
Proceedings of ACL-08: HLT, pages 568–576,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Automatic Syllabification with Structured SVMs
for Letter-To-Phoneme Conversion

Susan Bartlett† Grzegorz Kondrak† Colin Cherry‡

†Department of Computing Science ‡Microsoft Research
University of Alberta One Microsoft Way

Edmonton, AB, T6G 2E8, Canada Redmond, WA, 98052
{susan,kondrak}@cs.ualberta.ca colinc@microsoft.com

Abstract

We present the first English syllabification
system to improve the accuracy of letter-to-
phoneme conversion. We propose a novel dis-
criminative approach to automatic syllabifica-
tion based on structured SVMs. In comparison
with a state-of-the-art syllabification system,
we reduce the syllabification word error rate
for English by 33%. Our approach also per-
forms well on other languages, comparing fa-
vorably with published results on German and
Dutch.

1 Introduction

Pronouncing an unfamiliar word is a task that is of-
ten accomplished by breaking the word down into
smaller components. Even small children learn-
ing to read are taught to pronounce a word by
“sounding out” its parts. Thus, it is not surprising
that Letter-to-Phoneme (L2P) systems, which con-
vert orthographic forms of words into sequences of
phonemes, can benefit from subdividing the input
word into smaller parts, such as syllables or mor-
phemes. Marchand and Damper (2007) report that
incorporating oracle syllable boundary information
improves the accuracy of their L2P system, but they
fail to emulate that result with any of their automatic
syllabification methods. Demberg et al. (2007), on
the other hand, find that morphological segmenta-
tion boosts L2P performance in German, but not in
English. To our knowledge, no previous English
orthographic syllabification system has been able
to actually improve performance on the larger L2P
problem.

In this paper, we focus on the task of automatic
orthographic syllabification, with the explicit goal

of improving L2P accuracy. A syllable is a subdi-
vision of a word, typically consisting of a vowel,
called the nucleus, and the consonants preceding and
following the vowel, called the onset and the coda,
respectively. Although in the strict linguistic sense
syllables are phonological rather than orthographic
entities, our L2P objective constrains the input to or-
thographic forms. Syllabification of phonemic rep-
resentation is in fact an easier task, which we plan to
address in a separate publication.

Orthographic syllabification is sometimes re-
ferred to as hyphenation. Many dictionaries pro-
vide hyphenation information for orthographic word
forms. These hyphenation schemes are related to,
and influenced by, phonemic syllabification. They
serve two purposes: to indicate where words may
be broken for end-of-line divisions, and to assist the
dictionary reader with correct pronunciation (Gove,
1993). Although these purposes are not always con-
sistent with our objective, we show that we can im-
prove L2P conversion by taking advantage of the
available hyphenation data. In addition, automatic
hyphenation is a legitimate task by itself, which
could be utilized in word editors or in synthesizing
new trade names from several concepts.

We present a discriminative approach to ortho-
graphic syllabification. We formulate syllabifica-
tion as a tagging problem, and learn a discriminative
tagger from labeled data using a structured support
vector machine (SVM) (Tsochantaridis et al., 2004).
With this approach, we reduce the error rate for En-
glish by 33%, relative to the best existing system.
Moreover, we are also able to improve a state-of-the-
art L2P system by incorporating our syllabification
models. Our method is not language specific; when
applied to German and Dutch, our performance is

568

comparable with the best existing systems in those
languages, even though our system has been devel-
oped and tuned on English only.

The paper is structured as follows. After dis-
cussing previous computational approaches to the
problem (Section 2), we introduce structured SVMs
(Section 3), and outline how we apply them to ortho-
graphic syllabification (Section 4). We present our
experiments and results for the syllabification task
in Section 5. In Section 6, we apply our syllabifica-
tion models to the L2P task. Section 7 concludes.

2 Related Work

Automatic preprocessing of words is desirable be-
cause the productive nature of language ensures that
no finite lexicon will contain all words. Marchand
et al. (2007) show that rule-based methods are rela-
tively ineffective for orthographic syllabification in
English. On the other hand, few data-driven syllabi-
fication systems currently exist.

