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Abstract

Previous studies of data-driven dependency
parsing have shown that the distribution of
parsing errors are correlated with theoretical
properties of the models used for learning and
inference. In this paper, we show how these
results can be exploited to improve parsing
accuracy by integrating a graph-based and a
transition-based model. By letting one model
generate features for the other, we consistently
improve accuracy for both models, resulting
in a significant improvement of the state of
the art when evaluated on data sets from the
CoNLL-X shared task.

1 Introduction

Syntactic dependency graphs have recently gained
a wide interest in the natural language processing
community and have been used for many problems
ranging from machine translation (Ding and Palmer,
2004) to ontology construction (Snow et al., 2005).
A dependency graph for a sentence represents each
word and its syntactic dependents through labeled
directed arcs, as shown in figure 1. One advantage
of this representation is that it extends naturally to
discontinuous constructions, which arise due to long
distance dependencies or in languages where syntac-
tic structure is encoded in morphology rather than in
word order. This is undoubtedly one of the reasons
for the emergence of dependency parsers for a wide
range of languages. Many of these parsers are based
on data-driven parsing models, which learn to pro-
duce dependency graphs for sentences solely from
an annotated corpus and can be easily ported to any

Figure 1: Dependency graph for an English sentence.

language or domain in which annotated resources
exist.

Practically all data-driven models that have been
proposed for dependency parsing in recent years can
be described as either graph-based or transition-
based (McDonald and Nivre, 2007). In graph-based
parsing, we learn a model for scoring possible de-
pendency graphs for a given sentence, typically by
factoring the graphs into their component arcs, and
perform parsing by searching for the highest-scoring
graph. This type of model has been used by, among
others, Eisner (1996), McDonald et al. (2005a), and
Nakagawa (2007). In transition-based parsing, we
instead learn a model for scoring transitions from
one parser state to the next, conditioned on the parse
history, and perform parsing by greedily taking the
highest-scoring transition out of every parser state
until we have derived a complete dependency graph.
This approach is represented, for example, by the
models of Yamada and Matsumoto (2003), Nivre et
al. (2004), and Attardi (2006).

Theoretically, these approaches are very different.
The graph-based models are globally trained and use
exact inference algorithms, but define features over a
limited history of parsing decisions. The transition-
based models are essentially the opposite. They use
local training and greedy inference algorithms, but
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define features over a rich history of parsing deci-
sions. This is a fundamental trade-off that is hard
to overcome by tractable means. Both models have
been used to achieve state-of-the-art accuracy for a
wide range of languages, as shown in the CoNLL
shared tasks on dependency parsing (Buchholz and
Marsi, 2006; Nivre et al., 2007), but McDonald and
Nivre (2007) showed that a detailed error analysis
reveals important differences in the distribution of
errors associated with the two models.

In this paper, we consider a simple way of inte-
grating graph-based and transition-based models in
order to exploit their complementary strengths and
thereby improve parsing accuracy beyond what is
possible by either model in isolation. The method
integrates the two models by allowing the output
of one model to define features for the other. This
method is simple – requiring only the definition of
new features – and robust by allowing a model to
learn relative to the predictions of the other.

2 Two Models for Dependency Parsing

2.1 Preliminaries

Given a set L = {l1, . . . , l|L|} of arc labels (depen-
dency relations), a dependency graph for an input
sentence x = w0, w1, . . . , wn (where w0 = ROOT) is
a labeled directed graph G = (V,A) consisting of a
set of nodes V = {0, 1, . . . , n}1 and a set of labeled
directed arcs A ⊆ V ×V ×L, i.e., if (i, j, l) ∈ A for
i, j ∈ V and l ∈ L, then there is an arc from node
i to node j with label l in the graph. A dependency
graph G for a sentence x must be a directed tree orig-
inating out of the root node 0 and spanning all nodes
in V , as exemplified by the graph in figure 1. This
is a common constraint in many dependency parsing
theories and their implementations.

