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Abstract

An incremental dependency parser’s proba-
bility model is entered as a predictor in a
linear mixed-effects model of German read-
ers’ eye-fixation durations. This dependency-
based predictor improves a baseline that takes
into account word length, n-gram probabil-
ity, and Cloze predictability that are typically
applied in models of human reading. This
improvement obtains even when the depen-
dency parser explores a tiny fraction of its
search space, as suggested by narrow-beam
accounts of human sentence processing such
as Garden Path theory.

1 Introduction

A growing body of work in cognitive science char-
acterizes human readers as some kind of probabilis-
tic parser (Jurafsky, 1996; Crocker and Brants, 2000;
Chater and Manning, 2006). This view gains sup-
port when specific aspects of these programs match
up well with measurable properties of humans en-
gaged in sentence comprehension.

One way to connect theory to data in this man-
ner uses a parser’s probability model to work out
the surprisal or log-probability of the next word.
Hale (2001) suggests this quantity as an index
of psycholinguistic difficulty. When the transi-
tion from previous word to current word is low-
probability, from the parser’s perspective, the sur-
prisal is high and the psycholinguistic claim is that
behavioral measures should register increased cog-
nitive difficulty. In other words, rare parser ac-
tions are cognitively costly. This basic notion has

proved remarkably applicable across sentence types
and languages (Park and Brew, 2006; Demberg and
Keller, 2007; Levy, 2008).

The present work uses the time spent looking at
a word during reading as an empirical measure of
sentence processing difficulty. From the theoretical
side, we calculate word-by-word surprisal pre-
dictions from a family of incremental depen-
dency parsers for German based on Nivre (2004);
these parsers differ only in the size k of the beam
used in the search for analyses of longer and longer
sentence-initial substrings. We find that predictions
derived even from very narrow-beamed parsers im-
prove a baseline eye-fixation duration model. The
fact that any member of this parser family derives
a useful predictor shows that at least some syn-
tactic properties are reflected in readers’ eye fixa-
tion durations. From a cognitive perspective, the
utility of small k parsers for modeling comprehen-
sion difficulty lends credence to the view that the
human processor is a single-path analyzer (Frazier
and Fodor, 1978).

2 Parsing costs and theories of reading
difficulty

The length of time that a reader’s eyes spend fix-
ated on a particular word in a sentence is known
to be affected by a variety of word-level factors
such as length in characters, n-gram frequency and
empirical predictability (Ehrlich and Rayner, 1981;
Kliegl et al., 2004). This last factor is the one mea-
sured when human readers are asked to guess the
next word given a left-context string.

Any role for parser-derived syntactic factors
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Figure 1: Dependency structure of a PSC sentence.

would have to go beyond these word-level influ-
ences. Our methodology imposes this requirement
by fitting a kind of regression known as a lin-
ear mixed-effects model to the total reading times
associated with each sentence-medial word in the
Potsdam Sentence Corpus (PSC) (Kliegl et al.,
2006). The PSC records the eye-movements of 272
native speakers as they read 144 German sentences.

3 The Parsing Model

The parser’s outputs define a relation on
word pairs (Tesnière, 1959; Hays, 1964). The
structural description in Figure 1 is an example
output that depicts this dependency relation using
arcs. The word near the arrowhead is the dependent,
the other word its head (or governor).

These outputs are built up by monotonically
adding to an initially-empty set of dependency re-
lations as analysis proceeds from left to right. To
arrive at Figure 1 the Nivre parser passes through
a number of intermediate states that aggregate four
data structures, detailed below in Table 1.

σ A stack of already-parsed unreduced words.
τ An ordered input list of words.
h A function from dependent words to heads.
d A function from dependent words to arc types.

Table 1: Parser configuration.

The stack σ holds words that could eventually be
connected by new arcs, while τ lists unparsed words.
h and d are where the current set of dependency arcs
reside. There are only four possible transitions
from configuration to configuration. Left-Arc
and Right-Arc transitions create dependency re-

Error type Amount
Noun attachment 4.2%
Prepositional Phrase attachment 3.0%
Conjunction 1.9%
Adverb ambiguity 1.8%
Other 1.1%
Total error 12.1%

Table 2: Parser errors by category.

lations between the top elements in σ and τ , while
Shift and Reduce transitions manipulate σ.

When more than one transition is applicable, the
parser decides between them by consulting a proba-
bility model derived from the Negra and Tiger news-
paper corpora (Skut et al., 1997; König and Lezius,
2003). This model is called Stack3 because it con-
siders only the parts-of-speech of the top three el-
ements of σ along with the top element of τ . On
the PSC this model achieves 87.9% precision and
79.5% recall for unlabeled dependencies. Most of
the attachments it gets wrong (Table 2) represent al-
ternative readings that would require semantic guid-
ance to rule out.