Demberg (2006) uses a fourth-order Hidden
Markov Model to tackle orthographic syllabification
in German. When added to her L2P system, Dem-
berg’s orthographic syllabification model effects a
one percent absolute improvement in L2P word ac-
curacy.

Bouma (2002) explores syllabification in Dutch.
He begins with finite state transducers, which es-
sentially implement a general preference for onsets.
Subsequently, he uses transformation-based learning
to automatically extract rules that improve his sys-
tem. Bouma’s best system, trained on some 250K
examples, achieves 98.17% word accuracy. Daele-
mans and van den Bosch (1992) implement a back-
propagation network for Dutch orthography, but find
it is outperformed by less complex look-up table ap-
proaches.

Marchand and Damper (2007) investigate the im-
pact of syllabification on the L2P problem in En-
glish. Their Syllabification by Analogy (SbA) algo-
rithm is a data-driven, lazy learning approach. For
each input word, SbA finds the most similar sub-
strings in a lexicon of syllabified words and then
applies these dictionary syllabifications to the input
word. Marchand and Damper report 78.1% word ac-
curacy on the NETtalk dataset, which is not good
enough to improve their L2P system.

Chen (2003) uses an n-gram model and Viterbi
decoder as a syllabifier, and then applies it as a pre-
processing step in his maximum-entropy-based En-
glish L2P system. He finds that the syllabification
pre-processing produces no gains over his baseline
system.

Marchand et al. (2007) conduct a more systematic
study of existing syllabification approaches. They
examine syllabification in both the pronunciation
and orthographic domains, comparing their own
SbA algorithm with several instance-based learning
approaches (Daelemans et al., 1997; van den Bosch,
1997) and rule-based implementations. They find
that SbA universally outperforms these other ap-
proaches by quite a wide margin.

Syllabification of phonemes, rather than letters,
has also been investigated (Müller, 2001; Pearson
et al., 2000; Schmid et al., 2007). In this paper, our
focus is on orthographic forms. However, as with
our approach, some previous work in the phonetic
domain has formulated syllabification as a tagging
problem.

3 Structured SVMs

A structured support vector machine (SVM) is a
large-margin training method that can learn to pre-
dict structured outputs, such as tag sequences or
parse trees, instead of performing binary classifi-
cation (Tsochantaridis et al., 2004). We employ a
structured SVM that predicts tag sequences, called
an SVM Hidden Markov Model, or SVM-HMM.
This approach can be considered an HMM because
the Viterbi algorithm is used to find the highest scor-
ing tag sequence for a given observation sequence.
The scoring model employs a Markov assumption:
each tag’s score is modified only by the tag that came
before it. This approach can be considered an SVM
because the model parameters are trained discrimi-
natively to separate correct tag sequences from in-
correct ones by as large a margin as possible. In
contrast to generative HMMs, the learning process
requires labeled training data.

There are a number of good reasons to apply the
structured SVM formalism to this problem. We get
the benefit of discriminative training, not available
in a generative HMM. Furthermore, we can use an
arbitrary feature representation that does not require

569

any conditional independence assumptions. Unlike
a traditional SVM, the structured SVM considers
complete tag sequences during training, instead of
breaking each sequence into a number of training
instances.

Training a structured SVM can be viewed as a
multi-class classification problem. Each training in-
stance xi is labeled with a correct tag sequence yi

drawn from a set of possible tag sequences Yi. As
is typical of discriminative approaches, we create a
feature vector Ψ(x, y) to represent a candidate y and
its relationship to the input x. The learner’s task is
to weight the features using a vector w so that the
correct tag sequence receives more weight than the
competing, incorrect sequences:

∀i∀y∈Yi,y 6=yi
[Ψ(xi, yi) · w > Ψ(xi, y) · w] (1)

Given a trained weight vector w, the SVM tags new
instances xi according to:

argmaxy∈Yi
[Ψ(xi, y) · w] (2)

A structured SVM finds a w that satisfies Equation 1,
and separates the correct taggings by as large a mar-
gin as possible. The argmax in Equation 2 is con-
ducted using the Viterbi algorithm.

