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Abstract

This paper introduces an unsupervised vector
approach to disambiguate words in biomedi-
cal text that can be applied to all-word dis-
ambiguation. We explore using contextual
information from the Unified Medical Lan-
guage System (UMLS) to describe the pos-
sible senses of a word. We experiment with
automatically creating individualized stoplists
to help reduce the noise in our dataset. We
compare our results to SenseClusters and
Humphrey et al. (2006) using the NLM-WSD
dataset and with SenseClusters using con-
flated data from the 2005 Medline Baseline.

1 Introduction

Some words have multiple senses. For example, the
word cold could refer to a viral infection or the tem-
perature. As humans, we find it easy to determine
the appropriate sense (concept) given the context in
which the word is used. For a computer, though, this
is a difficult problem which negatively impacts the
accuracy of biomedical applications such as medical
coding and indexing. The goal of our research is to
explore using information from biomedical knowl-
edge sources such as the Unified Medical Language
System (UMLS) and Medline to help distinguish be-
tween different possible concepts of a word.

In the UMLS, concepts associated with words
and terms are enumerated via Concept Unique Iden-
tifiers (CUIs). For example, two possible senses
of cold are “C0009264: Cold Temperature” and
“C0009443: Common Cold” in the UMLS release

2008AA. The UMLS is also encoded with differ-
ent semantic and syntactic structures. Some such
information includes related concepts and semantic
types. A semantic type (ST) is a broad subject cat-
egorization assigned to a CUI. For example, the ST
of “C0009264: Cold Temperature” is “Idea or Con-
cept” while the ST for “C0009443: Common Cold”
is “Disease or Syndrome”. Currently, there exists
approximately 1.5 million CUIs and 135 STs in the
UMLS. Medline is an online database that contains
11 million references biomedical articles.

In this paper, we introduce an unsupervised vector
approach to disambiguate words in biomedical text
using contextual information from the UMLS and
Medline. We compare our approach to Humphrey et
al. (2006) and SenseClusters. The ability to make
disambiguation decisions for words that have the
same ST differentiates SenseClusters and our ap-
proach from Humphrey et al.’s (2006). For exam-
ple, the word weight in the UMLS has two possible
CUIs, “C0005912: Body Weight” and “C0699807:
Weight”, each having the ST “Quantitative Con-
cept”. Humphrey et al.’s (2006) approach relies on
the concepts having different STs therefore is unable
to disambiguate between these two concepts.

Currently, most word sense disambiguation ap-
proaches focus on lexical sample disambiguation
which only attempts to disambiguate a predefined
set of words. This type of disambiguation is not
practical for large scale systems. All-words dis-
ambiguation approaches disambiguate all ambigu-
ous words in a running text making them practi-
cal for large scale systems. Unlike SenseClusters,
Humphrey, et al. (2006) and our approach can be
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used to perform all-words disambiguation.
In the following sections, we first discuss related

work. We then discuss our approach, experiments
and results. Lastly, we discuss our conclusions and
future work.

2 Related Work

There has been previous work on word sense dis-
ambiguation in the biomedical domain. Leroy and
Rindflesch (2005) introduce a supervised approach
that uses the UMLS STs and their semantic relations
of the words surrounding the target word as features
into a Naive Bayes classifier. Joshi et al. (2005) in-
troduce a supervised approach that uses unigrams
and bigrams surrounding the target word as features
into a Support Vector Machine. A unigram is a sin-
gle content word that occurs in a window of context
around the target word. A bigram is an ordered pair
of content words that occur in a window of context
around the target word. McInnes et al. (2007) in-
troduce a supervised approach that uses CUIs of the
words surrounding the target word as features into a
Naive Bayes classifier.

Humphrey et al. (2006) introduce an unsupervised
vector approach using Journal Descriptor (JD) In-
dexing (JDI) which is a ranking algorithm that as-
signs JDs to journal titles in MEDLINE. The authors
apply the JDI algorithm to STs with the assumption
that each possible concept has a distinct ST. In this
approach, an ST vector is created for each ST by ex-
tracting associated words from the UMLS. A target
word vector is created using the words surrounding
the target word. The JDI algorithm is used to obtain
a score for each word-JD and ST-JD pair using the
target word and ST vectors. These pairs are used to
create a word-ST table using the cosine coefficient
between the scores. The cosine scores for the STs of
each word surrounding the target word are averaged
and the concept associated with the ST that has the
highest average is assigned to the target word.

