the trapped easy cases.

Proof : Let v = v(x) =
∑

i=1...d x
i denote the

sum of the coordinates of an instance in Id and
take λe =

√
d · F−1(

√
γ · 2−

d
2 + 1

2) and λh =√
d · F−1(γ +

√
γ · 2−

d
2 + 1

2), where F (t) is the
cumulative distribution function of the normal dis-
tribution. Suppose further that instances xj such
that λe < vj < λh are all and only hard instances;
their labels are coinflips. All other instances are
easy, and labeled y = y(x) = sgn(v). In this case,
the hyperplane 1√

d
(1 . . . 1) is the true separation

plane for the easy instances, with ψ = 0. Figure 1
shows this configuration.

According to the central limit theorem, for d,N
large, the distribution of v is well approximated by
N (0,

√
d). If N = c1 · 2d, for some 0 < c1 < 4,

the second application of the central limit the-
orem ensures that, with high probability, about
γN = c1γ2d items would fall between λe and λh
(all hard), and

√
γ · 2−

d
2N = c1

√
γ2d would fall

between 0 and λe (all easy, all labeled +1).
Let Z be the sum of labels of the hard cases,

Z =
∑

i=1...H yi. Applying the central limit the-
orem a third time, for large N , Z will, with a
high probability, be distributed approximately as

2In Beigman Klebanov and Beigman (2009), annotation
noise is defined as percentage of hard instances in the agreed
annotations; this implies noise measurement on multiply an-
notated material. When there is just one annotator, no dis-
tinction between easy vs hard instances can be made; in this
sense, all hard instances are posing as easy.
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0 λe λh

Figure 1: The adversarial case for 0-1 loss.
Squares correspond to easy instances, circles – to
hard ones. Filled squares and circles are labeled
−1, empty ones are labeled +1.

N (0,
√
γN). This implies that a value as low as

−2σ cannot be ruled out with high (say 95%) con-
fidence. Thus, an imbalance of up to 2

√
γN , or of

2
√
c1γ2d, in favor of −1s is possible.

There are between 0 and λh about 2
√
c1

√
γ2d

more−1 hard instances than +1 hard instances, as
opposed to c1

√
γ2d easy instances that are all +1.

As long as c1 < 2
√
c1, i.e. c1 < 4, the empirically

minimal threshold would move to λh, resulting in

a hard case bias of τ =
√
γ
√
c12d

(1−γ)·c12d = θ( 1√
N

).
To see that this is the worst case scenario, we

note that 0-1 loss sustained on θ(N) hard cases
is the order of magnitude of the possible imba-
lance between −1 and +1 random labels, which
is θ(

√
N). For hard case loss to outweigh the loss

on the misclassified easy instances, there cannot
be more than θ(

√
N) of the latter 2

Note that the proof requires that N = θ(2d)
namely, that asymptotically the sample includes
a fixed portion of the instances. If the sample is
asymptotically smaller, then λe will have to be ad-
justed such that λe =

√
d · F−1(θ( 1√

N
) + 1

2).
According to theorem 1, for a 10K dataset with

15% hard case rate, a hard case bias of about 1%
cannot be ruled out with 95% confidence.

Theorem 1 suggests that annotation noise as
defined here is qualitatively different from more
malicious types of noise analyzed in the agnostic
learning framework (Kearns and Li, 1988; Haus-
sler, 1992; Kearns et al., 1994), where an adver-

sary can not only choose the placement of the hard
cases, but also their labels. In worst case, the 0-1
loss model would sustain a constant rate of error
due to malicious noise, whereas annotation noise
is tolerated quite well in large datasets.

3 Voted Perceptron

Freund and Schapire (1999) describe the voted
perceptron. This algorithm and its many vari-
ants are widely used in the computational lin-
guistics community (Collins, 2002a; Collins and
Duffy, 2002; Collins, 2002b; Collins and Roark,
2004; Henderson and Titov, 2005; Viola and
Narasimhan, 2005; Cohen et al., 2004; Carreras
et al., 2005; Shen and Joshi, 2005; Ciaramita and
Johnson, 2003). In this section, we show that the
voted perceptron can be vulnerable to annotation
noise. The algorithm is shown below.