Equation 1 is a simplification. In practice, a struc-
tured distance term is added to the inequality in
Equation 1 so that the required margin is larger for
tag sequences that diverge further from the correct
sequence. Also, slack variables are employed to al-
low a trade-off between training accuracy and the
complexity of w, via a tunable cost parameter.

For most structured problems, the set of negative
sequences in Yi is exponential in the length of xi,
and the constraints in Equation 1 cannot be explicitly
enumerated. The structured SVM solves this prob-
lem with an iterative online approach:

1. Collect the most damaging incorrect sequence
y according to the current w.

2. Add y to a growing set Ȳi of incorrect se-
quences.

3. Find a w that satisfies Equation 1, using the par-
tial Ȳi sets in place of Yi.

4. Go to next training example, loop to step 1.

This iterative process is explained in far more detail
in (Tsochantaridis et al., 2004).

4 Syllabification with Structured SVMs

In this paper we apply structured SVMs to the syl-
labification problem. Specifically, we formulate
syllabification as a tagging problem and apply the
SVM-HMM software package1 (Altun et al., 2003).
We use a linear kernel, and tune the SVM’s cost pa-
rameter on a development set. The feature represen-
tation Ψ consists of emission features, which pair
an aspect of x with a single tag from y, and transi-
tion features, which count tag pairs occurring in y.
With SVM-HMM, the crux of the task is to create
a tag scheme and feature set that produce good re-
sults. In this section, we discuss several different
approaches to tagging for the syllabification task.
Subsequently, we outline our emission feature rep-
resentation. While developing our tagging schemes
and feature representation, we used a development
set of 5K words held out from our CELEX training
data. All results reported in this section are on that
set.

4.1 Annotation Methods

We have employed two different approaches to tag-
ging in this research. Positional tags capture where
a letter occurs within a syllable; Structural tags ex-
press the role each letter is playing within the sylla-
ble.

Positional Tags

The NB tag scheme simply labels every letter
as either being at a syllable boundary (B), or not
(N). Thus, the word im-mor-al-ly is tagged 〈N B N
N B N B N N〉, indicating a syllable boundary af-
ter each B tag. This binary classification approach
to tagging is implicit in several previous imple-
mentations (Daelemans and van den Bosch, 1992;
Bouma, 2002), and has been done explicitly in both
the orthographic (Demberg, 2006) and phoneme do-
mains (van den Bosch, 1997).

A weakness of NB tags is that they encode no
knowledge about the length of a syllable. Intuitively,
we expect the length of a syllable to be valuable in-
formation — most syllables in English contain fewer
than four characters. We introduce a tagging scheme
that sequentially numbers the N tags to impart infor-
mation about syllable length. Under the Numbered

1http://svmlight.joachims.org/svm struct.html

570

NB tag scheme, im-mor-al-ly is annotated as 〈N1 B
N1 N2 B N1 B N1 N2〉. With this tag set, we have
effectively introduced a bias in favor of shorter syl-
lables: tags like N6, N7. . . are comparatively rare, so
the learner will postulate them only when the evi-
dence is particularly compelling.

Structural Tags

Numbered NB tags are more informative than
standard NB tags. However, neither annotation sys-
tem can represent the internal structure of the sylla-
ble. This has advantages: tags can be automatically
generated from a list of syllabified words without
even a passing familiarity with the language. How-
ever, a more informative annotation, tied to phono-
tactics, ought to improve accuracy. Krenn (1997)
proposes the ONC tag scheme, in which phonemes
of a syllable are tagged as an onset, nucleus, or coda.
Given these ONC tags, syllable boundaries can eas-
ily be generated by applying simple regular expres-
sions.