3 Vector Approaches

Patwardhan and Pedersen (2006) introduce a vector
measure to determine the relatedness between pairs
of concepts. In this measure, a co-occurrence matrix
of all words in a given corpus is created containing
how often they occur in the same window of con-

text with each other. A gloss vector is then created
for each concept containing the word vector for each
word in the concepts definition (or gloss). The co-
sine between the two gloss vectors is computed to
determine the concepts relatedness.

SenseClusters 1 is an unsupervised knowledge-
lean word sense disambiguation package The pack-
age uses clustering algorithms to group similar in-
stances of target words and label them with the ap-
propriate sense. The clustering algorithms include
Agglomerative, Graph partitional-based, Partitional
biased agglomerative and Direct k-way clustering.
The clustering can be done in either vector space
where the vectors are clustered directly or similar-
ity space where vectors are clustered by finding the
pair-wise similarities among the contexts. The fea-
ture options available are first and second-order co-
occurrence, unigram and bigram vectors. First-order
vectors are highly frequent words, unigrams or bi-
grams that co-occur in the same window of context
as the target word. Second-order vectors are highly
frequent words that occur with the words in their re-
spective first order vector.

We compare our approach to SenseClusters v0.95
using direct k-way clustering with the I2 clustering
criterion function and cluster in vector space. We ex-
periment with first-order unigrams and second-order
bigrams with a Log Likelihood Ratio greater than
3.84 and the exact and gap cluster stopping param-
eters (Purandare and Pedersen, 2004; Kulkarni and
Pedersen, 2005).

4 Our Approach

Our approach has three stages: i) we create a the
feature vector for the target word (instance vector)
and each of its possible concepts (concept vectors)
using SenseClusters, ii) we calculate the cosine be-
tween the instance vector and each of the concept
vectors, and iii) we assign the concept whose con-
cept vector is the closest to the instance vector to the
target word.

To create the the instance vector, we use the words
that occur in the same abstract as the target word as
features. To create the concept vector, we explore
four different context descriptions of a possible con-
cept to use as features. Since each possible concept

1http://senseclusters.sourceforge.net/
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has a corresponding CUI in the UMLS, we explore
using: i) the words in the concept’s CUI definition,
ii) the words in the definition of the concept’s ST
definition, iii) the words in both the CUI and ST
definitions, and iv) the words in the CUI definition
unless one does not exist then the words in its ST
definition.

We explore using the same feature vector param-
eters as in the SenseCluster experiments: i) first-
order unigrams, and ii) second-order bigram. We
also explore using a more judicious approach to de-
termine which words to include in the feature vec-
tors. One of the problems with an unsupervised vec-
tor approach is its susceptibility to noise. A word
frequently seen in a majority of instances may not
be useful in distinguishing between different con-
cepts. To alleviate this problem, we create an in-
dividualized stoplist for each target word using the
inverse document frequency (IDF). We calculate the
IDF score for each word surrounding the target word
by taking the log of the number of documents in the
training data divided by the number of documents
the term has occurred in the dataset. We then ex-
tract those words that obtain an IDF score under the
threshold of one and add them to our basic stoplist
to be used when determining the appropriate sense
for that specific target word.

5 Data

5.1 Training Data

We use the abstracts from the 2005 Medline Base-
line as training data. The data contains 14,792,864
citations from the 2005 Medline repository. The
baseline contains 2,043,918 unique tokens and
295,585 unique concepts.

5.2 NLM-WSD Test Dataset

We use the National Library of Medicine’s Word
Sense Disambiguation (NLM-WSD) dataset devel-
oped by (Weeber et al., 2001) as our test set. This
dataset contains 100 instances of 50 ambiguous
words from 1998 MEDLINE abstracts. Each in-
stance of a target word was manually disambiguated
by 11 human evaluators who assigned the word a
CUI or “None” if none of the CUIs described the
concept. (Humphrey et al., 2006) evaluate their ap-
proach using a subset of 13 out of the 50 words

whose majority sense is less than 65% and whose
possible concepts do not have the same ST. Instances
tagged as “None” were removed from the dataset.
We evaluate our approach using these same words
and instances.

