
Proceedings of ACL-08: HLT, Short Papers (Companion Volume), pages 165–168,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Unsupervised Learning of Acoustic Sub-word Units

Balakrishnan Varadarajan∗ and Sanjeev Khudanpur∗
Center for Language and Speech Processing

Johns Hopkins University
Baltimore, MD 21218

{bvarada2,khudanpur}@jhu.edu

Emmanuel Dupoux
Laboratoire de Science Cognitive

et Psycholinguistique
75005, Paris, France

emmanuel.dupoux@gmail.com

Abstract

Accurate unsupervised learning of phonemes
of a language directly from speech is demon-
strated via an algorithm for joint unsupervised
learning of the topology and parameters of
a hidden Markov model (HMM); states and
short state-sequences through this HMM cor-
respond to the learnt sub-word units. The
algorithm, originally proposed for unsuper-
vised learning of allophonic variations within
a given phoneme set, has been adapted to
learn without any knowledge of the phonemes.
An evaluation methodology is also proposed,
whereby the state-sequence that aligns to
a test utterance is transduced in an auto-
matic manner to a phoneme-sequence and
compared to its manual transcription. Over
85% phoneme recognition accuracy is demon-
strated for speaker-dependent learning from
fluent, large-vocabulary speech.

1 Automatic Discovery of Phone(me)s

Statistical models learnt from data are extensively
used in modern automatic speech recognition (ASR)
systems. Transcribed speech is used to estimate con-
ditional models of the acoustics given a phoneme-
sequence. The phonemic pronunciation of words
and the phonemes of the language, however, are
derived almost entirely from linguistic knowledge.
In this paper, we investigate whether the phonemes
may be learnt automatically from the speech signal.

Automatic learning of phoneme-like units has sig-
nificant implications for theories of language ac-
quisition in babies, but our considerations here are
somewhat more technological. We are interested in
developing ASR systems for languages or dialects

∗ This work was partially supported by National Science
Foundation Grants No

¯
IIS-0534359 and OISE-0530118.

for which such linguistic knowledge is scarce or
nonexistent, and in extending ASR techniques to
recognition of signals other than speech, such as ma-
nipulative gestures in endoscopic surgery. Hence an
algorithm for automatically learning an inventory of
intermediate symbolic units—intermediate relative
to the acoustic or kinematic signal on one end and
the word-sequence or surgical act on the other—is
very desirable.

Except for some early work on isolated word/digit
recognition (Paliwal and Kulkarni, 1987; Wilpon
et al., 1987, etc), not much attention has been
paid to automatic derivation of sub-word units from
speech, perhaps because pronunciation lexicons are
now available1 in languages of immediate interest.
What has been investigated is automatically learn-
ing allophonic variations of each phoneme due to
co-articulation or contextual effects (Takami and
Sagayama, 1992; Fukada et al., 1996); the phoneme
inventory is usually assumed to be known.

The general idea in allophone learning is to be-
gin with an inventory of only one allophone per
phoneme, and incrementally refine the inventory to
better fit the speech signal. Typically, each phoneme
is modeled by a separate HMM. In early stages of
refinement, when very few allophones are available,
it is hoped that “similar” allophones of a phoneme
will be modeled by shared HMM states, and that
subsequent refinement will result in distinct states
for different allophones. The key therefore is to de-
vise a scheme for successive refinement of a model
shared by many allophones. In the HMM setting,
this amounts to simultaneously refining the topol-
ogy and the model parameters. A successive state
splitting (SSS) algorithm to achieve this was pro-
posed by Takami and Sagayama (1992), and en-

1See http://www.ldc.upenn.edu/Catalog/byType.jsp
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hanced by Singer and Ostendorf (1996). Improve-
ments in phoneme recognition accuracy using these
derived allophonic models over phonemic models
were obtained.

In this paper, we investigate directly learning the
allophone inventory of a language from speech with-
out recourse to its phoneme set. We begin with a
one-state HMM for all speech sounds and modify
the SSS algorithm to successively learn the topol-
ogy and parameters of HMMs with even larger num-
bers of states. States sequences through this HMM
are expected to correspond to allophones. The most
likely state-sequence for a speech segment is inter-
preted as an “allophonic labeling” of that speech by
the learnt model. Performance is measured by map-
ping the resultant state-sequence to phonemes.

One contribution of this paper is a significant im-
provement in the efficacy of the SSS algorithm as
described in Section 2. It is based on observing
that the improvement in the goodness of fit by up
to two consecutive splits of any of the current HMM
states can be evaluated concurrently and efficiently.
Choosing the best subset of splits from among these
is then cast as a constrained knapsack problem, to
which an efficient solution is devised. Another con-
tribution of this paper is a method to evaluate the
accuracy of the resulting “allophonic labeling,” as
described in Section 3. It is demonstrated that if
a small amount of phonetically transcribed speech
is used to learn a Markov (bigram) model of state-
sequences that arise from each phone, an evalua-
tion tool results with which we may measure phone
recognition accuracy, even though the HMM labels
the speech signal not with phonemes but merely a
state-sequence. Section 4 presents experimental re-
sults, where the performance accuracies with differ-
ent learning setups are tabulated. We also see how as
little as 5 minutes of speech is adequate for learning
the acoustic units.

