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Abstract

This paper presents an approach to detec-
tion of the semantic types of relation argu-
ments employing the WordNet hierarchy. Us-
ing the SemEval-2007 data, we show that
the method allows to generalize relation ar-
guments with high precision for such generic
relations asOrigin-Entity, Content-Container,
Instrument-Agencyand some other.

1 Introduction and Motivation

A common approach to learning relations is com-
posed from two steps, identification of arguments
and relation validation. This methodology is widely
used in different domains, such as biomedical. For
instance, in order to extract instances of a relation of
protein interactions, one has to first identify all pro-
tein names in text and, second, verify if a relation
between them holds.

Clearly, if arguments are already given, accuracy
of relation validation is higher compared to the sit-
uation when the arguments have to be identified au-
tomatically. In either case, this methodology is ef-
fective for the domain-dependent relations but is not
considered for more generic relation types. If a rela-
tion is more generic, such asPart-Whole, it is more
difficult to identify its arguments because they can
be of many different semantic types. An exam-
ple below contains a causality relation (virus causes
flu). Note that syntactic information is not sufficient
to be able to detect such relation mention and the
background knowledge is needed.

A person infected with a particularflu virus
strain develops antibody against that virus.

In this paper we propose a method to detect se-
mantic types of the generic relation arguments. For
thePart-Wholerelation, it is known that it embraces
such subtypes asMember-Collectionor Place-Area
while there is not much information on the other re-
lation types. We do not claim semantic typing to
be sufficient to recognize relation mentions in text,
however, it would be interesting to examine the ac-
curacy of relation extraction when the background
knowledgeonly is used. Our aim is therefore to dis-
cover precise generalizations per relation type rather
than to cover all possible relation mentions.

2 A Method: Making Semantic Types of
Arguments Explicit

We propose a method for generalizing relation argu-
ment types based on the positive and negative exam-
ples of a given relation type. It is also necessary that
the arguments of a relation are annotated using some
semantic taxonomy, such as WordNet (Fellbaum,
1998). Our hypothesis is as follows: because of
the positive and negative examples, it should be pos-
sible to restrict semantic types of arguments using
negative examples. If negative examples are nearly
positive, the results of such generalization should be
precise. Or, in machine learning terms, such neg-
ative examples are close to the decision boundary
and if used during generalization, precision will be
boosted. If negative examples are far from the de-
cision boundary, their use will most likely not help
to identify semantic types and will result in over-
generalization.

To test this hypothesis, we use an idea borrowed
from induction of the deterministic finite automata.
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Figure 1: Generalization process.

More precisely, to infer deterministic finite automata
(DFA) from positive and negative examples, one first
builds the maximal canonical automaton (MCA)
(Pernot et al., 2005) with one starting state and a
separate sequence of states for each positive exam-
ple and then uses a merging strategy such that no
negative examples are accepted.

Similarly, for a positive example< xi, yi > we
collect all f hyperonymsHxi = h1

xi
, h2

xi
, . . . , hf

xi

for xi whereh1
xi

is an immediate hyperonym andhf
xi

is the most general hyperonym. The same is done for
yi. Next, we use all negative examples to findGxi

andGyi which are generalization types of the argu-
ments of a given positive example< xi, yi >. In
other words, we perform generalization per relation
argument in a form ofone positive example vs. all
negative examples. Because of the multi-inheritance
present in WordNet, it is possible to find more hy-
peronymy paths than one. To take it into account,
the most general hyperonymhf

xi equals to a splitting
point/node.

It is reasonable to assume that the presence of a
general semantic category of one argument will re-
quire a more specific semantic category for the other.
Generalization per argument is, on the one hand,
useful because none of the arguments share a seman-
tic category with the corresponding arguments of all
negative examples. On the other hand, it is too re-
strictive if one aims at identification of the relation
type. To avoid this, we propose to generalize seman-
tic category of one argument by taking into account
a semantic category of the other. In particular, one
can represent a binary relation as a bipartite graph
where the corresponding nodes (relation arguments)
are connected. A natural way of generalizing would
be to combine the nodes which differ on the basis of

their similarity. In case of WordNet, we can use a
least common subsumer (LCS) of the nodes. Given
the bipartite graph in Figure 1, it can be done as fol-
lows. For every vertexGxi in one part which is con-
nected to several verticesGy1 , . . . , Gyk

in the other,
we compute LCS ofGy1 , . . . , Gyk

. Note that we re-
quire the semantic contrains on both arguments to be
satisfied in order to validate a given relation. Gener-
alization viaLCS is carried out in both directions.
This step is described in more detail in Algorithm 1.