2.2 Graph-Based Models

Graph-based dependency parsers parameterize a
model over smaller substructures in order to search
the space of valid dependency graphs and produce
the most likely one. The simplest parameterization
is the arc-factored model that defines a real-valued
score function for arcs s(i, j, l) and further defines
the score of a dependency graph as the sum of the

1We use the common convention of representing words by
their index in the sentence.

score of all the arcs it contains. As a result, the de-
pendency parsing problem is written:

G = arg max
G=(V,A)

∑
(i,j,l)∈A

s(i, j, l)

This problem is equivalent to finding the highest
scoring directed spanning tree in the complete graph
over the input sentence, which can be solved in
O(n2) time (McDonald et al., 2005b). Additional
parameterizations are possible that take more than
one arc into account, but have varying effects on
complexity (McDonald and Satta, 2007). An advan-
tage of graph-based methods is that tractable infer-
ence enables the use of standard structured learning
techniques that globally set parameters to maximize
parsing performance on the training set (McDonald
et al., 2005a). The primary disadvantage of these
models is that scores – and as a result any feature
representations – are restricted to a single arc or a
small number of arcs in the graph.

The specific graph-based model studied in this
work is that presented by McDonald et al. (2006),
which factors scores over pairs of arcs (instead of
just single arcs) and uses near exhaustive search for
unlabeled parsing coupled with a separate classifier
to label each arc. We call this system MSTParser, or
simply MST for short, which is also the name of the
freely available implementation.2

2.3 Transition-Based Models
Transition-based dependency parsing systems use a
model parameterized over transitions of an abstract
machine for deriving dependency graphs, such that
every transition sequence from the designated initial
configuration to some terminal configuration derives
a valid dependency graph. Given a real-valued score
function s(c, t) (for transition t out of configuration
c), parsing can be performed by starting from the ini-
tial configuration and taking the optimal transition
t∗ = arg maxt∈T s(c, t) out of every configuration
c until a terminal configuration is reached. This can
be seen as a greedy search for the optimal depen-
dency graph, based on a sequence of locally optimal
decisions in terms of the transition system.

Many transition systems for data-driven depen-
dency parsing are inspired by shift-reduce parsing,

2http://mstparser.sourceforge.net
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where each configuration c contains a stack σc for
storing partially processed nodes and a buffer βc

containing the remaining input. Transitions in such a
system add arcs to the dependency graph and mani-
pulate the stack and buffer. One example is the tran-
sition system defined by Nivre (2003), which parses
a sentence x = w0, w1, . . . , wn in O(n) time.

To learn a scoring function on transitions, these
systems rely on discriminative learning methods,
such as memory-based learning or support vector
machines, using a strictly local learning procedure
where only single transitions are scored (not com-
plete transition sequences). The main advantage of
these models is that features are not restricted to a
limited number of graph arcs but can take into ac-
count the entire dependency graph built so far. The
major disadvantage is that the greedy parsing strat-
egy may lead to error propagation.

The specific transition-based model studied in
this work is that presented by Nivre et al. (2006),
which uses support vector machines to learn transi-
tion scores. We call this system MaltParser, or Malt
for short, which is also the name of the freely avail-
able implementation.3

2.4 Comparison and Analysis

These models differ primarily with respect to three
properties: inference, learning, and feature repre-
sentation. MaltParser uses an inference algorithm
that greedily chooses the best parsing decision based
on the current parser history whereas MSTParser
uses exhaustive search algorithms over the space of
all valid dependency graphs to find the graph that
maximizes the score. MaltParser trains a model
to make a single classification decision (choose the
next transition) whereas MSTParser trains a model
to maximize the global score of correct graphs.
MaltParser can introduce a rich feature history based
on previous parser decisions, whereas MSTParser is
forced to restrict features to a single decision or a
pair of nearby decisions in order to retain efficiency.

These differences highlight an inherent trade-off
between global inference/learning and expressive-
ness of feature representations. MSTParser favors
the former at the expense of the latter and MaltParser
the opposite. This difference was highlighted in the

3http://w3.msi.vxu.se/∼jha/maltparser/

study of McDonald and Nivre (2007), which showed
that the difference is reflected directly in the error
distributions of the parsers. Thus, MaltParser is less
accurate than MSTParser for long dependencies and
those closer to the root of the graph, but more accu-
rate for short dependencies and those farthest away
from the root. Furthermore, MaltParser is more ac-
curate for dependents that are nouns and pronouns,
whereas MSTParser is more accurate for verbs, ad-
jectives, adverbs, adpositions, and conjunctions.