Unfortunately, it is not as straightforward to gen-
erate ONC-tagged training data in the orthographic
domain, even with syllabified training data. Silent
letters are problematic, and some letters can behave
differently depending on their context (in English,
consonants such as m, y, and l can act as vowels in
certain situations). Thus, it is difficult to generate
ONC tags for orthographic forms without at least a
cursory knowledge of the language and its princi-
ples.

For English, tagging the syllabified training set
with ONC tags is performed by the following sim-
ple algorithm. In the first stage, all letters from the
set {a, e, i, o, u} are marked as vowels, while the re-
maining letters are marked as consonants. Next, we
examine all the instances of the letter y. If a y is both
preceded and followed by a consonant, we mark that
instance as a vowel rather than a consonant. In the
second stage, the first group of consecutive vowels
in each syllable is tagged as nucleus. All letters pre-
ceding the nucleus are then tagged as onset, while
all letters following the nucleus are tagged as coda.

Our development set experiments suggested that
numbering ONC tags increases their performance.
Under the Numbered ONC tag scheme, the single-
syllable word stealth is labeled 〈O1 O2 N1 N2 C1
C2 C3〉.

A disadvantage of Numbered ONC tags is that,
unlike positional tags, they do not represent sylla-
ble breaks explicitly. Within the ONC framework,
we need the conjunction of two tags (such as an N1
tag followed by an O1 tag) to represent the division
between syllables. This drawback can be overcome
by combining ONC tags and NB tags in a hybrid
Break ONC tag scheme. Using Break ONC tags,
the word lev-i-ty is annotated as 〈O N CB NB O N〉.
The 〈NB〉 tag indicates a letter is both part of the
nucleus and before a syllable break, while the 〈N〉
tag represents a letter that is part of a nucleus but
in the middle of a syllable. In this way, we get the
best of both worlds: tags that encapsulate informa-
tion about syllable structure, while also representing
syllable breaks explicitly with a single tag.

4.2 Emission Features

SVM-HMM predicts a tag for each letter in a word,
so emission features use aspects of the input to help
predict the correct tag for a specific letter. Consider
the tag for the letter o in the word immorally. With
a traditional HMM, we consider only that it is an
o being emitted, and assess potential tags based on
that single letter. The SVM framework is less re-
strictive: we can include o as an emission feature,
but we can also include features indicating that the
preceding and following letters are m and r respec-
tively. In fact, there is no reason to confine ourselves
to only one character on either side of the focus let-
ter.

After experimenting with the development set, we
decided to include in our feature set a window of
eleven characters around the focus character, five
on either side. Figure 1 shows that performance
gains level off at this point. Special beginning- and
end-of-word characters are appended to words so
that every letter has five characters before and af-
ter. We also experimented with asymmetric context
windows, representing more characters after the fo-
cus letter than before, but we found that symmetric
context windows perform better.

Because our learner is effectively a linear classi-
fier, we need to explicitly represent any important
conjunctions of features. For example, the bigram
bl frequently occurs within a single English sylla-
ble, while the bigram lb generally straddles two syl-
lables. Similarly, a fourgram like tion very often

571

Figure 1: Word accuracy as a function of the window size
around the focus character, using unigram features on the
development set.

forms a syllable in and of itself. Thus, in addition
to the single-letter features outlined above, we also
include in our representation any bigrams, trigrams,
four-grams, and five-grams that fit inside our con-
text window. As is apparent from Figure 2, we see
a substantial improvement by adding bigrams to our
feature set. Higher-order n-grams produce increas-
ingly smaller gains.

Figure 2: Word accuracy as a function of maximum n-
gram size on the development set.

In addition to these primary n-gram features,
we experimented with linguistically-derived fea-
tures. Intuitively, basic linguistic knowledge, such
as whether a letter is a consonant or a vowel, should
be helpful in determining syllabification. However,
our experiments suggested that including features
like these has no significant effect on performance.
We believe that this is caused by the ability of the
SVM to learn such generalizations from the n-gram
features alone.

5 Syllabification Experiments

In this section, we will discuss the results of our best
emission feature set (five-gram features with a con-
text window of eleven letters) on held-out unseen
test sets. We explore several different languages and
datasets, and perform a brief error analysis.

