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Abstract

This paper presents an application of PageR-
ank, a random-walk model originally de-
vised for ranking Web search results, to
ranking WordNet synsets in terms of how
strongly they possess a given semantic prop-
erty. The semantic properties we use for ex-
emplifying the approach are positivity and
negativity, two properties of central impor-
tance in sentiment analysis. The idea derives
from the observation that WordNet may be
seen as a graph in which synsets are con-
nected through the binary relation “a term
belonging to synset sk occurs in the gloss
of synset si”, and on the hypothesis that
this relation may be viewed as a transmit-
ter of such semantic properties. The data
for this relation can be obtained from eX-
tended WordNet, a publicly available sense-
disambiguated version of WordNet. We ar-
gue that this relation is structurally akin to
the relation between hyperlinked Web pages,
and thus lends itself to PageRank analysis.
We report experimental results supporting
our intuitions.

1 Introduction

Recent years have witnessed an explosion of work
on opinion mining (aka sentiment analysis), the dis-

∗This work was partially supported by Project ONTOTEXT
“From Text to Knowledge for the Semantic Web”, funded by
the Provincia Autonoma di Trento under the 2004–2006 “Fondo
Unico per la Ricerca” funding scheme.

cipline that deals with the quantitative and qualita-
tive analysis of text for the purpose of determining
its opinion-related properties (ORPs). An important
part of this research has been the work on the auto-
matic determination of the ORPs of terms, as e.g.,
in determining whether an adjective tends to give a
positive, a negative, or a neutral nature to the noun
phrase it appears in. While many works (Esuli and
Sebastiani, 2005; Hatzivassiloglou and McKeown,
1997; Kamps et al., 2004; Takamura et al., 2005;
Turney and Littman, 2003) view the properties of
positivity and negativity as categorical (i.e., a term is
either positive or it is not), others (Andreevskaia and
Bergler, 2006b; Grefenstette et al., 2006; Kim and
Hovy, 2004; Subasic and Huettner, 2001) view them
as graded (i.e., a term may be positive to a certain
degree), with the underlying interpretation varying
from fuzzy to probabilistic.

Some authors go a step further and attach these
properties not to terms but to term senses (typ-
ically: WordNet synsets), on the assumption that
different senses of the same term may have dif-
ferent opinion-related properties (Andreevskaia and
Bergler, 2006a; Esuli and Sebastiani, 2006b; Ide,
2006; Wiebe and Mihalcea, 2006).

In this paper we contribute to this latter literature
with a novel method for ranking the entire set of
WordNet synsets, irrespectively of POS, according
to their ORPs. Two rankings are produced, one ac-
cording to positivity and one according to negativity.
The two rankings are independent, i.e., it is not the
case that one is the inverse of the other, since e.g.,
the least positive synsets may be negative or neutral
synsets alike.
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The main hypothesis underlying our method is
that the positivity and negativity of WordNet synsets
can be determined by mining their glosses. It
crucially relies on the observation that the gloss
of a WordNet synset contains terms that them-
selves belong to synsets, and on the hypothesis that
the glosses of positive (resp. negative) synsets will
mostly contain terms belonging to positive (nega-
tive) synsets. This means that the binary relation
si I sk (“the gloss of synset si contains a term
belonging to synset sk”), which induces a directed
graph on the set of WordNet synsets, may be thought
of as a channel through which positivity and nega-
tivity flow, from the definiendum (the synset si be-
ing defined) to the definiens (a synset sk that con-
tributes to the definition of si by virtue of its member
terms occurring in the gloss of si). In other words,
if a synset si is known to be positive (negative), this
can be viewed as an indication that the synsets sk to
which the terms occurring in the gloss of si belong,
are themselves positive (negative).

We obtain the data of the I relation from eX-
tended WordNet (Harabagiu et al., 1999), an auto-
matically sense-disambiguated version of WordNet
in which every term occurrence in every gloss is
linked to the synset it is deemed to belong to.

In order to compute how polarity flows in the
graph of WordNet synsets we use the well known
PageRank algorithm (Brin and Page, 1998). PageR-
ank, a random-walk model for ranking Web search
results which lies at the basis of the Google search
engine, is probably the most important single contri-
bution to the fields of information retrieval and Web
search of the last ten years, and was originally de-
vised in order to detect how authoritativeness flows
in the Web graph and how it is conferred onto Web
sites. The advantages of PageRank are its strong
theoretical foundations, its fast convergence proper-
ties, and the effectiveness of its results. The reason
why PageRank, among all random-walk algorithms,
is particularly suited to our application will be dis-
cussed in the rest of the paper.

Note however that our method is not limited to
ranking synsets by positivity and negativity, and
could in principle be applied to the determination of
other semantic properties of synsets, such as mem-
bership in a domain, since for many other properties
we may hypothesize the existence of a similar “hy-

draulics” between synsets. We thus see positivity
and negativity only as proofs-of-concept for the po-
tential of the method.

