
Proceedings of ACL-08: HLT, pages 335–343,
Columbus, Ohio, USA, June 2008. c©2008 Association for Computational Linguistics

Parsing Noun Phrase Structure with CCG

David Vadas and James R. Curran
School of Information Technologies

University of Sydney
NSW 2006, Australia

{dvadas1, james}@it.usyd.edu.au

Abstract

Statistical parsing of noun phrase (NP) struc-
ture has been hampered by a lack of gold-
standard data. This is a significant problem for
CCGbank, where binary branchingNP deriva-
tions are often incorrect, a result of the auto-
matic conversion from the Penn Treebank.

We correct these errors in CCGbank using a
gold-standard corpus ofNP structure, result-
ing in a much more accurate corpus. We also
implement novelNER features that generalise
the lexical information needed to parseNPs
and provide important semantic information.
Finally, evaluating against DepBank demon-
strates the effectiveness of our modified cor-
pus and novel features, with an increase in
parser performance of 1.51%.

1 Introduction

Internal noun phrase (NP) structure is not recovered
by a number of widely-used parsers, e.g. Collins
(2003). This is because their training data, the Penn
Treebank (Marcus et al., 1993), does not fully anno-
tateNP structure. The flat structure described by the
Penn Treebank can be seen in this example:

(NP (NN lung) (NN cancer) (NNS deaths))

CCGbank (Hockenmaier and Steedman, 2007) is
the primary English corpus for Combinatory Cate-
gorial Grammar (CCG) (Steedman, 2000) and was
created by a semi-automatic conversion from the
Penn Treebank. However,CCG is a binary branch-
ing grammar, and as such, cannot leaveNP structure
underspecified. Instead,all NPs were made right-
branching, as shown in this example:

(N
(N/N lung)
(N
(N/N cancer) (N deaths)))

This structure is correct for most EnglishNPs and
is the best solution that doesn’t require manual re-
annotation. However, the resulting derivations often
contain errors. This can be seen in the previous ex-
ample, wherelung cancer should form a con-
stituent, but does not.

The first contribution of this paper is to correct
these CCGbank errors. We apply an automatic con-
version process using the gold-standardNP data an-
notated by Vadas and Curran (2007a). Over a quar-
ter of the sentences in CCGbank need to be altered,
demonstrating the magnitude of theNP problem and
how important it is that these errors are fixed.

We then run a number of parsing experiments us-
ing our new version of the CCGbank corpus. In
particular, we implement new features usingNER

tags from the BBN Entity Type Corpus (Weischedel
and Brunstein, 2005). These features are targeted at
improving the recovery ofNP structure, increasing
parser performance by 0.64% F-score.

Finally, we evaluate against DepBank (King et al.,
2003). This corpus annotates internalNP structure,
and so is particularly relevant for the changes we
have made to CCGbank. TheCCGparser now recov-
ers additional structure learnt from ourNP corrected
corpus, increasing performance by 0.92%. Applying
theNER features results in a total increase of 1.51%.

This work allows parsers trained on CCGbank to
model NP structure accurately, and then pass this
crucial information on to downstream systems.

335

(a) (b)

N

N /N

cotton

N

conj

and

N

N /N

acetate

N

fibers

N

N /N

N /N

cotton

N /N [conj]

conj

and

N /N

acetate

N

fibers

Figure 1: (a) IncorrectCCG derivation from Hockenmaier and Steedman (2007) (b) The correct derivation

2 Background

Parsing ofNPs is typically framed asNP bracketing,
where the task is limited to discriminating between
left and right-branchingNPs of three nouns only:

• (crude oil) prices– left-branching
• world (oil prices)– right-branching

Lauer (1995) presents two models to solve this prob-
lem: the adjacency model, which compares the as-
sociation strength between words 1–2 to words 2–3;
and the dependency model, which compares words
1–2 to words 1–3. Lauer (1995) experiments with a
data set of 244NPs, and finds that the dependency
model is superior, achieving 80.7% accuracy.