5.3 Conflate Test Dataset

To test our algorithm on a larger biomedical dataset,
we are creating our own dataset by conflating two
or more unambiguous words from the 2005 Med-
line Baseline. We determine which words to conflate
based on the following criteria: i) the words have a
single concept in the UMLS, ii) the words occur ap-
proximately the same number of times in the corpus,
and iii) the words do not co-occur together.

We create our dataset using name-conflate 2 to
extract instances containing the conflate words from
the 2005 Medline Baseline. Table 4 shows our cur-
rent set of conflated words with their corresponding
number of test (test) and training (train) instances.
We refer to the conflated words as their pseudowords
throughout the paper.

6 Experimental Results

In this section, we report the results of our ex-
periments. First, we compare the results of using
the IDF stoplist over a basic stoplist. Second, we
compare the results of using the different context
descriptions. Third, we compare our approach to
SenseClusters and Humphrey et al. (2006) using the
NLM-WSD dataset. Lastly, we compare our ap-
proach to SenseClusters using the conflated dataset.

In the following tables, CUI refers to the CUI def-
inition of the possible concept as context, ST refers
to using the ST definition of the possible concept as
context, CUI+ST refers to using both definitions as
context, and CUI→ST refers to using the CUI defi-
nition unless if one doesn’t exist then using ST def-
inition. Maj. refers to the ”majority sense” baseline
which is accuracy that would be achieved by assign-
ing every instance of the target word with the most
frequent sense as assigned by the human evaluators.

6.1 Stoplist Results

Table 2 shows the overall accuracy of our approach
using the basic stoplist and the IDF stoplist on the

2http://www.d.umn.edu/ tpederse/namedata.html
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target word Unigram Bigram
CUI ST CUI+ST CUI→ST CUI ST CUI+ST CUI→ST

adjustment 44.57 31.61 46.74 44.57 47.83 38.04 27.17 47.83
blood pressure 39.39 34.34 41.41 38.38 43.43 27.27 47.47 38.38
degree 3.13 70.31 70.31 70.31 3.13 48.44 48.44 48.44
evaluation 50.51 50.51 53.54 51.52 50.51 54.55 52.53 51.52
growth 63.64 51.52 42.42 63.64 63.64 51.52 48.48 63.64
immunosuppression 50.51 46.46 50.51 50.51 43.43 57.58 48.48 43.43
mosaic 0 33.33 27.08 37.50 0 28.13 22.92 22.92
nutrition 28.41 34.09 35.23 25.00 38.64 39.77 36.36 37.50
radiation 57.73 44.78 58.76 57.73 60.82 28.36 60.82 60.82
repair 74.63 25.00 41.79 37.31 76.12 54.69 44.78 41.79
scale 32.81 48.00 42.19 51.56 0 18.00 95.31 96.88
sensitivity 6.00 50.56 48.00 48.00 8.00 44.94 18.00 18.00
white 48.31 38.61 46.07 49.44 44.94 38.16 43.82 49.44
average 38.43 43.01 46.46 48.11 36.96 40.73 45.74 47.74

Table 1: Accuracy of Our Approach using Different Context Descriptions

NLM-WSD dataset using each of the different con-
text descriptions described above. The results show
an approximately a 2% higher accuracy over using
the basic stoplist. The exception is when using the
CUI context description; the accuracy decreased by
approximately 2% when using the unigram feature
set and approximately 1% when using the bigram
feature set.

context Basic stoplist IDF stoplist
unigram bigram unigram bigram

CUI 41.02 37.68 38.43 36.96
ST 42.74 37.14 43.01 40.73
CUI+ST 44.13 42.71 46.46 45.74
CUI→ST 46.61 45.58 48.11 47.74

Table 2: Accuracy of IDF stoplist on the NLM-WSD
dataset

6.1.1 Context Results

Table 1 shows the results of our approach using
the CUI and ST definitions as context for the possi-
ble concepts on the NLM-WSD dataset and Table 4
shows similar results using the conflate dataset.

