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Abstract

We consider the problem of answering com-
plex questions that require inferencing and
synthesizing information from multiple doc-
uments and can be seen as a kind of topic-
oriented, informative multi-document summa-
rization. The stochastic, graph-based method
for computing the relative importance of tex-
tual units (i.e. sentences) is very successful
in generic summarization. In this method,
a sentence is encoded as a vector in which
each component represents the occurrence fre-
quency (TF*IDF) of a word. However, the
major limitation of the TF*IDF approach is
that it only retains the frequency of the words
and does not take into account the sequence,
syntactic and semantic information. In this pa-
per, we study the impact of syntactic and shal-
low semantic information in the graph-based
method for answering complex questions.

1 Introduction

After having made substantial headway in factoid
and list questions, researchers have turned their at-
tention to more complex information needs that can-
not be answered by simply extracting named en-
tities like persons, organizations, locations, dates,
etc. Unlike informationally-simple factoid ques-
tions, complex questions often seek multiple differ-
ent types of information simultaneously and do not
presupposed that one single answer could meet all
of its information needs. For example, with complex
questions like “What are the causes of AIDS?”, the
wider focus of this question suggests that the sub-
mitter may not have a single or well-defined infor-

mation need and therefore may be amenable to re-
ceiving additional supporting information that is rel-
evant to some (as yet) undefined informational goal.
This type of questions require inferencing and syn-
thesizing information from multiple documents. In
Natural Language Processing (NLP), this informa-
tion synthesis can be seen as a kind of topic-oriented,
informative multi-document summarization, where
the goal is to produce a single text as a compressed
version of a set of documents with a minimum loss
of relevant information.

Recently, the graph-based method (LexRank) is
applied successfully to generic, multi-document
summarization (Erkan and Radev, 2004). A topic-
sensitive LexRank is proposed in (Otterbacher et al.,
2005). In this method, a sentence is mapped to a vec-
tor in which each element represents the occurrence
frequency (TF*IDF) of a word. However, the major
limitation of the TF*IDF approach is that it only re-
tains the frequency of the words and does not take
into account the sequence, syntactic and semantic
information thus cannot distinguish between “The
hero killed the villain” and “The villain killed the
hero”. The task like answering complex questions
that requires the use of more complex syntactic and
semantics, the approaches with only TF*IDF are of-
ten inadequate to perform fine-level textual analysis.

In this paper, we extensively study the impact
of syntactic and shallow semantic information in
measuring similarity between the sentences in the
random walk model for answering complex ques-
tions. We argue that for this task, similarity mea-
sures based on syntactic and semantic information
performs better and can be used to characterize the
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relation between a question and a sentence (answer)
in a more effective way than the traditional TF*IDF
based similarity measures.

2 Graph-based Random Walk Model for
Text Summarization

In (Erkan and Radev, 2004), the concept of graph-
based centrality is used to rank a set of sentences,
in producing generic multi-document summaries. A
similarity graph is produced where each node repre-
sents a sentence in the collection and the edges be-
tween nodes measure the cosine similarity between
the respective pair of sentences. Each sentence is
represented as a vector of term specific weights. The
term specific weights in the sentence vectors are
products of term frequency (tf) and inverse docu-
ment frequency (idf). The degree of a given node
is an indication of how much important the sentence
is. To apply LexRank to query-focused context, a
topic-sensitive version of LexRank is proposed in
(Otterbacher et al., 2005). The score of a sentence is
determined by a mixture model:

p(s|q) = d× rel(s|q)∑
z∈C rel(z|q)

+ (1− d)

×
∑
v∈C

sim(s, v)∑
z∈C sim(z, v)

× p(v|q) (1)

Where, p(s|q) is the score of a sentence s given a
question q, is determined as the sum of its relevance
to the question (i.e. rel(s|q)) and the similarity to
other sentences in the collection (i.e. sim(s, v)).
The denominators in both terms are for normaliza-
tion. C is the set of all sentences in the collection.
The value of the parameter d which we call “bias”,
is a trade-off between two terms in the equation and
is set empirically. We claim that for a complex task
like answering complex questions where the related-
ness between the query sentences and the document
sentences is an important factor, the graph-based
random walk model of ranking sentences would per-
form better if we could encode the syntactic and se-
mantic information instead of just the bag of word
(i.e. TF*IDF) information in calculating the similar-
ity between sentences. Thus, our mixture model for
answering complex questions is:

p(s|q) = d× TREESIM(s, q) + (1− d)