Most NP bracketing research has used Lauer’s
data set. Because it is a very small corpus, most
approaches have been unsupervised, measuring as-
sociation strength with counts from a separate large
corpus. Nakov and Hearst (2005) use search engine
hit counts and extend the query set with typographi-
cal markers. This results in 89.3% accuracy.

Recently, Vadas and Curran (2007a) annotated in-
ternalNP structure for the entire Penn Treebank, pro-
viding a large gold-standard corpus forNP bracket-
ing. Vadas and Curran (2007b) carry out supervised
experiments using this data set of 36,584NPs, out-
performing the Collins (2003) parser.

The Vadas and Curran (2007a) annotation scheme
insertsNML andJJP brackets to describe the correct
NP structure, as shown below:

(NP (NML (NN lung) (NN cancer))
(NNS deaths))

We use these brackets to determine new gold-
standardCCG derivations in Section 3.

2.1 Combinatory Categorial Grammar

Combinatory Categorial Grammar (CCG) (Steed-
man, 2000) is a type-driven, lexicalised theory of

grammar. Lexical categories (also calledsupertags)
are made up of basic atoms such asS (Sentence)
andNP (Noun Phrase), which can be combined to
form complex categories. For example, a transitive
verb such asbought (as inIBM bought the
company) would have the category:(S\NP)/NP .
The slashes indicate the directionality of arguments,
here two arguments are expected: anNP subject on
the left; and anNP object on the right. Once these
arguments are filled, a sentence is produced.

Categories are combined using combinatory rules
such as forward and backward application:

X /Y Y ⇒ X (>) (1)

Y X \Y ⇒ X (<) (2)

Other rules such as composition and type-raising are
used to analyse some linguistic constructions, while
retaining the canonical categories for each word.
This is an advantage ofCCG, allowing it to recover
long-range dependencies without the need for post-
processing, as is the case for many other parsers.

In Section 1, we described the incorrectNP struc-
tures in CCGbank, but a further problem that high-
lights the need to improveNP derivations is shown
in Figure 1. When a conjunction occurs in anNP, a
non-CCG rule is required in order to reach a parse:

conj N ⇒ N (3)

This rule treats the conjunction in the same manner
as a modifier, and results in the incorrect derivation
shown in Figure 1(a). Our work creates the correct
CCG derivation, shown in Figure 1(b), and removes
the need for the grammar rule in (3).

Honnibal and Curran (2007) have also made
changes to CCGbank, aimed at better differentiat-
ing between complements and adjuncts. PropBank
(Palmer et al., 2005) is used as a gold-standard to in-
form these decisions, similar to the way that we use
the Vadas and Curran (2007a) data.

336

(a) (b) (c)

N

N /N

lung

N

N /N

cancer

N

deaths

N

???

???

lung

???

cancer

???

deaths

N

N /N

(N /N)/(N /N)

lung

N /N

cancer

N

deaths

Figure 2: (a) Original right-branching CCGbank (b) Left-branching (c) Left-branching with new supertags

2.2 CCG parsing

The C&C CCG parser (Clark and Curran, 2007b) is
used to perform our experiments, and to evaluate
the effect of the changes to CCGbank. The parser
uses a two-stage system, first employing a supertag-
ger (Bangalore and Joshi, 1999) to propose lexi-
cal categories for each word, and then applying the
CKY chart parsing algorithm. A log-linear model is
used to identify the most probable derivation, which
makes it possible to add the novel features we de-
scribe in Section 4, unlike aPCFG.

The C&C parser is evaluated on predicate-
argument dependencies derived from CCGbank.
These dependencies are represented as 5-tuples:
〈hf , f , s, ha, l〉, wherehf is the head of the predi-
cate;f is the supertag ofhf ; s describes which ar-
gument off is being filled; ha is the head of the
argument; andl encodes whether the dependency is
local or long-range. For example, the dependency
encodingcompany as the object ofbought (as in
IBM bought the company) is represented by:

〈bought, (S\NP1)/NP2 , 2, company,−〉 (4)

This is a local dependency, wherecompany is fill-
ing the second argument slot, the object.