Algorithm 1 Voted Perceptron
Training
Input: a labeled training set (x1, y1), . . . , (xN , yN )
Output: a list of perceptrons w1, . . . , wN

Initialize: t← 0; w1 ← 0; ψ1 ← 0
for t = 1 . . . N do
ŷt ← sign(〈wt, xt〉+ ψt)

wt+1 ← wt + yt−ŷt
2
· xt

ψt+1 ← ψt + yt−ŷt
2
· 〈wt, xt〉

end for

Forecasting
Input: a list of perceptrons w1, . . . , wN

an unlabeled instance x
Output: A forecasted label y

ŷ ←
PN

t=1 sign(〈wt, xt〉+ ψt)

y ← sign(ŷ)

The voted perceptron algorithm is a refinement
of the perceptron algorithm (Rosenblatt, 1962;
Minsky and Papert, 1969). Perceptron is a dy-
namic algorithm; starting with an initial hyper-
plane w0, it passes repeatedly through the labeled
sample. Whenever an instance is misclassified
by wt, the hyperplane is modified to adapt to the
instance. The algorithm terminates once it has
passed through the sample without making any
classification mistakes. The algorithm terminates
iff the sample can be separated by a hyperplane,
and in this case the algorithm finds a separating
hyperplane. Novikoff (1962) gives a bound on the
number of iterations the algorithm goes through
before termination, when the sample is separable
by a margin.
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The perceptron algorithm is vulnerable to noise,
as even a little noise could make the sample in-
separable. In this case the algorithm would cycle
indefinitely never meeting termination conditions,
wt would obtain values within a certain dynamic
range but would not converge. In such setting,
imposing a stopping time would be equivalent to
drawing a random vector from the dynamic range.

Freund and Schapire (1999) extend the percep-
tron to inseparable samples with their voted per-
ceptron algorithm and give theoretical generaliza-
tion bounds for its performance. The basic idea
underlying the algorithm is that if the dynamic
range of the perceptron is not too large then wt
would classify most instances correctly most of
the time (for most values of t). Thus, for a sample
x1, . . . , xN the new algorithm would keep track
of w0, . . . , wN , and for an unlabeled instance x it
would forecast the classification most prominent
amongst these hyperplanes.

The bounds given by Freund and Schapire
(1999) depend on the hinge loss of the dataset. In
section 3.2 we construct a difficult setting for this
algorithm. To prove that voted perceptron would
suffer from a constant hard case bias in this set-
ting using the exact dynamics of the perceptron is
beyond the scope of this article. Instead, in sec-
tion 3.3 we provide a lower bound on the hinge
loss for a simplified model of the perceptron algo-
rithm dynamics, which we argue would be a good
approximation to the true dynamics in the setting
we constructed. For this simplified model, we
show that the hinge loss is large, and the bounds
in Freund and Schapire (1999) cannot rule out a
constant level of error regardless of the size of the
dataset. In section 3.4 we study the dynamics of
the model and prove that τ = θ(1) for the adver-
sarial setting.

3.1 Hinge Loss

Definition 2 The hinge loss of a labeled instance
(x, y) with respect to hyperplane (w,ψ) and mar-
gin δ > 0 is given by ζ = ζ(ψ, δ) = max(0, δ −
y · (〈w, x〉 − ψ)).

ζ measures the distance of an instance from
being classified correctly with a δ margin. Figure 2
shows examples of hinge loss for various data
points.

Theorem 2 (Freund and Schapire (1999))
After one pass on the sample, the probability
that the voted perceptron algorithm does not

δ
ζ

ζ
ζ

ζ

ζ ζ

Figure 2: Hinge loss ζ for various data points in-
curred by the separator with margin δ.

predict correctly the label of a test instance
xN+1 is bounded by 2

N+1EN+1

[
d+D
δ

]2
where

D = D(w,ψ, δ) =
√∑N

i=1 ζ
2
i .

This result is used to explain the convergence of
weighted or voted perceptron algorithms (Collins,
2002a). It is useful as long as the expected value of
D is not too large. We show that in an adversarial
setting of the annotation noise D is large, hence
these bounds are trivial.

3.2 Adversarial Annotation Noise

Let a sample be a sequence x1, . . . , xN drawn uni-
formly from Id with y1, . . . , yN ∈ {−1, 1}. Easy
cases are labeled y = y(x) = sgn(v) as before,
with v = v(x) =

∑
i=1...d x

i. The true separation
plane for the easy instances is w∗ = 1√

d
(1 . . . 1),

ψ∗ = 0. Suppose hard cases are those where
v(x) > c1

√
d, where c1 is chosen so that the

hard instances account for γN of all instances.3

Figure 3 shows this setting.

3.3 Lower Bound on Hinge Loss

In the simplified case, we assume that the algo-
rithm starts training with the hyperplane w0 =
w∗ = 1√

d
(1 . . . 1), and keeps it throughout the

training, only updating ψ. In reality, each hard in-
stance can be decomposed into a component that is
parallel to w∗, and a component that is orthogonal
to it. The expected contribution of the orthogonal

3See the proof of 0-1 case for a similar construction using
the central limit theorem.
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Figure 3: An adversarial case of annotation noise
for the voted perceptron algorithm.

component to the algorithm’s update will be posi-
tive due to the systematic positioning of the hard
cases, while the contributions of the parallel com-
ponents are expected to cancel out due to the sym-
metry of the hard cases around the main diagonal
that is orthogonal to w∗. Thus, while wt will not
necessarily parallel w∗, it will be close to parallel
for most t > 0. The simplified case is thus a good
approximation of the real case, and the bound we
obtain is expected to hold for the real case as well.