Given that there is a strong negative correlation
between dependency length and tree depth, and
given that nouns and pronouns tend to be more
deeply embedded than (at least) verbs and conjunc-
tions, these patterns can all be explained by the same
underlying factors. Simply put, MaltParser has an
advantage in its richer feature representations, but
this advantage is gradually diminished by the nega-
tive effect of error propagation due to the greedy in-
ference strategy as sentences and dependencies get
longer. MSTParser has a more even distribution of
errors, which is expected given that the inference al-
gorithm and feature representation should not prefer
one type of arc over another. This naturally leads
one to ask: Is it possible to integrate the two models
in order to exploit their complementary strengths?
This is the topic of the remainder of this paper.

3 Integrated Models

There are many conceivable ways of combining the
two parsers, including more or less complex en-
semble systems and voting schemes, which only
perform the integration at parsing time. However,
given that we are dealing with data-driven models,
it should be possible to integrate at learning time, so
that the two complementary models can learn from
one another. In this paper, we propose to do this by
letting one model generate features for the other.

3.1 Feature-Based Integration

As explained in section 2, both models essentially
learn a scoring function s : X → R, where the
domain X is different for the two models. For the
graph-based model, X is the set of possible depen-
dency arcs (i, j, l); for the transition-based model,
X is the set of possible configuration-transition pairs
(c, t). But in both cases, the input is represented
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MSTMalt – defined over (i, j, l) (∗ = any label/node)
Is (i, j, ∗) in GMalt

x ?
Is (i, j, l) in GMalt

x ?
Is (i, j, ∗) not in GMalt

x ?
Is (i, j, l) not in GMalt

x ?
Identity of l′ such that (∗, j, l′) is in GMalt

x ?
Identity of l′ such that (i, j, l′) is in GMalt

x ?
MaltMST – defined over (c, t) (∗ = any label/node)
Is (σ0

c , β0
c , ∗) in GMST

x ?
Is (β0

c , σ0
c , ∗) in GMST

x ?
Head direction for σ0

c in GMST
x (left/right/ROOT)

Head direction for β0
c in GMST

x (left/right/ROOT)
Identity of l such that (∗, σ0

c , l) is in GMST
x ?

Identity of l such that (∗, β0
c , l) is in GMST

x ?

Table 1: Guide features for MSTMalt and MaltMST.

by a k-dimensional feature vector f : X → Rk.
In the feature-based integration we simply extend
the feature vector for one model, called the base
model, with a certain number of features generated
by the other model, which we call the guide model
in this context. The additional features will be re-
ferred to as guide features, and the version of the
base model trained with the extended feature vector
will be called the guided model. The idea is that the
guided model should be able to learn in which situ-
ations to trust the guide features, in order to exploit
the complementary strength of the guide model, so
that performance can be improved with respect to
the base parser. This method of combining classi-
fiers is sometimes referred to as classifier stacking.

The exact form of the guide features depend on
properties of the base model and will be discussed
in sections 3.2–3.3 below, but the overall scheme for
the feature-based integration can be described as fol-
lows. To train a guided version BC of base model B
with guide model C and training set T , the guided
model is trained, not on the original training set T ,
but on a version of T that has been parsed with the
guide model C under a cross-validation scheme (to
avoid overlap with training data for C). This means
that, for every sentence x ∈ T , BC has access at
training time to both the gold standard dependency
graph Gx and the graph GC

x predicted by C, and it is
the latter that forms the basis for the additional guide
features. When parsing a new sentence x′ with BC ,
x′ is first parsed with model C (this time trained on
the entire training set T ) to derive GC

x′ , so that the
guide features can be extracted also at parsing time.