3 Conversion Process

This section describes the process of converting the
Vadas and Curran (2007a) data toCCG derivations.
The tokens dominated byNML andJJP brackets in
the source data are formed into constituents in the
corresponding CCGbank sentence. We generate the
two forms of output that CCGbank contains: AUTO
files, which represent the tree structure of each sen-
tence; and PARG files, which list the word–word de-
pendencies (Hockenmaier and Steedman, 2005).

We apply one preprocessing step on the Penn
Treebank data, where if multiple tokens are enclosed
by brackets, then aNML node is placed around those

tokens. For example, we would insert theNML
bracket shown below:

(NP (DT a) (-LRB- -LRB-)
(NML (RB very) (JJ negative))
(-RRB- -RRB-) (NN reaction))

This simple heuristic capturesNP structure not ex-
plicitly annotated by Vadas and Curran (2007a).

The conversion algorithm applies the following
steps for eachNML or JJP bracket:

1. Identify the CCGbanklowest spanning node,
the lowest constituent that covers all of the
words in theNML or JJP bracket;

2. flatten the lowest spanning node, to remove the
right-branching structure;

3. insert new left-branching structure;
4. identify heads;
5. assign supertags;
6. generate new dependencies.

As an example, we will follow the conversion pro-
cess for theNML bracket below:

(NP (NML (NN lung) (NN cancer))
(NNS deaths))

The corresponding lowest spanning node, which
incorrectly hascancer deaths as a constituent,
is shown in Figure 2(a). To flatten the node, we re-
cursively remove brackets that partially overlap the
NML bracket. Nodes that don’t overlap at all are left
intact. This process results in a list of nodes (which
may or may not be leaves), which in our example is
[lung, cancer,deaths]. We then insert the cor-
rect left-branching structure, shown in Figure 2(b).
At this stage, the supertags are still incomplete.

Heads are then assigned using heuristics adapted
from Hockenmaier and Steedman (2007). Since we
are applying these to CCGbankNP structures rather
than the Penn Treebank, thePOStag based heuristics
are sufficient to determine heads accurately.

337

Finally, we assign supertags to the new structure.
We want to make the minimal number of changes
to the entire sentence derivation, and so the supertag
of the dominating node is fixed. Categories are then
propagated recursively down the tree. For a node
with categoryX , its head child is also given the cat-
egoryX . The non-head child is always treated as
an adjunct, and given the categoryX /X or X \X as
appropriate. Figure 2(c) shows the final result of this
step for our example.

3.1 Dependency generation

The changes described so far have generated the new
tree structure, but the last step is to generate new de-
pendencies. We recursively traverse the tree, at each
level creating a dependency between the heads of
the left and right children. These dependencies are
never long-range, and therefore easy to deal with.
We may also need to change dependencies reaching
from inside to outside theNP, if the head(s) of the
NP have changed. In these cases we simply replace
the old head(s) with the new one(s) in the relevant
dependencies. The number of heads may change be-
cause we now analyse conjunctions correctly.

In our example, the original dependencies were:

〈lung,N /N1 , 1, deaths,−〉 (5)

〈cancer,N /N1 , 1, deaths,−〉 (6)

while after the conversion process, (5) becomes:

〈lung, (N /N1)/(N /N)2 , 2, cancer,−〉 (7)

To determine that the conversion process worked
correctly, we manually inspected its output for
unique tree structures in Sections 00–07. This iden-
tified problem cases to correct, such as those de-
scribed in the following section.

3.2 Exceptional cases

Firstly, when the lowest spanning node covers the
NML or JJP bracket exactly, no changes need to be
made to CCGbank. These cases occur when CCG-
bank already received the correct structure during
the original conversion process. For example, brack-
ets separating a possessive from its possessor were
detected automatically.