Algorithm 1 Generalization via LCS
1: MemoryM = ∅
2: Direction:→
3: for all < Gxi

, Gyi
>∈ G do

4: Collect all < Gxj
, Gyj

>, j = 0, . . . , l s. t.
Gxi

= Gxj

5: if exists< Gxk
, Gyj

> s. t.Gxi
6= Gxk

then
6: G = G ∪ {< Gxj , Gyj >}
7: end if
8: ComputeL = LCSGy0 ,...,Gyl

9: Replace< Gxj
, Gyj

>,j = 0, . . . , l with <
Gxj

,L > in G
10: M =M∪ {< Gxj

,L >}
11: end for
12: Direction:←
13: for all < Gxi

, Gyi
>∈ G do

14: Collect all< Gxj
, Gyj

>, j = 0, . . . , l s. t.Gyi
=

Gyj
and

< Gxj , Gyj >/∈M
15: ComputeL = LCSGx0 ,...,Gxl

16: Replace< Gxj , Gyj >, j = 0, . . . , l with <
L, Gyj

> in G
17: end for
18: return G

Example Consider, for instance, two sentences
from the SemEval data (Instrument-Agency rela-
tion).

013 ”The test is made by inserting the
end of a <e1>jimmy</e1> or other
<e2>burglar</e2>’s tool and endeavouring
to produce impressions similar to those which
have been found on doors or windows.”
WordNet(e1) = ”jimmy%1:06:00::”, Word-
Net(e2) = ”burglar%1:18:00::”, Instrument-
Agency(e1, e2) = ”true”
040 ”<e1>Thieves</e1> used a
<e2>blowtorch</e2> and bolt cutters
to force their way through a fenced area
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topped with razor wire.” WordNet(e1) =
”thief%1:18:00::”, WordNet(e2) = ”blow-
torch%1:06:00::”, Instrument-Agency(e2, e1)
= ”true”

First, we find the sense keys corresponding
to the relation arguments, (”jimmy%1:06:00::”,
”burglar%1:18:00::”) = (jimmy#1, burglar#1)
and (”blowtorch%1:06:00::”, ”thief%1:18:00::”) =
(blowtorch#1, thief#1).By using negative exam-
ples, we obtain the following pairs: (apparatus#1,
badperson#1) and (bar#3, badperson#1). These
pairs share the second argument and it makes
it possible to apply generalization in the direc-
tion ←. LCS of apparatus#1 and bar#3 is
instrumentality#3 and hence the generalized pair
becomes (instrumentality#3, badperson#1).

Note that an order in which the directions are cho-
sen in Algorithm 1 does not affect the resulting gen-
eralizations. Keeping all generalized pairs in the
memoryM ensures that whatever direction (→ or
←) a user chooses first, the output of the algorithm
will be the same.

Until now, we have considered generalization in
one step only. It would be natural to extend this ap-
proach to the iterative generalization such that it is
performed until no further generalization steps can
be made (it corresponds either to the two specific ar-
gument types or to the situation when the top of the
hierarchy is reached). However, such method would
most likely result in overgeneralization by boost-
ing recall but drastically decreasing precision. As
an alternative we propose to use memoryMI de-
fined over the iterations. After each iteration step
every generalized pair< Gxi , Gyi > is applied to
the training set and if it accepts at least one negative
example, it is either removed from the setG (first
iteration) or this generalization pair is decomposed
back into the pairs it was formed from (all other it-
erations). By employing backtracking we guarantee
that empirical error on the training setEemp = 0.

3 Evaluation

Data For semantic type detection, we use 7 binary
relations from the training set of the SemEval-2007
competition, all definitions of which share the re-
quirement of the syntactic closeness of the argu-
ments. Further, their definitions have various restric-

tions on the nature of the arguments. Short descrip-
tion of the relation types we study is given below.

Cause-Effect(X,Y)This relation takes place if, given
a sentenceS, it is possible to entail thatX is the cause
of Y . Y is usually not an entity but a nominal denoting
occurrence (activity or event).

Instrument-Agency(X,Y) This relation is true ifS en-
tails the fact thatX is the instrument ofY (Y usesX).
Further,X is an entity andY is an actor or an activity.

Product-Producer(X,Y) X is a product ofY , or Y
producesX, whereX is any abstract or concrete object.

Origin-Entity(X,Y) X is the origin ofY whereX can
be spatial or material andY is the entity derived from the
origin.

Theme-Tool(X,Y) The toolY is intended forX is ei-
ther its result or something that is acted upon.

Part-Whole(X,Y) X is part of Y and this rela-
tion can be one of the following five types: Place-
Area, Stuff-Object, Portion-Mass, Member-Collection
and Component-Integral object.