5.1 Datasets

Datasets are especially important in syllabification
tasks. Dictionaries sometimes disagree on the syl-
labification of certain words, which makes a gold
standard difficult to obtain. Thus, any reported ac-
curacy is only with respect to a given set of data.

In this paper, we report the results of experi-
ments on two datasets: CELEX and NETtalk. We
focus mainly on CELEX, which has been devel-
oped over a period of years by linguists in the
Netherlands. CELEX contains English, German,
and Dutch words, and their orthographic syllabifi-
cations. We removed all duplicates and multiple-
word entries for our experiments. The NETtalk dic-
tionary was originally developed with the L2P task
in mind. The syllabification data in NETtalk was
created manually in the phoneme domain, and then
mapped directly to the letter domain.

NETtalk and CELEX do not provide the same
syllabification for every word. There are numer-
ous instances where the two datasets differ in a per-
fectly reasonable manner (e.g. for-ging in NETtalk
vs. forg-ing in CELEX). However, we argue that
NETtalk is a vastly inferior dataset. On a sample of
50 words, NETtalk agrees with Merriam-Webster’s
syllabifications in only 54% of instances, while
CELEX agrees in 94% of cases. Moreover, NETtalk
is riddled with truly bizarre syllabifications, such as
be-aver, dis-hcloth and som-ething. These syllabifi-
cations make generalization very hard, and are likely
to complicate the L2P task we ultimately want to
accomplish. Because previous work in English pri-
marily used NETtalk, we report our results on both
datasets. Nevertheless, we believe NETtalk is un-
suitable for building a syllabification model, and that
results on CELEX are much more indicative of the
efficacy of our (or any other) approach.

At 20K words, NETtalk is much smaller than
CELEX. For NETtalk, we randomly divide the data
into 13K training examples and 7K test words. We

572

randomly select a comparably-sized training set for
our CELEX experiments (14K), but test on a much
larger, 25K set. Recall that 5K training examples
were held out as a development set.

5.2 Results

We report the results using two metrics. Word ac-
curacy (WA) measures how many words match the
gold standard. Syllable break error rate (SBER) cap-
tures the incorrect tags that cause an error in syl-
labification. Word accuracy is the more demand-
ing metric. We compare our system to Syllabifica-
tion by Analogy (SbA), the best existing system for
English (Marchand and Damper, 2007). For both
CELEX and NETtalk, SbA was trained and tested
with the same data as our structured SVM approach.

Data Set Method WA SBER

CELEX

NB tags 86.66 2.69
Numbered NB 89.45 2.51
Numbered ONC 89.86 2.50
Break ONC 89.99 2.42
SbA 84.97 3.96

NETtalk Numbered NB 81.75 5.01
SbA 75.56 7.73

Table 1: Syllabification performance in terms of word ac-
curacy and syllable break error percentage.

Table 1 presents the word accuracy and syllable
break error rate achieved by each of our tag sets on
both the CELEX and NETtalk datasets. Of our four
tag sets, NB tags perform noticeably worse. This is
an important result because it demonstrates that it is
not sufficient to simply model a syllable’s bound-
aries; we must also model a syllable’s length or
structure to achieve the best results. Given the simi-
larity in word accuracy scores, it is difficult to draw
definitive conclusions about the remaining three tags
sets, but it does appear that there is an advantage to
modeling syllable structure, as both ONC tag sets
score better than the best NB set.

All variations of our system outperform SbA on
both datasets. Overall, our best tag set lowers the er-
ror rate by one-third, relative to SbA’s performance.
Note that we employ only numbered NB tags for
the NETtalk test; we could not apply structural tag
schemes to the NETtalk training data because of its

bizarre syllabification choices.
Our higher level of accuracy is also achieved more

efficiently. Once a model is learned, our system
can syllabify 25K words in about a minute, while
SbA requires several hours (Marchand, 2007). SVM
training times vary depending on the tag set and
dataset used, and the number of training examples.
On 14K CELEX examples with the ONC tag set,
our model trained in about an hour, on a single-
processor P4 3.4GHz processor. Training time is,
of course, a one-time cost. This makes our approach
much more attractive for inclusion in an actual L2P
system.