3.2 The Guided Graph-Based Model

The graph-based model, MSTParser, learns a scor-
ing function s(i, j, l) ∈ R over labeled dependen-
cies. More precisely, dependency arcs (or pairs of
arcs) are first represented by a high dimensional fea-
ture vector f(i, j, l) ∈ Rk, where f is typically a bi-
nary feature vector over properties of the arc as well
as the surrounding input (McDonald et al., 2005a;
McDonald et al., 2006). The score of an arc is de-
fined as a linear classifier s(i, j, l) = w · f(i, j, l),
where w is a vector of feature weights to be learned
by the model.

For the guided graph-based model, which we call
MSTMalt, this feature representation is modified to
include an additional argument GMalt

x , which is the
dependency graph predicted by MaltParser on the
input sentence x. Thus, the new feature represen-
tation will map an arc and the entire predicted Malt-
Parser graph to a high dimensional feature repre-
sentation, f(i, j, l, GMalt

x ) ∈ Rk+m. These m ad-
ditional features account for the guide features over
the MaltParser output. The specific features used by
MSTMalt are given in table 1. All features are con-
joined with the part-of-speech tags of the words in-
volved in the dependency to allow the guided parser
to learn weights relative to different surface syntac-
tic environments. Though MSTParser is capable of
defining features over pairs of arcs, we restrict the
guide features over single arcs as this resulted in
higher accuracies during preliminary experiments.

3.3 The Guided Transition-Based Model

The transition-based model, MaltParser, learns a
scoring function s(c, t) ∈ R over configurations and
transitions. The set of training instances for this
learning problem is the set of pairs (c, t) such that
t is the correct transition out of c in the transition
sequence that derives the correct dependency graph
Gx for some sentence x in the training set T . Each
training instance (c, t) is represented by a feature
vector f(c, t) ∈ Rk, where features are defined in
terms of arbitrary properties of the configuration c,
including the state of the stack σc, the input buffer
βc, and the partially built dependency graph Gc. In
particular, many features involve properties of the
two target tokens, the token on top of the stack σc

(σ0
c ) and the first token in the input buffer βc (β0

c ),
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which are the two tokens that may become con-
nected by a dependency arc through the transition
out of c. The full set of features used by the base
model MaltParser is described in Nivre et al. (2006).

For the guided transition-based model, which we
call MaltMST, training instances are extended to
triples (c, t, GMST

x ), where GMST
x is the dependency

graph predicted by the graph-based MSTParser for
the sentence x to which the configuration c belongs.
We define m additional guide features, based on
properties of GMST

x , and extend the feature vector
accordingly to f(c, t, GMST

x ) ∈ Rk+m. The specific
features used by MaltMST are given in table 1. Un-
like MSTParser, features are not explicitly defined
to conjoin guide features with part-of-speech fea-
tures. These features are implicitly added through
the polynomial kernel used to train the SVM.

4 Experiments

In this section, we present an experimental evalua-
tion of the two guided models based on data from
the CoNLL-X shared task, followed by a compar-
ative error analysis including both the base models
and the guided models. The data for the experiments
are training and test sets for all thirteen languages
from the CoNLL-X shared task on multilingual de-
pendency parsing with training sets ranging in size
from from 29,000 tokens (Slovene) to 1,249,000 to-
kens (Czech). The test sets are all standardized to
about 5,000 tokens each. For more information on
the data sets, see Buchholz and Marsi (2006).

The guided models were trained according to the
scheme explained in section 3, with two-fold cross-
validation when parsing the training data with the
guide parsers. Preliminary experiments suggested
that cross-validation with more folds had a negli-
gible impact on the results. Models are evaluated
by their labeled attachment score (LAS) on the test
set, i.e., the percentage of tokens that are assigned
both the correct head and the correct label, using
the evaluation software from the CoNLL-X shared
task with default settings.4 Statistical significance
was assessed using Dan Bikel’s randomized pars-
ing evaluation comparator with the default setting of
10,000 iterations.5

4http://nextens.uvt.nl/∼conll/software.html
5http://www.cis.upenn.edu/∼dbikel/software.html

Language MST MSTMalt Malt MaltMST

Arabic 66.91 68.64 (+1.73) 66.71 67.80 (+1.09)

Bulgarian 87.57 89.05 (+1.48) 87.41 88.59 (+1.18)