A more complex case is conjunctions, which do
not follow the simple head/adjunct method of as-
signing supertags. Instead, conjuncts are identified

during the head-finding stage, and then assigned the
supertag dominating the entire coordination. Inter-
vening non-conjunct nodes are given the same cate-
gory with theconj feature, resulting in a derivation
that can be parsed with the standard CCGbank bi-
nary coordination rules:

conj X ⇒ X[conj] (8)

X X[conj] ⇒ X (9)

The derivation in Figure 1(b) is produced by these
corrections to coordination derivations. As a result,
applications of the non-CCG rule shown in (3) have
been reduced from 1378 to 145 cases.

SomePOS tags require special behaviour. De-
terminers and possessive pronouns are both usually
given the supertagNP [nb]/N , and this should not
be changed by the conversion process. Accordingly,
we do not alter tokens withPOStags ofDT andPRP$.
Instead, their sibling node is given the categoryN

and their parent node is made the head. The parent’s
sibling is then assigned the appropriate adjunct cat-
egory (usuallyNP\NP). Tokens with punctuation
POStags1 do not have their supertag changed either.

Finally, there are cases where the lowest span-
ning node covers a constituent that should not be
changed. For example, in the followingNP:
(NP

(NML (NN lower) (NN court))
(JJ final) (NN ruling))

with the original CCGbank lowest spanning node:
(N (N/N lower)

(N (N/N court)
(N (N/N final) (N ruling))))

thefinal ruling node should not be altered.
It may seem trivial to process in this case, but

consider a similarly structuredNP: lower court

ruling that the U.S. can bar the use

of... Our minimalist approach avoids reanalysing
the many linguistic constructions that can be dom-
inated byNPs, as this would reinvent the creation
of CCGbank. As a result, we only flatten those
constituents that partially overlap theNML or JJP
bracket. The existing structure and dependencies of
other constituents are retained. Note that we are still
converting everyNML andJJP bracket, as even in
the subordinate clause example, only the structure
aroundlower court needs to be altered.

1period, comma, colon, and left and right bracket.

338

the world ’s largest aid donor

NP [nb]/N N /N N NP\NP NP\NP NP\NP
>

N
>

NP
<

NP
<

NP
<

NP

the world ’s largest aid donor

NP [nb]/N N (NP [nb]/N)\NP N /N N /N N
> >

NP N
< >

NP [nb]/N N
>

NP

(a) (b)

Figure 3: CCGbank derivations for possessives

%

Possessive 224 43.75
Left child contains DT/PRP$ 87 16.99
Couldn’t assign to non-leaf 66 12.89
Conjunction 35 6.84
Automatic conversion was correct 26 5.08
Entity with internal brackets 23 4.49
DT 22 4.30
NML/JJP bracket is an error 12 2.34
Other 17 3.32
Total 512 100.00

Table 1: Manual analysis

3.3 Manual annotation

A handful of problems that occurred during the con-
version process were corrected manually. The first
indicator of a problem was the presence of a pos-
sessive. This is unexpected, because possessives
were already bracketed properly when CCGbank
was originally created (Hockenmaier, 2003,§3.6.4).
Secondly, a non-flattened node should not be as-
signed a supertag that it did not already have. This
is because, as described previously, a non-leaf node
could dominate any kind of structure. Finally, we
expect the lowest spanning node to cover only the
NML or JJP bracket and one more constituent to the
right. If it doesn’t, because of unusual punctuation
or an incorrect bracket, then it may be an error. In
all these cases, which occur throughout the corpus,
we manually analysed the derivation and fixed any
errors that were observed.

512 cases were flagged by this approach, or
1.90% of the 26,993 brackets converted toCCG. Ta-
ble 1 shows the causes of these problems. The most
common cause of errors was possessives, as the con-

version process highlighted a number of instances
where the original CCGbank analysis was incorrect.
An example of this error can be seen in Figure 3(a),
where the possessive doesn’t take any arguments.
Instead,largest aid donorincorrectly modifies the
NP one word at a time. The correct derivation after
manual analysis is in (b).