Figure 3 shows our method’s learning curve. Even
small amounts of data produce adequate perfor-
mance — with only 2K training examples, word ac-
curacy is already over 75%. Using a 60K training
set and testing on a held-out 5K set, we see word
accuracies climb to 95.65%.

Figure 3: Word accuracy as function of the size of the
training data.

5.3 Error Analysis

We believe that the reason for the relatively low per-
formance of unnumbered NB tags is the weakness of
the signal coming from NB emission features. With
the exception of q and x, every letter can take on
either an N tag or a B tag with almost equal proba-
bility. This is not the case with Numbered NB tags.
Vowels are much more likely to have N2 or N3 tags
(because they so often appear in the middle of a
syllable), while consonants take on N1 labels with
greater probability.

The numbered NB and ONC systems make many
of the same errors, on words that we might expect to

573

cause difficulty. In particular, both suffer from be-
ing unaware of compound nouns and morphological
phenomena. All three systems, for example, incor-
rectly syllabify hold-o-ver as hol-dov-er. This kind
of error is caused by a lack of knowledge of the com-
ponent words. The three systems also display trou-
ble handling consecutive vowels, as when co-ad-ju-
tors is syllabified incorrectly as coad-ju-tors. Vowel
pairs such as oa are not handled consistently in En-
glish, and the SVM has trouble predicting the excep-
tions.

5.4 Other Languages

We take advantage of the language-independence of
Numbered NB tags to apply our method to other lan-
guages. Without even a cursory knowledge of Ger-
man or Dutch, we have applied our approach to these
two languages.

Data Points Dutch German
∼ 50K 98.20 98.81
∼ 250K 99.45 99.78

Table 2: Syllabification performance in terms of word ac-
curacy percentage.

We have randomly selected two training sets from
the German and Dutch portions of CELEX. Our
smaller model is trained on ∼ 50K words, while our
larger model is trained on ∼ 250K. Table 2 shows
our performance on a 30K test set held out from both
training sets. Results from both the small and large
models are very good indeed.

Our performance on these language sets is clearly
better than our best score for English (compare at
95% with a comparable amount of training data).
Syllabification is a more regular process in German
and Dutch than it is in English, which allows our
system to score higher on those languages.

Our method’s word accuracy compares favor-
ably with other methods. Bouma’s finite state ap-
proach for Dutch achieves 96.49% word accuracy
using 50K training points, while we achieve 98.20%.
With a larger model, trained on about 250K words,
Bouma achieves 98.17% word accuracy, against our
99.45%. Demberg (2006) reports that her HMM
approach for German scores 97.87% word accu-
racy, using a 90/10 training/test split on the CELEX

dataset. On the same set, Demberg et al. (2007) ob-
tain 99.28% word accuracy by applying the system
of Schmid et al. (2007). Our score using a similar
split is 99.78%.

Note that none of these scores are directly com-
parable, because we did not use the same train-test
splits as our competitors, just similar amounts of
training and test data. Furthermore, when assem-
bling random train-test splits, it is quite possible
that words sharing the same lemma will appear in
both the training and test sets. This makes the prob-
lem much easier with large training sets, where the
chance of this sort of overlap becomes high. There-
fore, any large data results may be slightly inflated
as a prediction of actual out-of-dictionary perfor-
mance.

6 L2P Performance

As we stated from the outset, one of our primary mo-
tivations for exploring orthographic syllabification is
the improvements it can produce in L2P systems.
To explore this, we tested our model in conjunc-
tion with a recent L2P system that has been shown
to predict phonemes with state-of-the-art word ac-
curacy (Jiampojamarn et al., 2007). Using a model
derived from training data, this L2P system first di-
vides a word into letter chunks, each containing one
or two letters. A local classifier then predicts a num-
ber of likely phonemes for each chunk, with confi-
dence values. A phoneme-sequence Markov model
is then used to select the most likely sequence from
the phonemes proposed by the local classifier.