Chinese 85.90 88.43 (+2.53) 86.92 87.44 (+0.52)

Czech 80.18 82.26 (+2.08) 78.42 81.18 (+2.76)

Danish 84.79 86.67 (+1.88) 84.77 85.43 (+0.66)

Dutch 79.19 81.63 (+2.44) 78.59 79.91 (+1.32)

German 87.34 88.46 (+1.12) 85.82 87.66 (+1.84)

Japanese 90.71 91.43 (+0.72) 91.65 92.20 (+0.55)

Portuguese 86.82 87.50 (+0.68) 87.60 88.64 (+1.04)

Slovene 73.44 75.94 (+2.50) 70.30 74.24 (+3.94)

Spanish 82.25 83.99 (+1.74) 81.29 82.41 (+1.12)

Swedish 82.55 84.66 (+2.11) 84.58 84.31 (–0.27)

Turkish 63.19 64.29 (+1.10) 65.58 66.28 (+0.70)

Average 80.83 82.53 (+1.70) 80.74 82.01 (+1.27)

Table 2: Labeled attachment scores for base parsers and
guided parsers (improvement in percentage points).
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Figure 2: Accuracy relative to sentence length.

4.1 Results

Table 2 shows the results, for each language and on
average, for the two base models (MST, Malt) and
for the two guided models (MSTMalt, MaltMST).
First of all, we see that both guided models show
a very consistent increase in accuracy compared to
their base model, even though the extent of the im-
provement varies across languages from about half
a percentage point (MaltMST on Chinese) up to al-
most four percentage points (MaltMST on Slovene).6

It is thus quite clear that both models have the capa-
city to learn from features generated by the other
model. However, it is also clear that the graph-based
MST model shows a somewhat larger improvement,
both on average and for all languages except Czech,

6The only exception to this pattern is the result for MaltMST

on Swedish, where we see an unexpected drop in accuracy com-
pared to the base model.
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Figure 3: Dependency arc precision/recall relative to predicted/gold for (a) dependency length and (b) distance to root.

German, Portuguese and Slovene. Finally, given
that the two base models had the previously best
performance for these data sets, the guided models
achieve a substantial improvement of the state of the
art. While there is no statistically significant differ-
ence between the two base models, they are both
outperformed by MaltMST (p < 0.0001), which in
turn has significantly lower accuracy than MSTMalt

(p < 0.0005).
An extension to the models described so far would

be to iteratively integrate the two parsers in the
spirit of pipeline iteration (Hollingshead and Roark,
2007). For example, one could start with a Malt
model, use it to train a guided MSTMalt model, then
use that as the guide to train a MaltMSTMalt

model,
etc. We ran such experiments, but found that accu-
racy did not increase significantly and in some cases
decreased slightly. This was true regardless of which
parser began the iterative process. In retrospect, this
result is not surprising. Since the initial integration
effectively incorporates knowledge from both pars-
ing systems, there is little to be gained by adding
additional parsers in the chain.

4.2 Analysis

The experimental results presented so far show that
feature-based integration is a viable approach for
improving the accuracy of both graph-based and
transition-based models for dependency parsing, but
they say very little about how the integration benefits

the two models and what aspects of the parsing pro-
cess are improved as a result. In order to get a better
understanding of these matters, we replicate parts of
the error analysis presented by McDonald and Nivre
(2007), where parsing errors are related to different
structural properties of sentences and their depen-
dency graphs. For each of the four models evalu-
ated, we compute error statistics for labeled attach-
ment over all twelve languages together.

Figure 2 shows accuracy in relation to sentence
length, binned into ten-word intervals (1–10, 11-20,
etc.). As expected, Malt and MST have very simi-
lar accuracy for short sentences but Malt degrades
more rapidly with increasing sentence length be-
cause of error propagation (McDonald and Nivre,
2007). The guided models, MaltMST and MSTMalt,
behave in a very similar fashion with respect to each
other but both outperform their base parser over the
entire range of sentence lengths. However, except
for the two extreme data points (0–10 and 51–60)
there is also a slight tendency for MaltMST to im-
prove more for longer sentences and for MSTMalt to
improve more for short sentences, which indicates
that the feature-based integration allows one parser
to exploit the strength of the other.