For any initial value ψ0 < 0 all misclassified in-
stances are labeled −1 and classified as +1, hence
the update will increase ψ0, and reach 0 soon
enough. We can therefore assume that ψt ≥ 0
for any t > t0 where t0 � N .

Lemma 3 For any t > t0, there exist α =
α(γ, T ) > 0 such that E(ζ2) ≥ α · δ.

Proof : For ψ ≥ 0 there are two main sources
of hinge loss: easy +1 instances that are clas-
sified as −1, and hard -1 instances classified as
+1. These correspond to the two components of
the following sum (the inequality is due to disre-
garding the loss incurred by a correct classification
with too wide a margin):

E(ζ2) ≥
[ψ]∑
l=0

1
2d

(
d

l

)
(
ψ√
d
− l√

d
+ δ)2

+
1
2

d∑
l=c1

√
d

1
2d

(
d

l

)
(
l√
d
− ψ√

d
+ δ)2

Let 0 < T < c1 be a parameter. For ψ > T
√
d,

misclassified easy instances dominate the loss:

E(ζ2) ≥
[ψ]∑
l=0

1
2d

(
d

l

)
(
ψ√
d
− l√

d
+ δ)2

≥
[T
√
d]∑

l=0

1
2d

(
d

l

)
(
T
√
d√
d
− l√

d
+ δ)2

≥
T
√
d∑

l=0

1
2d

(
d

l

)
(T − l√

d
+ δ)2

≥ 1√
2π

∫ T

0
(T + δ − t)2e−t

2/2dt = HT (δ)

The last inequality follows from a normal ap-
proximation of the binomial distribution (see, for
example, Feller (1968)).

For 0 ≤ ψ ≤ T
√
d, misclassified hard cases

dominate:

E(ζ2) ≥ 1
2

d∑
l=c1

√
d

1
2d

(
d

l

)
(
l√
d
− ψ√

d
+ δ)2

≥ 1
2

d∑
l=c1

√
d

1
2d

(
d

l

)
(
l√
d
− T

√
d√
d

+ δ)2

≥ 1
2
· 1√

2π

∫ ∞

Φ−1(γ)
(t− T + δ)2e−t

2/2dt

= Hγ(δ)

where Φ−1(γ) is the inverse of the normal distri-
bution density.

Thus E(ζ2) ≥ min{HT (δ),Hγ(δ)}, and
there exists α = α(γ, T ) > 0 such that
min{HT (δ),Hγ(δ)} ≥ α · δ 2

Corollary 4 The bound in theorem 2 does not
converge to zero for large N .

We recall that Freund and Schapire (1999) bound
is proportional to D2 =

∑N
i=1 ζ

2
i . It follows from

lemma 3 that D2 = θ(N), hence the bound is in-
effective.

3.4 Lower Bound on τ for Voted Perceptron
Under Simplified Dynamics

Corollary 4 does not give an estimate on the hard
case bias. Indeed, it could be that wt = w∗ for
almost every t. There would still be significant
hinge in this case, but the hard case bias for the
voted forecast would be zero. To assess the hard
case bias we need a model of perceptron dyna-
mics that would account for the history of hyper-
planesw0, . . . , wN the perceptron goes through on
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a sample x1, . . . , xN . The key simplification in
our model is assuming that wt parallels w∗ for all
t, hence the next hyperplane depends only on the
offset ψt. This is a one dimensional Markov ran-
dom walk governed by the distribution

P(ψt+1−ψt = r|ψt) = P(x|yt − ŷt
2

·〈w∗, x〉 = r)

In general −d ≤ ψt ≤ d but as mentioned before
lemma 3, we may assume ψt > 0.

Lemma 5 There exists c > 0 such that with a high
probability ψt > c ·

√
d for most 0 ≤ t ≤ N .

Proof : Let c0 = F−1(γ2 + 1
2); c1 = F−1(1−γ).