Syllabification English Dutch German
None 84.67 91.56 90.18
Numbered NB 85.55 92.60 90.59
Break ONC 85.59 N/A N/A
Dictionary 86.29 93.03 90.57

Table 3: Word accuracy percentage on the letter-to-
phoneme task with and without the syllabification infor-
mation.

To measure the improvement syllabification can
effect on the L2P task, the L2P system was trained
with syllabified, rather than unsyllabified words.
Otherwise, the execution of the L2P system remains
unchanged. Data for this experiment is again drawn

574

from the CELEX dictionary. In Table 3, we re-
port the average word accuracy achieved by the L2P
system using 10-fold cross-validation. We report
L2P performance without any syllabification infor-
mation, with perfect dictionary syllabification, and
with our small learned models of syllabification.
L2P performance with dictionary syllabification rep-
resents an approximate upper bound on the contribu-
tions of our system.

Our syllabification model improves L2P perfor-
mance. In English, perfect syllabification produces
a relative error reduction of 10.6%, and our model
captures over half of the possible improvement, re-
ducing the error rate by 6.0%. To our knowledge,
this is the first time a syllabification model has im-
proved L2P performance in English. Previous work
includes Marchand and Damper (2007)’s experi-
ments with SbA and the L2P problem on NETtalk.
Although perfect syllabification reduces their L2P
relative error rate by 18%, they find that their learned
model actually increases the error rate. Chen (2003)
achieved word accuracy of 91.7% for his L2P sys-
tem, testing on a different dictionary (Pronlex) with
a much larger training set. He does not report word
accuracy for his syllabification model. However, his
baseline L2P system is not improved by adding a
syllabification model.

For Dutch, perfect syllabification reduces the rela-
tive L2P error rate by 17.5%; we realize over 70% of
the available improvement with our syllabification
model, reducing the relative error rate by 12.4%.

In German, perfect syllabification produces only
a small reduction of 3.9% in the relative error rate.
Experiments show that our learned model actually
produces a slightly higher reduction in the relative
error rate. This anomaly may be due to errors or
inconsistencies in the dictionary syllabifications that
are not replicated in the model output. Previously,
Demberg (2006) generated statistically significant
L2P improvements in German by adding syllabifi-
cation pre-processing. However, our improvements
are coming at a much higher baseline level of word
accuracy – 90% versus only 75%.

Our results also provide some evidence that syl-
labification preprocessing may be more beneficial
to L2P than morphological preprocessing. Dem-
berg et al. (2007) report that oracle morphological
annotation produces a relative error rate reduction

of 3.6%. We achieve a larger decrease at a higher
level of accuracy, using an automatic pre-processing
technique. This may be because orthographic syl-
labifications already capture important facts about a
word’s morphology.

7 Conclusion

We have applied structured SVMs to the syllabifi-
cation problem, clearly outperforming existing sys-
tems. In English, we have demonstrated a 33% rela-
tive reduction in error rate with respect to the state of
the art. We used this improved syllabification to in-
crease the letter-to-phoneme accuracy of an existing
L2P system, producing a system with 85.5% word
accuracy, and recovering more than half of the po-
tential improvement available from perfect syllab-
ification. This is the first time automatic syllabi-
fication has been shown to improve English L2P.
Furthermore, we have demonstrated the language-
independence of our system by producing compet-
itive orthographic syllabification solutions for both
Dutch and German, achieving word syllabification
accuracies of 98% and 99% respectively. These
learned syllabification models also improve accu-
racy for German and Dutch letter-to-phoneme con-
version.

In future work on this task, we plan to explore
adding morphological features to the SVM, in an ef-
fort to overcome errors in compound words and in-
flectional forms. We would like to experiment with
performing L2P and syllabification jointly, rather
than using syllabification as a pre-processing step
for L2P. We are also working on applying our
method to phonetic syllabification.