The second-most common cause occurs when
there is apposition inside theNP. This can be seen
in Figure 4. As there is no punctuation on which
to coordinate (which is how CCGbank treats most
appositions) the best derivation we can obtain is to
haveVictor Borgemodify the precedingNP.

The final step in the conversion process was
to validate the corpus against theCCG grammar,
first by those productions used in the existing
CCGbank, and then against those actually licensed
by CCG (with pre-existing ungrammaticalities re-
moved). Sixteen errors were identified by this pro-
cess and subsequently corrected by manual analysis.

In total, we have altered 12,475 CCGbank sen-
tences (25.5%) and 20,409 dependencies (1.95%).

4 NER features

Named entity recognition (NER) provides informa-
tion that is particularly relevant forNP parsing, sim-
ply because entities are nouns. For example, know-
ing thatAir Force is an entity tells us thatAir
Force contract is a left-branchingNP.

Vadas and Curran (2007a) describe usingNE tags
during the annotation process, suggesting thatNER-
based features will be helpful in a statistical model.
There has also been recent work combiningNER and
parsing in the biomedical field. Lewin (2007) exper-
iments with detecting base-NPs usingNER informa-
tion, while Buyko et al. (2007) use aCRF to identify

339

a guest comedian Victor Borge

NP [nb]/N N /N N /N N /N N
>

N
>

N
>

N
>

NP

a guest comedian Victor Borge

NP [nb]/N N /N N (NP\NP)/(NP\NP) NP\NP
> >

N NP\NP
>

NP
<

NP

(a) (b)

Figure 4: CCGbank derivations for apposition withDT

coordinate structure in biological named entities.
We draw NE tags from the BBN Entity Type

Corpus (Weischedel and Brunstein, 2005), which
describes 28 different entity types. These in-
clude the standard person, location and organization
classes, as well person descriptions (generally occu-
pations), NORP (National, Other, Religious or Po-
litical groups), and works of art. Some classes also
have finer-grained subtypes, although we use only
the coarse tags in our experiments.

Clark and Curran (2007b) has a full description
of the C&C parser’s pre-existing features, to which
we have added a number of novelNER-based fea-
tures. Many of these features generalise the head
words and/orPOS tags that are already part of the
feature set. The results of applying these features
are described in Sections 5.3 and 6.

The first feature is a simple lexical feature, de-
scribing theNE tag of each token in the sentence.
This feature, and all others that we describe here,
are not active when theNE tag(s) areO, as there is no
NER information from tokens that are not entities.

The next group of features is based on the lo-
cal tree (a parent and two child nodes) formed by
every grammar rule application. We add a fea-
ture where the rule being applied is combined with
the parent’sNE tag. For example, when joining
two constituents2: 〈five, CD, CARD, N /N 〉 and
〈Europeans, NNPS, NORP, N 〉, the feature is:

N → N /N N + NORP

as the head of the constituent isEuropeans.
In the same way, we implement features that com-

bine the grammar rule with the child nodes. There
are already features in the model describing each
combination of the children’s head words andPOS

tags, which we extend to include combinations with
2These 4-tuples are the node’s head,POS, NE, and supertag.

the NE tags. Using the same example as above, one
of the new features would be:

N → N /N N + CARD + NORP

The last group of features is based on theNE

category spanned by each constituent. We iden-
tify constituents that dominate tokens that all have
the sameNE tag, as these nodes will not cause a
“crossing bracket” with the named entity. For ex-
ample, the constituentForce contract, in the
NP Air Force contract, spans two different
NE tags, and should be penalised by the model.Air
Force, on the other hand, only spansORG tags, and
should be preferred accordingly.

We also take into account whether the constituent
spans theentire named entity. Combining these
nodes with others of differentNE tags shouldnot
be penalised by the model, as theNE must combine
with the rest of the sentence at some point.