We designate the intervals I0 = [0, c0 ·
√
d]; I1 =

[c0 ·
√
d, c1 ·

√
d] and I2 = [c1 ·

√
d, d] and define

Ai = {x : v(x) ∈ Ii} for i = 0, 1, 2. Note that the
constants c0 and c1 are chosen so that P(A0) = γ

2
and P(A2) = γ. It follows from the construction
in section 3.2 that A0 and A1 are easy instances
and A2 are hard. Given a sample x1, . . . , xN , a
misclassification of xt ∈ A0 by ψt could only hap-
pen when an easy +1 instance is classified as −1.
Thus the algorithm would shift ψt to the left by
no more than |vt − ψt| since vt = 〈w∗, xt〉. This
shows that ψt ∈ I0 implies ψt+1 ∈ I0. In the
same manner, it is easy to verify that if ψt ∈ Ij
and xt ∈ Ak then ψt+1 ∈ Ik, unless j = 0 and
k = 1, in which case ψt+1 ∈ I0 because xt ∈ A1

would be classified correctly by ψt ∈ I0.
We construct a Markov chain with three states

a0 = 0, a1 = c0 ·
√
d and a2 = c1 ·

√
d governed

by the following transition distribution:
1− γ

2 0 γ
2

γ
2 1− γ γ

2

γ
2

1
2 −

3γ
2

1
2 + γ


Let Xt be the state at time t. The principal eigen-
vector of the transition matrix (1

3 ,
1
3 ,

1
3) gives the

stationary probability distribution of Xt. Thus
Xt ∈ {a1, a2} with probability 2

3 . Since the tran-
sition distribution of Xt mirrors that of ψt, and
since aj are at the leftmost borders of Ij , respec-
tively, it follows that Xt ≤ ψt for all t, thus
Xt ∈ {a1, a2} implies ψt ∈ I1∪I2. It follows that
ψt > c0 ·

√
d with probability 2

3 , and the lemma
follows from the law of large numbers 2

Corollary 6 With high probability τ = θ(1).

Proof : Lemma 5 shows that for a sample
x1, . . . , xN with high probability ψt is most of

the time to the right of c ·
√
d. Consequently

for any x in the band 0 ≤ v ≤ c ·
√
d we get

sign(〈w∗, x〉+ψt) = −1 for most t hence by defi-
nition, the voted perceptron would classify such
an instance as −1, although it is in fact a +1 easy
instance. Since there are θ(N) misclassified easy
instances, τ = θ(1) 2

4 Discussion

In this article we show that training with annota-
tion noise can be detrimental for test-time results
on easy, uncontroversial instances; we termed this
phenomenon hard case bias. Although under
the 0-1 loss model annotation noise can be tole-
rated for larger datasets (theorem 1), minimizing
such loss becomes intractable for larger datasets.
Freund and Schapire (1999) voted perceptron al-
gorithm and its variants are widely used in compu-
tational linguistics practice; our results show that
it could suffer a constant rate of hard case bias ir-
respective of the size of the dataset (section 3.4).

How can hard case bias be reduced? One pos-
sibility is removing as many hard cases as one
can not only from the test data, as suggested in
Beigman Klebanov and Beigman (2009), but from
the training data as well. Adding the second an-
notator is expected to detect about half the hard
cases, as they would surface as disagreements be-
tween the annotators. Subsequently, a machine
learner can be told to ignore those cases during
training, reducing the risk of hard case bias. While
this is certainly a daunting task, it is possible that
for annotation studies that do not require expert
annotators and extensive annotator training, the
newly available access to a large pool of inexpen-
sive annotators, such as the Amazon Mechanical
Turk scheme (Snow et al., 2008),4 or embedding
the task in an online game played by volunteers
(Poesio et al., 2008; von Ahn, 2006) could provide
some solutions.

Reidsma and op den Akker (2008) suggest a
different option. When non-overlapping parts of
the dataset are annotated by different annotators,
each classifier can be trained to reflect the opinion
(albeit biased) of a specific annotator, using dif-
ferent parts of the datasets. Such “subjective ma-
chines” can be applied to a new set of data; an
item that causes disagreement between classifiers
is then extrapolated to be a case of potential dis-
agreement between the humans they replicate, i.e.

4http://aws.amazon.com/mturk/
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a hard case. Our results suggest that, regardless
of the success of such an extrapolation scheme in
detecting hard cases, it could erroneously invali-
date easy cases: Each classifier would presumably
suffer from a certain hard case bias, i.e. classify
incorrectly things that are in fact uncontroversial
for any human annotator. If each such classifier
has a different hard case bias, some inter-classifier
disagreements would occur on easy cases. De-
pending on the distribution of those easy cases in
the feature space, this could invalidate valuable
cases. If the situation depicted in figure 1 corre-
sponds to the pattern learned by one of the clas-
sifiers, it would lead to marking the easy cases
closest to the real separation boundary (those be-
tween 0 and λe) as hard, and hence unsuitable for
learning, eliminating the most informative mate-
rial from the training data.

Reidsma and Carletta (2008) recently showed
by simulation that different types of annotator
behavior have different impact on the outcomes of
machine learning from the annotated data. Our re-
sults provide a theoretical analysis that points in
the same direction: While random classification
noise is tolerable, other types of noise – such as
annotation noise handled here – are more proble-
matic. It is therefore important to develop models
of annotator behavior and of the resulting imper-
fections of the annotated datasets, in order to di-
agnose the potential learning problem and suggest
mitigation strategies.
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