Acknowledgements

Many thanks to Sittichai Jiampojamarn for his help
with the L2P experiments, and to Yannick Marchand
for providing the SbA results.

This research was supported by the Natural Sci-
ences and Engineering Research Council of Canada
and the Alberta Informatics Circle of Research Ex-
cellence.

References

Yasemin Altun, Ioannis Tsochantaridis, and Thomas
Hofmann. 2003. Hidden Markov support vector ma-

575

chines. Proceedings of the 20th International Confer-
ence on Machine Learning (ICML), pages 3–10.

Susan Bartlett. 2007. Discriminative approach to auto-
matic syllabification. Master’s thesis, Department of
Computing Science, University of Alberta.

Gosse Bouma. 2002. Finite state methods for hyphen-
ation. Natural Language Engineering, 1:1–16.

Stanley Chen. 2003. Conditional and joint models for
grapheme-to-phoneme conversion. Proceedings of the
8th European Conference on Speech Communication
and Technology (Eurospeech).

Walter Daelemans and Antal van den Bosch. 1992.
Generalization performance of backpropagation learn-
ing on a syllabification task. Proceedings of the 3rd
Twente Workshop on Language Technology, pages 27–
38.

Walter Daelemans, Antal van den Bosch, and Ton Wei-
jters. 1997. IGTree: Using trees for compression and
classification in lazy learning algorithms. Artificial In-
telligence Review, pages 407–423.

Vera Demberg, Helmust Schmid, and Gregor Möhler.
2007. Phonological constraints and morphological
preprocessing for grapheme-to-phoneme conversion.
Proceedings of the 45th Annual Meeting of the Associ-
ation of Computational Linguistics (ACL).

Vera Demberg. 2006. Letter-to-phoneme conversion for
a German text-to-speech system. Master’s thesis, Uni-
versity of Stuttgart.

Philip Babcock Gove, editor. 1993. Webster’s Third New
International Dictionary of the English Language,
Unabridged. Merriam-Webster Inc.

Sittichai Jiampojamarn, Grzegorz Kondrak, and Tarek
Sherif. 2007. Applying many-to-many alignments
and hidden Markov models to letter-to-phoneme con-
version. Proceedings of the Human Language Tech-
nology Conference of the North American Chapter
of the Association of Computational Linguistics HLT-
NAACL, pages 372–379.

Brigitte Krenn. 1997. Tagging syllables. Proceedings of
Eurospeech, pages 991–994.

Yannick Marchand and Robert Damper. 2007. Can syl-
labification improve pronunciation by analogy of En-
glish? Natural Language Engineering, 13(1):1–24.

Yannick Marchand, Connie Adsett, and Robert Damper.
2007. Evaluation of automatic syllabification algo-
rithms for English. In Proceedings of the 6th Inter-
national Speech Communication Association (ISCA)
Workshop on Speech Synthesis.

Yannick Marchand. 2007. Personal correspondence.
Karin Müller. 2001. Automatic detection of syllable

boundaries combining the advantages of treebank and
bracketed corpora training. Proceedings on the 39th
Meeting of the Association for Computational Linguis-
tics (ACL), pages 410–417.

Steve Pearson, Roland Kuhn, Steven Fincke, and Nick
Kibre. 2000. Automatic methods for lexical stress as-
signment and syllabification. In Proceedings of the 6th
International Conference on Spoken Language Pro-
cessing (ICSLP), pages 423–426.

Helmut Schmid, Bernd Möbius, and Julia Weidenkaff.
2007. Tagging syllable boundaries with joint N-gram
models. Proceedings of Interspeech.

Ioannis Tsochantaridis, Thomas Hofmann, Thorsten
Joachims, and Yasemin Altun. 2004. Support vec-
tor machine learning for interdependent and structured
output spaces. Proceedings of the 21st International
Conference on Machine Learning (ICML), pages 823–
830.

Antal van den Bosch. 1997. Learning to pronounce
written words: a study in inductive language learning.
Ph.D. thesis, Universiteit Maastricht.

576