To compare “serial” human sentence processing
models against “parallel” models, our implemen-
tation does beam search in the space of Nivre-
configurations. The number of configurations main-
tained at any point is a changeable parameter k.

3.1 Surprisal

In Figure 1 the thermometer beneath the Ger-
man preposition “in” graphically indicates a
high surprisal prediction derived from the depen-
dency parser. Greater cognitive effort, reflected in
reading time, should be observed on “in” as com-
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pared to “alte.” The difficulty prediction at “in” ul-
timately follows from the frequency of verbs tak-
ing prepositional complements that follow nominal
complements in the training data. Equation 1 ex-
presses the general theory: the surprisal of a word,
on a language model, is the logarithm of the pre-
fix probability eliminated in the transition from one
word to the next.

surprisal(n) = log2

(
αn−1

αn

)
(1)

The prefix-probability αn of an initial substring is
the total probability of all grammatical analyses that
derive w = w1...wn as a left-prefix (Equation 2).

αn =
∑

d∈D(G,wv)

Prob(d) (2)

In a complete parser, every member of D is in cor-
respondence with a state transition sequence. In the
beam-search approximation, only the top k config-
urations are retained from prefix to prefix, which
amounts to choosing a subset of D.

4 Study

The study addresses whether surprisal is a signif-
icant predictor of reading difficulty and, if it is,
whether the beam-size parameter k affects the use-
fulness of the calculated surprisal values in account-
ing for reading difficulty.

Using total reading time as a dependent measure,
we fit a baseline linear mixed-effects model (Equa-
tion 3) that takes into account word-level predictors
log frequency (lf), log bigram frequency (bi), word
length (len), and human predictability given the left
context (pr).

log (TRT ) = (3)

5.4− 0.02lf − 0.01bi − 0.59len−1 − 0.02pr

All of the word-level predictors were statistically
significant at the α level 0.05.

Beyond this baseline, we fitted ten other lin-
ear mixed-effects models. To the inventory of word-
level predictors, each of the ten regressions uniquely
added the surprisal predictions calculated from a
parser that retains at most k=1...9,100 analyses at
each prefix. We evaluated the change in relative

quality of fit due to surprisal with the Deviance In-
formation Criterion (DIC) discussed in Spiegelhal-
ter et al. (2002). Whereas the more commonly ap-
plied Akaike Information Criterion (1973) requires
the number of estimated parameters to be deter-
mined exactly, the DIC facilitates the evaluation of
mixed-effects models by relaxing this requirement.
When comparing two models, if one of the models
has a lower DIC value, this means that the model fit
has improved.

4.1 Results and Discussion

Table 3 shows that the linear mixed-effects model of
German reading difficulty improves when surprisal
values from the dependency parser are used as pre-
dictors in addition to the word-level predictors. The
coefficients on the baseline predictors remained un-
changed (Equation 3) when any of the parser-based
predictors was added.

Table 3 also suggests the returns to be had in
accounting for reading time are greatest when the
beam is limited to a handful of parses. Indeed,
a parser that handles a few analyses at a time
(k=1,2,3) is just as valuable as one that spends far
greater memory resources (k=100). This observa-
tion is consistent with Brants and Crocker’s (2000)
observation that accuracy can be maintained even
when restricted to 1% of the memory required for
exhaustive parsing. The role of small k depen-
dency parsers in determining the quality of statisti-
cal fit challenges the assumption that cognitive func-
tions are global optima. Perhaps human parsing is
boundedly rational in the sense of the bound im-
posed by Stack3 (Simon, 1955).

5 Conclusion

This study demonstrates that surprisal calculated
with a dependency parser is a significant predictor of
reading times, an empirical measure of cognitive dif-
ficulty. Surprisal is a significant predictor even when
examined alongside the more commonly used pre-
dictors, word length, predictability, and n-gram fre-
quency. The viability of parsers that consider just a
small number of analyses at each increment is con-
sistent with conceptions of the human comprehender
that incorporate that restriction.

7



Model Coefficient Std. Error t value DIC
Baseline - - - 144511.1
k=1 0.033691 0.002285 15 143964.9
k=2 0.038573 0.002510 15 143946.2
k=3 0.037320 0.002693 14 143990.4
k=4 0.041035 0.002853 14 143975.7
k=5 0.048692 0.002953 16 143910.9
k=6 0.046580 0.003063 15 143951.6
k=7 0.045008 0.003118 14 143974.4
k=8 0.042039 0.003165 13 144006.4
k=9 0.040657 0.003225 13 144023.9
k=100 0.029467 0.003878 8 144125.4

Table 3: Coefficients and standard errors from the multiple regressions using different versions of surprisal (baseline
predictors’ coefficients are not shown for space reasons). t values > 2 are statistically significant at α = 0.05. The
table also shows DIC values for the baseline model (Equation 3) and the models with baseline predictors plus surprisal.
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