×
∑
v∈C

TREESIM(s, v)× p(v|q) (2)

Figure 1: Example of semantic trees

Where TREESIM(s,q) is the normalized syntactic
(and/or semantic) similarity between the query (q)
and the document sentence (s) and C is the set of
all sentences in the collection. In cases where the
query is composed of two or more sentences, we
compute the similarity between the document sen-
tence (s) and each of the query-sentences (qi) then
we take the average of the scores.

3 Encoding Syntactic and Shallow
Semantic Structures

Encoding syntactic structure is easier and straight
forward. Given a sentence (or query), we first parse
it into a syntactic tree using a syntactic parser (i.e.
Charniak parser) and then we calculate the similarity
between the two trees using the general tree kernel
function (Section 4.1).

Initiatives such as PropBank (PB) (Kingsbury and
Palmer, 2002) have made possible the design of
accurate automatic Semantic Role Labeling (SRL)
systems like ASSERT (Hacioglu et al., 2003). For
example, consider the PB annotation:

[ARG0 all][TARGET use][ARG1 the french
franc][ARG2 as their currency]

Such annotation can be used to design a shallow
semantic representation that can be matched against
other semantically similar sentences, e.g.

[ARG0 the Vatican][TARGET use][ARG1 the
Italian lira][ARG2 as their currency]

In order to calculate the semantic similarity be-
tween the sentences, we first represent the annotated
sentence using the tree structures like Figure 1 which
we call Semantic Tree (ST). In the semantic tree, ar-
guments are replaced with the most important word-
often referred to as the semantic head.

The sentences may contain one or more subordi-
nate clauses. For example the sentence, “the Vati-
can, located wholly within Italy uses the Italian lira
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Figure 2: Two STs composing a STN

as their currency.” gives the STs as in Figure 2. As
we can see in Figure 2(A), when an argument node
corresponds to an entire subordinate clause, we la-
bel its leaf with ST , e.g. the leaf of ARG0. Such ST
node is actually the root of the subordinate clause
in Figure 2(B). If taken separately, such STs do not
express the whole meaning of the sentence, hence it
is more accurate to define a single structure encod-
ing the dependency between the two predicates as in
Figure 2(C). We refer to this kind of nested STs as
STNs.

4 Syntactic and Semantic Kernels for Text

4.1 Tree Kernels

Once we build the trees (syntactic or semantic),
our next task is to measure the similarity be-
tween the trees. For this, every tree T is rep-
resented by an m dimensional vector v(T ) =
(v1(T ), v2(T ), · · · vm(T )), where the i-th element
vi(T ) is the number of occurrences of the i-th tree
fragment in tree T . The tree fragments of a tree are
all of its sub-trees which include at least one produc-
tion with the restriction that no production rules can
be broken into incomplete parts.

Implicitly we enumerate all the possible tree frag-
ments 1, 2, · · · , m. These fragments are the axis
of this m-dimensional space. Note that this could
be done only implicitly, since the number m is ex-
tremely large. Because of this, (Collins and Duffy,
2001) defines the tree kernel algorithm whose com-
putational complexity does not depend on m. We
followed the similar approach to compute the tree
kernel between two syntactic trees.

4.2 Shallow Semantic Tree Kernel (SSTK)

Note that, the tree kernel (TK) function defined in
(Collins and Duffy, 2001) computes the number of
common subtrees between two trees. Such subtrees
are subject to the constraint that their nodes are taken
with all or none of the children they have in the orig-
inal tree. Though, this definition of subtrees makes
the TK function appropriate for syntactic trees but
at the same time makes it not well suited for the se-
mantic trees (ST) defined in Section 3. For instance,
although the two STs of Figure 1 share most of the
subtrees rooted in the ST node, the kernel defined
above computes no match.