TheseNE spanning features are implemented as
the grammar rule in combination with the parent
node or the child nodes. For the former, one fea-
ture is active when the node spans the entire entity,
and another is active in other cases. Similarly, there
are four features for the child nodes, depending on
whether neither, the left, the right or both nodes span
the entireNE. As an example, if theAir Force
constituent were being joined withcontract, then
the child feature would be:

N → N /N N + LEFT +ORG + O

assuming that there are moreO tags to the right.

5 Experiments

Our experiments are run with theC&C CCG parser
(Clark and Curran, 2007b), and will evaluate the
changes made to CCGbank, as well as the effective-
ness of theNER features. We train on Sections 02-
21, and test on Section 00.

340

PREC RECALL F-SCORE

Original 91.85 92.67 92.26
NP corrected 91.22 92.08 91.65

Table 2: Supertagging results

PREC RECALL F-SCORE

Original 85.34 84.55 84.94
NP corrected 85.08 84.17 84.63

Table 3: Parsing results with gold-standardPOStags

5.1 Supertagging

Before we begin full parsing experiments, we eval-
uate on the supertagger alone. The supertagger is
an important stage of theCCG parsing process, its
results will affect performance in later experiments.

Table 2 shows that F-score has dropped by 0.61%.
This is not surprising, as the conversion process has
increased the ambiguity of supertags inNPs. Previ-
ously, a bareNP could only have a sequence ofN /N
tags followed by a finalN . There are now more
complex possibilities, equal to the Catalan number
of the length of theNP.

5.2 Initial parsing results

We now compare parser performance on ourNP cor-
rected version of the corpus to that on original CCG-
bank. We are using the normal-form parser model
and report labelled precision, recall and F-score for
all dependencies. The results are shown in Table 3.

The F-score drops by 0.31% in our new version of
the corpus. However, this comparison is not entirely
fair, as the original CCGbank test data does not in-
clude theNP structure that theNP corrected model is
being evaluated on. Vadas and Curran (2007a) expe-
rienced a similar drop in performance on Penn Tree-
bank data, and noted that the F-score forNML and
JJP brackets was about 20% lower than the overall
figure. We suspect that a similar effect is causing the
drop in performance here.

Unfortunately, there are no explicitNML andJJP
brackets to evaluate on in theCCG corpus, and so an
NP structure only figure is difficult to compute. Re-
call can be calculated by marking those dependen-
cies altered in the conversion process, and evaluating
only on them. Precision cannot be measured in this

PREC RECALL F-SCORE

Original 83.65 82.81 83.23
NP corrected 83.31 82.33 82.82

Table 4: Parsing results with automaticPOStags

PREC RECALL F-SCORE

Original 86.00 85.15 85.58
NP corrected 85.71 84.83 85.27

Table 5: Parsing results withNER features

way, asNP dependencies remain undifferentiated in
parser output. The result is a recall of 77.03%, which
is noticeably lower than the overall figure.

We have also experimented with using automat-
ically assignedPOS tags. These tags are accurate
with an F-score of 96.34%, with precision 96.20%
and recall 96.49%. Table 4 shows that, unsur-
prisingly, performance is lower without the gold-
standard data. TheNP corrected model drops an ad-
ditional 0.1% F-score over the original model, sug-
gesting thatPOS tags are particularly important for
recovering internalNP structure. EvaluatingNP de-
pendencies only, in the same manner as before, re-
sults in a recall figure of 75.21%.

5.3 NER features results

Table 5 shows the results of adding theNER fea-
tures we described in Section 4. Performance has
increased by 0.64% on both versions of the corpora.
It is surprising that theNP corrected increase is not
larger, as we would expect the features to be less
effective on the original CCGbank. This is because
incorrect right-branchingNPs such asAir Force con-
tract would introduce noise to theNER features.

Table 6 presents the results of using automati-
cally assignedPOS and NE tags, i.e. parsing raw
text. TheNER tagger achieves 84.45% F-score on
all non-O classes, with precision being 78.35% and
recall 91.57%. We can see that parsing F-score
has dropped by about 2% compared to using gold-
standardPOSandNER data, however, theNER fea-
tures still improve performance by about 0.3%.