Content-Container(X,Y) A sentenceS entails the
fact thatX is stored insideY . Moreover,X is not a com-
ponent ofY and can be removed from it.

We hypothesize thatCause-EffectandPart-Whole
are the relation types which may require sentential
information to be detected. These two relations al-
low a greater variety of arguments and the seman-
tic information alone might be not sufficient. Such
relation types asProduct-Produceror Instrument-
Agencyare likely to benefit more from the external
knowledge. Our method depends on the positive and
negative examples in the training set and on the se-
mantic hierarchy we use. If some parts of the hierar-
chy are more flat, the resulting patterns may be too
general.

As not all examples have been annotated with
the information from WordNet, we removed them
form the test data while conducting this experiment.
Content-Containerturned out to be the only rela-
tion type whose examples are fully annotated. In
contrast,Product-Produceris a relation type with
the most information missing (9 examples removed).
There is no reason to treat relation mentions as mu-
tually exclusive, therefore, only negative example
provided for a particular relation type are used to
determine semantic types of its arguments.

DiscussionThe entire generalization process re-
sults in a zero-error on the training set. It does
not, however, guarantee to hold given a new data
set. The loss in precision on the unseen exam-
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Relation type P, % R, % A, % B-A, %
Origin-Entity 100 26.5 67.5 55.6
Content-Container 81.8 47.4 67.6 51.4
Cause-Effect 100 2.8 52.7 51.2
Instrument-Agency 78.3 48.7 67.6 51.3
Product-Producer 77.8 38.2 52.4 66.7
Theme-Tool 66.7 8.3 65.2 59.2
Part-Whole 66.7 15.4 66.2 63.9
avg. 81.6 26.8 62.7 57.0

Table 1: Performance on the test data

ples can be caused by the generalization pairs where
both arguments are generalized to the higher level
in the hierarchy than it ought to be. To check
how the algorithm behaves, we first evaluate the
specialization step on the test data from the Se-
mEval challenge. Among all the relation types,
only Instrument-Agency, Part-Wholeand Content-
Container fail to obtain 100% precision after the
specialization step. It means that, already at this
stage, there are some false positives and the contex-
tual classification is required to achieve better per-
formance.

The results of the method introduced here are pre-
sented in Table 1. Systems which participated in
SemEval were categorized depending on the input
information they have used. The categoryWord-
Net implies that WordNet was employed but it does
not exclude a possibility of using other resources.
Therefore, to estimate how well our method per-
forms, we calculated accuracy and compared it
against a baseline that always returns the most fre-
quent class label (B-A). Given the results of the
teams participating in the challenge, the organizers
mentionProduct-Produceras one of the easiest rela-
tions, whileOrigin-Entity andTheme-Toolare con-
sidered to be ones of the hardest to detect (Girju
et al., 2007). Interestingly,Origin-Entity obtains
the highest precision compared to the other relation
types while using our approach.

Table 2 contains some examples of the semantic
types we found for each relation. Some of them
are quite specific (e.g.,Origin-Entity), while the
other arguments may be very general (e.g.,Cause-
Effect). The examples of the patterns forPart-
Wholecan be divided in several subtypes, such as
Member-Collection (person#1, socialgroup#1),
Place-Area (topside#1, whole#2) or Stuff-Object
(germanium#1, mineral#1).

Relation (GX , GY )
Content-
Container

(physicalentity#1, vessel#3)

Instrument- (instrumentality#3, badperson#1)
Agency (printingmachine#1, employee#1)
Cause- (cognitiveoperation#1, joy#1)
Effect (entity#1, harm#2)

(cognitivecontent#1,
communication#2)

Product- (knowledge#1, socialunit#1)
Producer (content#2, individual#1)

(instrumentality#3,
businessorganisation#1)

Origin- (article#1, section#1)
Entity (vegetation#1, plantpart#1)

(physicalentity#1, fat#1)
Theme- (abstractentity#1, implementation#2)
Tool (animal#1, water#6)

(nonaccomplishment#1,
humanaction#1)

Part- (topside#1, whole#2)
Whole (germanium#1, mineral#1)

(person#1, socialgroup#1)

Table 2: Some examples per relation type.

4 Conclusions

As expected, the semantic types derived for such
relations asOrigin-Entity, Content-Containerand
Instrument-Agencyprovide high precision on the
test data. In contrast, precision forTheme-Toolis
the lowest which has been noted by the participants
of the SemEval-2007. In terms of accuracy,Cause-
Effectseems to obtain 100% precision but low recall
and accuracy. An explanation for that might be a
fact that causation can be characterized by a great
variety of argument types many of which have been
absent in the training data.Origin-Entityobtains the
maximal precision with accuracy much higher than
baseline.
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