Figure 3(a) plots precision (top) and recall (bot-
tom) for dependency arcs of different lengths (pre-
dicted arcs for precision, gold standard arcs for re-
call). With respect to recall, the guided models ap-
pear to have a slight advantage over the base mod-
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Part of Speech MST MSTMalt Malt MaltMST

Verb 82.6 85.1 (2.5) 81.9 84.3 (2.4)

Noun 80.0 81.7 (1.7) 80.7 81.9 (1.2)

Pronoun 88.4 89.4 (1.0) 89.2 89.3 (0.1)

Adjective 89.1 89.6 (0.5) 87.9 89.0 (1.1)

Adverb 78.3 79.6 (1.3) 77.4 78.1 (0.7)

Adposition 69.9 71.5 (1.6) 68.8 70.7 (1.9)

Conjunction 73.1 74.9 (1.8) 69.8 72.5 (2.7)

Table 3: Accuracy relative to dependent part of speech
(improvement in percentage points).

els for short and medium distance arcs. With re-
spect to precision, however, there are two clear pat-
terns. First, the graph-based models have better pre-
cision than the transition-based models when pre-
dicting long arcs, which is compatible with the re-
sults of McDonald and Nivre (2007). Secondly, both
the guided models have better precision than their
base model and, for the most part, also their guide
model. In particular MSTMalt outperforms MST and
is comparable to Malt for short arcs. More inter-
estingly, MaltMST outperforms both Malt and MST
for arcs up to length 9, which provides evidence that
MaltMST has learned specifically to trust the guide
features from MST for longer dependencies. The
reason that accuracy does not improve for dependen-
cies of length greater than 9 is probably that these
dependencies are too rare for MaltMST to learn from
the guide parser in these situations.

Figure 3(b) shows precision (top) and recall (bot-
tom) for dependency arcs at different distances from
the root (predicted arcs for precision, gold standard
arcs for recall). Again, we find the clearest pat-
terns in the graphs for precision, where Malt has
very low precision near the root but improves with
increasing depth, while MST shows the opposite
trend (McDonald and Nivre, 2007). Considering
the guided models, it is clear that MaltMST im-
proves in the direction of its guide model, with a
5-point increase in precision for dependents of the
root and smaller improvements for longer distances.
Similarly, MSTMalt improves precision in the range
where its base parser is inferior to Malt and for dis-
tances up to 4 has an accuracy comparable to or
higher than its guide parser Malt. This again pro-
vides evidence that the guided parsers are learning
from their guide models.

Table 3 gives the accuracy for arcs relative to de-

pendent part-of-speech. As expected, we see that
MST does better than Malt for all categories except
nouns and pronouns (McDonald and Nivre, 2007).
But we also see that the guided models in all cases
improve over their base parser and, in most cases,
also over their guide parser. The general trend is that
MST improves more than Malt, except for adjectives
and conjunctions, where Malt has a greater disad-
vantage from the start and therefore benefits more
from the guide features.

Considering the results for parts of speech, as well
as those for dependency length and root distance, it
is interesting to note that the guided models often
improve even in situations where their base parsers
are more accurate than their guide models. This sug-
gests that the improvement is not a simple function
of the raw accuracy of the guide model but depends
on the fact that labeled dependency decisions inter-
act in inference algorithms for both graph-based and
transition-based parsing systems. Thus, if a parser
can improve its accuracy on one class of dependen-
cies, e.g., longer ones, then we can expect to see im-
provements on all types of dependencies – as we do.

The interaction between different decisions may
also be part of the explanation why MST benefits
more from the feature-based integration than Malt,
with significantly higher accuracy for MSTMalt than
for MaltMST as a result. Since inference is global
(or practically global) in the graph-based model,
an improvement in one type of dependency has a
good chance of influencing the accuracy of other de-
pendencies, whereas in the transition-based model,
where inference is greedy, some of these additional
benefits will be lost because of error propagation.
This is reflected in the error analysis in the following
recurrent pattern: Where Malt does well, MaltMST

does only slightly better. But where MST is good,
MSTMalt is often significantly better.