The critical aspect of the TK function is that the
productions of two evaluated nodes have to be iden-
tical to allow the match of further descendants. This
means that common substructures cannot be com-
posed by a node with only some of its children as
an effective ST representation would require. Mos-
chitti et al. (2007) solve this problem by designing
the Shallow Semantic Tree Kernel (SSTK) which
allows to match portions of a ST. We followed the
similar approach to compute the SSTK.

5 Experiments

5.1 Evaluation Setup

The Document Understanding Conference (DUC)
series is run by the National Institute of Standards
and Technology (NIST) to further progress in sum-
marization and enable researchers to participate in
large-scale experiments. We used the DUC 2007
datasets for evaluation.

We carried out automatic evaluation of our sum-
maries using ROUGE (Lin, 2004) toolkit, which
has been widely adopted by DUC for automatic
summarization evaluation. It measures summary
quality by counting overlapping units such as the
n-gram (ROUGE-N), word sequences (ROUGE-L
and ROUGE-W) and word pairs (ROUGE-S and
ROUGE-SU) between the candidate summary and
the reference summary. ROUGE parameters were
set as the same as DUC 2007 evaluation setup. All
the ROUGE measures were calculated by running
ROUGE-1.5.5 with stemming but no removal of
stopwords. The ROUGE run-time parameters are:

ROUGE-1.5.5.pl -2 -1 -u -r 1000 -t 0 -n 4 -w 1.2
-m -l 250 -a
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The purpose of our experiments is to study the
impact of the syntactic and semantic representation
for complex question answering task. To accomplish
this, we generate summaries for the topics of DUC
2007 by each of our four systems defined as below:
(1) TF*IDF: system is the original topic-sensitive
LexRank described in Section 2 that uses the simi-
larity measures based on tf*idf.
(2) SYN: system measures the similarity between
the sentences using the syntactic tree and the gen-
eral tree kernel function defined in Section 4.1.
(3) SEM: system measures the similarity between
the sentences using the shallow semantic tree and
the shallow semantic tree kernel function defined in
Section 4.2.
(4) SYNSEM: system measures the similarity be-
tween the sentences using both the syntactic and
shallow semantic trees and their associated kernels.
For each sentence it measures the syntactic and se-
mantic similarity with the query and takes the aver-
age of these measures.

5.2 Evaluation Results

The comparison between the systems in terms of
their F-scores is given in Table 1. The SYN system
improves the ROUGE-1, ROUGE-L and ROUGE-
W scores over the TF*IDF system by 2.84%, 0.53%
and 2.14% respectively. The SEM system im-
proves the ROUGE-1, ROUGE-L, ROUGE-W, and
ROUGE-SU scores over the TF*IDF system by
8.46%, 6.54%, 6.56%, and 11.68%, and over the
SYN system by 5.46%, 5.98%, 4.33%, and 12.97%
respectively. The SYNSEM system improves the
ROUGE-1, ROUGE-L, ROUGE-W, and ROUGE-
SU scores over the TF*IDF system by 4.64%,
1.63%, 2.15%, and 4.06%, and over the SYN sys-
tem by 1.74%, 1.09%, 0%, and 5.26% respectively.
The SEM system improves the ROUGE-1, ROUGE-
L, ROUGE-W, and ROUGE-SU scores over the
SYNSEM system by 3.65%, 4.84%, 4.32%, and
7.33% respectively which indicates that including
syntactic feature with the semantic feature degrades
the performance.

6 Conclusion

In this paper, we have introduced the syntactic and
shallow semantic structures and discussed their im-

Systems ROUGE 1 ROUGE L ROUGE W ROUGE SU

TF*IDF 0.359458 0.334882 0.124226 0.130603
SYN 0.369677 0.336673 0.126890 0.129109
SEM 0.389865 0.356792 0.132378 0.145859
SYNSEM 0.376126 0.340330 0.126894 0.135901

Table 1: ROUGE F-scores for different systems

pacts in measuring the similarity between the sen-
tences in the random walk framework for answer-
ing complex questions. Our experiments suggest the
following: (a) similarity measures based on the syn-
tactic tree and/or shallow semantic tree outperforms
the similarity measures based on the TF*IDF and (b)
similarity measures based on the shallow semantic
tree performs best for this problem.
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