On the NLM-WSD dataset, the results show a
large difference in accuracy between the contexts on
a word by word basis making it difficult to deter-
mine which of the context description performs the
best. The unigram results show that CUI→ST and
CUI+ST obtain the highest accuracy for five words,
and CUI and ST obtain the highest accuracy for one
word. The bigram results show that CUI→ST and
CUI obtains the highest accuracy for two words,
ST obtains the highest accuracy for four words, and
CUI+ST obtains the highest accuracy for one word.
The overall results show that using unigrams with

the context description CUI→ST obtains the high-
est overall accuracy.

On the conflated dataset, the pseudowords a a,
a o, d d and e e have a corresponding CUI defini-
tion for each of their possible concepts therefore the
accuracy for CUI and CUI→ would be the same for
these datasets and is not reported. The pseudowords
a a i, x p p and d a m e do not have a CUI defini-
tions for each of their possible concepts. The results
show that CUI obtained the highest accuracy for six
out of the seven datasets and CUI→ST obtained the
highest accuracy for one. These experiments were
run using the unigram feature.

6.2 NLM-WSD Results

Table 3 shows the accuracy of the results obtained
by our unsupervised vector approach using the
CUI→ST context description, SenseClusters, and
the results reported by Humphrey et al. (2006).

As seen with the context description results, there
exists a large difference in accuracy on a word by
word basis between the approaches. The results
show that Humphrey et al. (2006) report a higher
overall accuracy compared to SenseClusters and our
approach. Although, Humphrey et al. (2006) per-
formed better for 5 out of the 13 words where as
SenseClusters performed better for 9. The unigram
feature set with gap cluster stopping returned the
highest overall accuracy for SenseClusters. The
number of clusters for all of the gap cluster stopping
experiments were two except for growth which re-
turned one. For our approach, the unigram feature
set returned the highest overall accuracy.

52



target word senses Maj. Humphrey SenseClusters Our Approach
et al. 2006 exact cluster stopping gap cluster stopping CUI→ST

unigram bigram unigram bigram unigram bigram
adjustment 3 66.67 76.67 49.46 38.71 55.91 45.16 44.57 47.83
blood pressure 3 54.00 41.79 40.00 46.00 51.00 54.00 38.38 38.38
degree 2 96.92 97.73 53.85 55.38 53.85 55.38 70.31 48.44
evaluation 2 50.00 59.70 66.00 50.00 66.00 50.00 51.52 51.52
growth 2 63.00 70.15 66.00 52.00 66.00 63.00 63.64 63.64
immunosuppression 2 59.00 74.63 67.00 80.00 67.00 80.00 50.51 43.43
mosaic 2 53.61 67.69 72.22 58.57 61.86 50.52 37.50 22.92
nutrition 2 50.56 35.48 40.45 47.19 44.94 41.57 25.00 37.50
radiation 2 62.24 78.79 69.39 56.12 69.39 56.12 57.73 60.82
repair 2 76.47 86.36 86.76 73.53 86.76 73.53 37.31 41.79
scale 2 100.0 60.47 100.0 100.0 100.0 100.0 51.56 96.88
sensitivity 2 96.08 82.86 41.18 41.18 52.94 54.90 48.00 18.00
white 2 54.44 55.00 80.00 53.33 80.00 53.33 49.44 49.44
average 67.92 68.26 64.02 57.85 65.82 59.81 48.11 47.74

Table 3: Accuracy of Approaches using the NLM-WSD Dataset

target word pseudo- test train Maj. Sense Our Approach
word Clusters CUI ST CUI+ST CUI→ST

actin-antigens a a 33193 298723 63.44 91.30 53.95 44.81 54.17
angiotensin II-olgomycin a o 5256 47294 93.97 56.76 16.62 20.68 17.73
dehydrogenase-diastolic d d 22606 203441 58.57 95.85 45.78 43.94 45.70
endogenous-extracellular matrix e e 19820 178364 79.92 71.21 74.34 65.37 73.37
allogenic-arginine-ischemic a a i 22915 206224 57.16 69.03 47.68 24.60 33.77 32.07
X chromosome-peptide-plasmid x p p 46102 414904 74.61 66.21 20.04 31.60 42.89 42.98
diacetate-apamin-meatus-enterocyte d a m e 1358 12212 25.95 74.23 28.87 24.08 26.07 22.68

Table 4: Accuracy of Approaches using the Conflate Dataset

6.3 Conflate Results

Table 4 shows the accuracy of the results obtained by
our approach and SenseClusters. The results show
that SenseClusters returns a higher accuracy than
our approach except for the e e dataset.