2 An Improved and Fast SSS Algorithm

The improvement of the SSS algorithm of Takami
and Sagayama (1992), renamed ML-SSS by Singer
and Ostendorf (1996), proceeds roughly as follows.

1. Model all the speech2 using a 1-state HMM
with a diagonal-covariance Gaussian. (N=1.)

2Note that the original application of SSS was for learning

Figure 1: Modified four-way split of a state s.

2. For each HMM state s, compute the gain in log-
likelihood (LL) of the speech by either a con-
textual or a temporal split of s into two states
s1 and s2. Among the N states, select and and
split the one that yields the most gain in LL.

3. If the gain is above a threshold, retain the split
and set N = N + 1; furthermore, if N is less
than desired, re-estimate all parameters of the
new HMM, and go to Step 2.

Note that the key computational steps are the for-
loop of Step 2 and the re-estimation of Step 3.

Modifications to the ML-SSS Algorithm: We
made the following modifications that are favorable
in terms of greater speed and larger search space,
thereby yielding a gain in likelihood that is poten-
tially greater than the original ML-SSS.

1. Model all the speech using a 1-state HMM with
a full-covariance Gaussian density. Set N = 1.

2. Simultaneously replace each state s of the
HMM with the 4-state topology shown in Fig-
ure 1, yielding a 4N -state HMM. If the state s
had parameters (µs,Σs), then means of its 4-
state replacement are µs1 = µs− δ = µs4 and
µs2 = µs +δ = µs3 , with δ = ελ∗v∗, where λ∗

and v∗ are the principal eigenvalue and eigen-
vector of Σs and 0 < ε� 1 is typically 0.2.

3. Re-estimate all parameters of this (overgrown)
HMM. Gather the Gaussian sufficient statistics
for each of the 4N states from the last pass
of re-estimation: the state occupancy πsi . The
sample mean µsi , and sample covariance Σsi .

4. Each quartet of states (see Figure 1) that re-
sulted from the same original state s can be

the allophonic variations of a phoneme; hence the phrase “all
the speech” meant all the speech corresponding separately to
each phoneme. Here it really means all the speech.
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merged back in different ways to produce 3, 2
or 1 HMM states. There are 6 ways to end up
with 3 states, and 7 to end up with 2 states. Re-
tain for further consideration the 4 state split of
s, the best merge back to 3 states among the 6
ways, the best merge back to 2 states among the
7 ways, and the merge back to 1 state.

5. Reduce the number of states from 4N toN+∆
by optimally3 merging back quartets that cause
the least loss in log-likelihood of the speech.

6. Set N = N + ∆. If N is less than the desired
HMM size, retrain the HMM and go to Step 2.

Observe that the 4-state split of Figure 1 permits a
slight look-ahead in our scheme in the sense that the
goodness of a contextual or temporal split of two dif-
ferent states can be compared in the same iteration
with two consecutive splits of a single state. Also,
the split/merge statistics for a state are gathered in
our modified SSS assuming that the other states have
already been split, which facilitates consideration of
concurrent state splitting. If s1, . . . , sm are merged
into s̃, the loss of log-likelihood in Step 4 is:

d

2

m∑
i=1

πsi log |Σs̃| −
d

2

m∑
i=1

πsi log |Σsi | , (1)

where Σs̃ =
∑m

i=1 πsi

(
Σsi + µsiµ

′
si

)∑m
i=1 πsi

− µs̃µ
′
s̃.

Finally, in selecting the best ∆ states to add to the
HMM, we consider many more ways of splitting the
N original states than SSS does. E.g. going up from
N = 6 toN+∆ = 9 HMM states could be achieved
by a 4-way split of a single state, a 3-way split of one
state and 2-way of another, or a 2-way split of three
distinct states; all of them are explored in the process
of merging from 4N = 24 down to 9 states. Yet, like
SSS, no original state s is permitted to merge with
another original state s′. This latter restriction leads
to an O(N5) algorithm for finding the best states to
merge down4. Details of the algorithm are ommited
for the sake of brevity.

In summary, our modified ML-SSS algorithm can
leap-frog by ∆ states at a time, e.g. ∆ = αN , com-
pared to the standard algorithm, and it has the benefit
of some lookahead to avoid greediness.

3This entails solving a constrained knapsack problem.
4This is a restricted version of the 0-1 knapsack problem.

3 Evaluating the Goodness of the Labels

The HMM learnt in Section 2 is capable of assign-
ing state-labels to speech via the Viterbi algorithm.
Evaluating whether these labels are linguistically
meaningful requires interpreting the labels in terms
of phonemes. We do so as follows.