Another part of the explanation may have to do
with the learning algorithms used by the systems.
Although both Malt and MST use discriminative
algorithms, Malt uses a batch learning algorithm
(SVM) and MST uses an online learning algorithm
(MIRA). If the original rich feature representation
of Malt is sufficient to separate the training data,
regularization may force the weights of the guided
features to be small (since they are not needed at
training time). On the other hand, an online learn-
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ing algorithm will recognize the guided features as
strong indicators early in training and give them a
high weight as a result. Features with high weight
early in training tend to have the most impact on the
final classifier due to both weight regularization and
averaging. This is in fact observed when inspecting
the weights of MSTMalt.

5 Related Work

Combinations of graph-based and transition-based
models for data-driven dependency parsing have
previously been explored by Sagae and Lavie
(2006), who report improvements of up to 1.7 per-
centage points over the best single parser when
combining three transition-based models and one
graph-based model for unlabeled dependency pars-
ing, evaluated on data from the Penn Treebank. The
combined parsing model is essentially an instance of
the graph-based model, where arc scores are derived
from the output of the different component parsers.
Unlike the models presented here, integration takes
place only at parsing time, not at learning time, and
requires at least three different base parsers. The
same technique was used by Hall et al. (2007) to
combine six transition-based parsers in the best per-
forming system in the CoNLL 2007 shared task.

Feature-based integration in the sense of letting a
subset of the features for one model be derived from
the output of a different model has been exploited
for dependency parsing by McDonald (2006), who
trained an instance of MSTParser using features
generated by the parsers of Collins (1999) and Char-
niak (2000), which improved unlabeled accuracy by
1.7 percentage points, again on data from the Penn
Treebank. In addition, feature-based integration has
been used by Taskar et al. (2005), who trained a
discriminative word alignment model using features
derived from the IBM models, and by Florian et al.
(2004), who trained classifiers on auxiliary data to
guide named entity classifiers.

Feature-based integration also has points in com-
mon with co-training, which have been applied to
syntactic parsing by Sarkar (2001) and Steedman et
al. (2003), among others. The difference, of course,
is that standard co-training is a weakly supervised
method, where guide features replace, rather than
complement, the gold standard annotation during

training. Feature-based integration is also similar to
parse re-ranking (Collins, 2000), where one parser
produces a set of candidate parses and a second-
stage classifier chooses the most likely one. How-
ever, feature-based integration is not explicitly con-
strained to any parse decisions that the guide model
might make and only the single most likely parse is
used from the guide model, making it significantly
more efficient than re-ranking.

Finally, there are several recent developments in
data-driven dependency parsing, which can be seen
as targeting the specific weaknesses of graph-based
and transition-based models, respectively, though
without integrating the two models. Thus, Naka-
gawa (2007) and Hall (2007) both try to overcome
the limited feature scope of graph-based models by
adding global features, in the former case using
Gibbs sampling to deal with the intractable infer-
ence problem, in the latter case using a re-ranking
scheme. For transition-based models, the trend is
to alleviate error propagation by abandoning greedy,
deterministic inference in favor of beam search with
globally normalized models for scoring transition
sequences, either generative (Titov and Henderson,
2007a; Titov and Henderson, 2007b) or conditional
(Duan et al., 2007; Johansson and Nugues, 2007).

6 Conclusion

In this paper, we have demonstrated how the two
dominant approaches to data-driven dependency
parsing, graph-based models and transition-based
models, can be integrated by letting one model learn
from features generated by the other. Our experi-
mental results show that both models consistently
improve their accuracy when given access to fea-
tures generated by the other model, which leads to
a significant advancement of the state of the art in
data-driven dependency parsing. Moreover, a com-
parative error analysis reveals that the improvements
are largely predictable from theoretical properties of
the two models, in particular the tradeoff between
global learning and inference, on the one hand, and
rich feature representations, on the other. Directions
for future research include a more detailed analysis
of the effect of feature-based integration, as well as
the exploration of other strategies for integrating dif-
ferent parsing models.
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