7 Discussion

We report the results for four experiments in this pa-
per: i) the results of using the IDF stoplist over a ba-
sic stoplist, ii) the results of our approach using dif-
ferent context descriptions of the possible concepts
of a target word, iii) the results of our approach com-
pared to SenseClusters and Humphrey et al. (2006)
using the NLM-WSD dataset, and iv) the results of
our approach compared to SenseClusters using the
conflated dataset.

The results of using an individualized IDF stoplist
for each target word show an improvement over us-
ing the basic stoplist. The results of our approach
using different context descriptions show that for the
NLM-WSD dataset the large differences in accuracy
makes it unclear which of the context descriptions
performed the best. On the conflated dataset, adding
the ST definition to the context description improved

the accuracy of only one pseudoword. When com-
paring our approach to Humphrey et al. (2006) and
SenseClusters, our approach did not return a higher
accuracy.

When analyzing the data, we found that there does
not exist a CUI definition for a large number of pos-
sible concepts. Table 5 shows the number of words
in the CUI and ST definitions for each concept in the
NLM-WSD dataset. Only four target words have a
CUI definition for each possible concept. We also
found the concept definitions vary widely in length.
The CUI definitions in the UMLS come from a va-
riety of sources and there may exist more than one
definition per source. Unlike CUI definitions, there
does exist an ST definition for each possible con-
cept. The ST definitions come from the same source
and are approximately the same length but they are
a broad categorization. We believe this makes them
too coarse grained to provide descriptive enough in-
formation about their associated concepts.

This can also be seen when analyzing the con-
flate datasets. The conflate dataset d a m e is miss-
ing two definition which is a contributing factor to
its low accuracy for CUI. Adding the ST definition
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target word CUI Definition ST Definition
c1 c2 c3 c1 c2 c3

adjustment 41 9 48 31 19 10
blood pressure 26 18 0 20 31 22
degree 0 0 15 23
evaluation 54 0 33 17
growth 91 91 20 19
immunosuppression 130 41 30 20
mosaic 0 38 0 10 10 23
nutrition 152 152 0 10 31 30
radiation 71 207 14 30
repair 0 51 30 20
scale 0 10 144 47 23 8
sensitivity 0 0 0 25 50 22
white 0 60 15 28

Table 5: Number of words in CUI and ST Definitions of
Possible the Concepts in the NLM-WSD Dataset
though did not provide enough distinctive informa-
tion to distinguish between the possible concepts.

8 Conclusions and Future Work

This paper introduces an unsupervised vector ap-
proach to disambiguate words in biomedical text us-
ing contextual information from the UMLS. Our ap-
proach makes disambiguation decisions for words
that have the same ST unlike Humphrey et al.
(2006). We believe that our approach shows promise
and leads us to our goal of exploring the use of
biomedical knowledge sources.

In the future, we would also like to increase the
size of our conflated dataset and possibly create a
biomedical all-words disambiguation test set to test
our approach. Unlike SenseClusters, our approach
can be used to perform all-words disambiguation.
For example, given the sentence: His weight has
fluctuated during the past month. We first create
a instance vector containing fluctuated, past and
months for the word weight and a concept vector
for each of its possible concepts, “C0005912: Body
Weight” and “C0699807: Quantitative Concept” us-
ing their context descriptions. We then calculate the
cosine between the instance vector and each of the
two concept vectors. The concept whose vector has
the smallest cosine score is assigned to weight. We
then repeat this process for fluctuated, past and
months.

We also plan to explore using different contex-
tual information to improve the accuracy of our
approach. We are currently exploring using co-
occurrence and relational information about the pos-
sible CUIs in the UMLS. Our IDF stoplist exper-

iments show promise, we are planning to explore
other measures to determine which words to include
in the stoplist as well as a way to automatically de-
termine the threshold.
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