Some phonetically transcribed speech is labeled
with the learnt HMM, and the label sequences cor-
responding to each phone segment are extracted.
Since the HMM was learnt from unlabeled speech,
the labels and short label-sequences usually corre-
spond to allophones, not phonemes. Therefore, for
each triphone, i.e. each phone tagged with its left-
and right-phone context, a simple bigram model of
label sequences is estimated. An unweighted “phone
loop” that accepts all phone sequences is created,
and composed with these bigram models to cre-
ate a label-to-phone transducer capable of mapping
HMM label sequences to phone sequences.

Finally, the test speech (not used for HMM learn-
ing, nor for estimating the bigram model) is treated
as having been “generated” by a source-channel
model in which the label-to-phone transducer is the
source—generating an HMM state-sequence—and
the Gaussian densities of the learnt HMM states con-
stitute the channel—taking the HMM state-sequence
as the channel input and generating the observed
speech signal as the output. Standard Viterbi decod-
ing determines the most likely phone sequence for
the test speech, and phone accuracy is measured by
comparison with the manual phonetic transcription.

4 Experimental Results

4.1 Impact of the Modified State Splitting

The ML-SSS procedure estimates 2N different
N+1-state HMMs to grow from N to N+1 states.
Our procedure estimates one 4N state HMM to
grow to N+∆, making it hugely faster for large N .

Table 1 compares the log-likelihood of the train-
ing speech for ML-SSS and our procedure. The re-
sults validate our modifications, demonstrating that
at least in the regimes feasible for ML-SSS, there is
no loss (in fact a tiny gain) in fitting the speech data,
and a big gain in computational effort5.

5ML-SSS with ∆=1 was impractical beyond N=22.
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# of states SSS (∆ = 1) ∆ = 3 ∆ = N
8 -7.14 -7.13 -7.13

10 -7.08 -7.06 -7.06
22 -6.78 -6.76 N/A
40 N/A -6.23 -6.20

Table 1: Aggressive state splitting does not cause any
degradation in log-likelihood relative to ML-SSS.

4.2 Unsupervised Learning of Sub-word Units

We used about 30 minutes of phonetically tran-
scribed Japanese speech from one speaker6 provided
by Maekawa (2003) for our unsupervised learning
experiments. The speech was segmented via silence
detection into 800 utterances, which were further
partitioned into a 24-minute training set (80%) and
6-minute test set (20%).

Our first experiment was to learn an HMM from
the training speech using our modified ML-SSS pro-
cedure; we tried N = 22, 70 and 376. For each N ,
we then labeled the training speech using the learnt
HMM, used the phonetic transcription of the train-
ing speech to estimate label-bigram models for each
triphone, and built the label-to-phone transducer as
described in Section 3. We also investigated (i) using
only 5 minutes of training speech to learn the HMM,
but still labeling and using all 24 minutes to build
the label-to-phone transducer, and (ii) setting aside
5 minutes of training speech to learn the transducer
and using the rest to learn the HMM. For each learnt
HMM+transducer pair, we phonetically labeled the
test speech.

The results in the first column of Table 2 suggest
that the sub-word units learnt by the HMM are in-
deed interpretable as phones. The second column
suggests that a small amount of speech (5 minutes)
may be adequate to learn these units consistently.
The third column indicates that learning how to map
the learnt (allophonic) units to phones requires rela-
tively more transcribed speech.

4.3 Inspecting the Learnt Sub-word Units

The most frequent 3-, 4- and 5-state sequences in the
automatically labeled speech consistently matched
particular phones in specific articulatory contexts, as

6We heeded advice from the literature indicating that au-
tomatic methods model gross channel- and speaker-differences
before capturing differences between speech sounds.

HMM 24 min 5 min 19 min
label-to-phone 24 min 24 min 5 min
27 states 71.4% 70.9% 60.2%
70 states 84.4% 84.7% 75.8%
376 states 87.2% 86.8% 76.6%

Table 2: Phone recognition accuracy for different HMM
sizes (N), and with different amounts of speech used to
learn the HMM labeler and the label-to-phone transducer.

shown below, i.e. the HMM learns allophones.

HMM labels L-contxt Phone R-contxt
11, 28, 32 vowel t [e|a|o]
15, 17, 2 [g|k] [u|o] [?]
3, 17, 2 [k|t|g|d] a [k|t|g|d]
31, 5, 13, 5 vowel [s|sj|sy] vowel
17, 2, 31, 11 [g|t|k|d] [a|o] [t|k]
3, 30, 22, 34 [?] a silence
6, 24, 8, 15, 22 [?] o silence
4, 3, 17, 2, 21 [k|t] a [k|t]
4, 17, 24, 2, 31 [s|sy|z] o [t|d]

[t|d] o [s|sy|z]

For instance, the label sequence 3, 17, 2, corre-
sponds to an “a” surrounded by stop consonants
{t, d, k, g}; further restricting the sequence to
4, 3, 17, 2, 21, results in restricting the context to the
unvoiced stops {t, k}. That such clusters are learnt
without knowledge of phones is remarkable.
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