341

PREC RECALL F-SCORE

Original 83.92 83.06 83.49
NP corrected 83.62 82.65 83.14

Table 6: Parsing results with automaticPOSandNE tags

6 DepBank evaluation

One problem with the evaluation in the previous sec-
tion, is that the original CCGbank is not expected to
recover internalNP structure, making its task eas-
ier and inflating its performance. To remove this
variable, we carry out a second evaluation against
the Briscoe and Carroll (2006) reannotation of Dep-
Bank (King et al., 2003), as described in Clark and
Curran (2007a). Parser output is made similar to the
grammatical relations (GRs) of the Briscoe and Car-
roll (2006) data, however, the conversion remains
complex. Clark and Curran (2007a) report an upper
bound on performance, using gold-standard CCG-
bank dependencies, of 84.76% F-score.

This evaluation is particularly relevant forNPs, as
the Briscoe and Carroll (2006) corpushasbeen an-
notated for internalNP structure. With our new ver-
sion of CCGbank, the parser will be able to recover
theseGRs correctly, where before this was unlikely.

Firstly, we show the figures achieved using gold-
standard CCGbank derivations in Table 7. In theNP

corrected version of the corpus, performance has in-
creased by 1.02% F-score. This is a reversal of the
results in Section 5, and demonstrates that correct
NP structure improves parsing performance, rather
than reduces it. Because of this increase to the up-
per bound of performance, we are now even closer
to a true formalism-independent evaluation.

We now move to evaluating theC&C parser it-
self and the improvement gained by theNER fea-
tures. Table 8 show our results, with theNP cor-
rected version outperforming original CCGbank by
0.92%. Using theNER features has also caused an
increase in F-score, giving a total improvement of
1.51%. These results demonstrate how successful
the correcting ofNPs in CCGbank has been.

Furthermore, the performance increase of 0.59%
on theNP corrected corpus is more than the 0.25%
increase on the original. This demonstrates thatNER

features are particularly helpful forNP structure.

PREC RECALL F-SCORE

Original 86.86 81.61 84.15
NP corrected 87.97 82.54 85.17

Table 7: DepBank gold-standard evaluation

PREC RECALL F-SCORE

Original 82.57 81.29 81.92
NP corrected 83.53 82.15 82.84
Original, NER 82.87 81.49 82.17
NP corrected,NER 84.12 82.75 83.43

Table 8: DepBank evaluation results

7 Conclusion

The first contribution of this paper is the application
of the Vadas and Curran (2007a) data to Combina-
tory Categorial Grammar. Our experimental results
have shown that this more accurate representation
of CCGbank’sNP structure increases parser perfor-
mance. Our second major contribution is the intro-
duction of novelNER features, a source of semantic
information previously unused in parsing.

As a result of this work, internalNP structure is
now recoverable by theC&C parser, a result demon-
strated by our total performance increase of 1.51%
F-score. Even when parsing raw text, without gold
standardPOS and NER tags, our approach has re-
sulted in performance gains.

In addition, we have made possible further in-
creases toNP structure accuracy. New features can
now be implemented and evaluated in aCCG pars-
ing context. For example, bigram counts from a very
large corpus have already been used inNP bracket-
ing, and could easily be applied to parsing. Sim-
ilarly, additional supertagging features can now be
created to deal with the increased ambiguity inNPs.

DownstreamNLP components can now exploit the
crucial information inNP structure.

Acknowledgements

We would like to thank Mark Steedman and
Matthew Honnibal for help with converting theNP

data toCCG; and the anonymous reviewers for their
helpful feedback. This work has been supported by
the Australian Research Council under Discovery
Project DP0665973.

342

References

Srinivas Bangalore and Aravind Joshi. 1999. Supertag-
ging: An approach to almost parsing.Computational
Linguistics, 25(2):237–265.

Ted Briscoe and John Carroll. 2006. Evaluating the accu-
racy of an unlexicalized statistical parser on the PARC
DepBank. InProceedings of the COLING/ACL 2006
Main Conference Poster Sessions, pages 41–48. Syd-
ney, Australia.

Ekaterina Buyko, Katrin Tomanek, and Udo Hahn.
2007. Resolution of coordination ellipses in biological
named entities with conditional random fields. InPro-
ceedings of the 10th Conference of the Pacific Associa-
tion for Computational Linguistics (PACLING-2007),
pages 163–171. Melbourne, Australia.

Stephen Clark and James R. Curran. 2007a. Formalism-
independent parser evaluation with CCG and Dep-
Bank. InProceedings of the 45th Annual Meeting of
the Association for Computational Linguistics (ACL-
07), pages 248–255. Prague, Czech Republic.

Stephen Clark and James R. Curran. 2007b. Wide-
coverage efficient statistical parsing with CCG and
log-linear models. Computational Linguistics,
33(4):493–552.

Michael Collins. 2003. Head-driven statistical models for
natural language parsing.Computational Linguistics,
29(4):589–637.

Julia Hockenmaier. 2003.Data and Models for Statis-
tical Parsing with Combinatory Categorial Grammar.
Ph.D. thesis, University of Edinburgh.

Julia Hockenmaier and Mark Steedman. 2005. CCGbank
manual. Technical Report MS-CIS-05-09, Department
of Computer and Information Science, University of
Pennsylvania.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank.Compu-
tational Linguistics, 33(3):355–396.

Matthew Honnibal and James R. Curran. 2007. Im-
proving the complement/adjunct distinction in CCG-
bank. In Proceedings of the 10th Conference of
the Pacific Association for Computational Linguistics
(PACLING-07), pages 210–217. Melbourne, Australia.

Tracy Holloway King, Richard Crouch, Stefan Riezler,
Mary Dalrymple, and Ronald M. Kaplan. 2003. The
PARC700 dependency bank. InProceedings of the 4th
International Workshop on Linguistically Interpreted
Corpora (LINC-03). Budapest, Hungary.

Mark Lauer. 1995. Corpus statistics meet the compound
noun: Some empirical results. InProceedings of the

33rd Annual Meeting of the Association for Computa-
tional Linguistics, pages 47–54. Cambridge, MA.

Ian Lewin. 2007. BaseNPs that contain gene names: do-
main specificity and genericity. InBiological, trans-
lational, and clinical language processing workshop,
pages 163–170. Prague, Czech Republic.

Mitchell Marcus, Beatrice Santorini, and Mary
Marcinkiewicz. 1993. Building a large annotated cor-
pus of English: The Penn Treebank.Computational
Linguistics, 19(2):313–330.

Preslav Nakov and Marti Hearst. 2005. Search engine
statistics beyond the n-gram: Application to noun
compound bracketing. InProceedings of the 9th Con-
ference on Computational Natural Language Learning
(CoNLL-05), pages 17–24. Ann Arbor, MI.

Martha Palmer, Daniel Gildea, and Paul Kingsbury. 2005.
The proposition bank: An annotated corpus of seman-
tic roles.Computational Linguistics, 31(1):71–106.

Mark Steedman. 2000.The Syntactic Process. MIT Press,
Cambridge, MA.

David Vadas and James R. Curran. 2007a. Adding noun
phrase structure to the Penn Treebank. InProceed-
ings of the 45th Annual Meeting of the Association of
Computational Linguistics (ACL-07), pages 240–247.
Prague, Czech Republic.

David Vadas and James R. Curran. 2007b. Large-scale
supervised models for noun phrase bracketing. InPro-
ceedings of the 10th Conference of the Pacific Associa-
tion for Computational Linguistics (PACLING-2007),
pages 104–112. Melbourne, Australia.

Ralph Weischedel and Ada Brunstein. 2005. BBN pro-
noun coreference and entity type corpus. Technical
report.

343