The rest of the paper is organized as follows. Sec-
tion 2 reports on related work on the ORPs of lex-
ical items, highlighting the similarities and differ-
ences between the discussed methods and our own.
In Section 3 we turn to discussing our method; in or-
der to make the paper self-contained, we start with
a brief introduction of PageRank (Section 3.1) and
of the structure of eXtended WordNet (Section 3.2).
Section 4 describes the structure of our experiments,
while Section 5 discusses the results we have ob-
tained, comparing them with other results from the
literature. Section 6 concludes.

2 Related work

Several works have recently tackled the automated
determination of term polarity. Hatzivassiloglou and
McKeown (1997) determine the polarity of adjec-
tives by mining pairs of conjoined adjectives from
text, and observing that conjunctions such as and
tend to conjoin adjectives of the same polarity while
conjunctions such as but tend to conjoin adjectives
of opposite polarity. Turney and Littman (2003) de-
termine the polarity of generic terms by computing
the pointwise mutual information (PMI) between the
target term and each of a set of “seed” terms of
known positivity or negativity, where the marginal
and joint probabilities needed for PMI computation
are equated to the fractions of documents from a
given corpus that contain the terms, individually or
jointly. Kamps et al. (2004) determine the polarity
of adjectives by checking whether the target adjec-
tive is closer to the term good or to the term bad
in the graph induced on WordNet by the synonymy
relation. Kim and Hovy (2004) determine the po-
larity of generic terms by means of two alternative
learning-free methods that use two sets of seed terms
of known positivity and negativity, and are based
on the frequency with which synonyms of the target
term also appear in the respective seed sets. Among
these works, (Turney and Littman, 2003) has proven
by far the most effective, but it is also by far the most
computationally intensive.

Some recent works have employed, as in the
present paper, the glosses from online dictionar-
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ies for term polarity detection. Andreevskaia and
Berger (2006a) extend a set of terms of known pos-
itivity/negativity by adding to them all the terms
whose glosses contain them; this algorithm does not
view glosses as a source for a graph of terms, and
is based on a different intuition than ours. Esuli
and Sebastiani (2005; 2006a) determine the ORPs of
generic terms by learning, in a semi-supervised way,
a binary term classifier from a set of training terms
that have been given vectorial representations by in-
dexing their WordNet glosses. The same authors
later extend their work to determining the ORPs
of WordNet synsets (Esuli and Sebastiani, 2006b).
However, there is a substantial difference between
these works and the present one, in that the former
simply view the glosses as sources of textual repre-
sentations for the terms/synsets, and not as inducing
a graph of synsets as we instead view them here.

The work closest in spirit to the present one is
probably that by Takamura et al. (2005), who de-
termine the polarity of terms by applying intuitions
from the theory of electron spins: two terms that ap-
pear one in the gloss of the other are viewed as akin
to two neighbouring electrons, which tend to acquire
the same “spin” (a notion viewed as akin to polarity)
due to their being neighbours. This work is simi-
lar to ours since a graph between terms is generated
from dictionary glosses, and since an iterative algo-
rithm that converges to a stable state is used, but the
algorithm is very different, and based on intuitions
from very different walks of life.

Some recent works have tackled the attribution
of opinion-related properties to word senses or
synsets (Ide, 2006; Wiebe and Mihalcea, 2006)1;
however, they do not use glosses in any significant
way, and are thus very different from our method.

The interested reader may also consult (Mihalcea,
2006) for other applications of random-walk models
to computational linguistics.

3 Ranking WordNet synsets by PageRank

3.1 The PageRank algorithm
Let G = 〈N,L〉 be a directed graph, with N its set
of nodes and L its set of directed links; let W0 be

1Andreevskaia and Berger (2006a) also work on term
senses, rather than terms, but they evaluate their work on terms
only. This is the reason why they are listed in the preceding
paragraph and not here.

the |N | × |N | adjacency matrix of G, i.e., the ma-
trix such that W0[i, j] = 1 iff there is a link from
node ni to node nj . We will denote by B(i) =
{nj |W0[j, i] = 1} the set of the backward neigh-
bours of ni, and by F (i) = {nj | W0[i, j] = 1}
the set of the forward neighbours of ni. Let W be
the row-normalized adjacency matrix of G, i.e., the
matrix such that W[i, j] = 1

|F (i)| iff W0[i, j] = 1
and W[i, j] = 0 otherwise.

The input to PageRank is the row-normalized ad-
jacency matrix W, and its output is a vector a =
〈a1, . . . , a|N |〉, where ai represents the “score” of
node ni. When using PageRank for search results
ranking, ni is a Web site and ai measures its com-
puted authoritativeness; in our application ni is in-
stead a synset and ai measures the degree to which
ni has the semantic property of interest. PageRank
iteratively computes vector a based on the formula

a
(k)
i ← α

∑
j∈B(i)

a
(k−1)
j

|F (j)|
+ (1− α)ei (1)

where a(k)
i denotes the value of the i-th entry of vec-

tor a at the k-th iteration, ei is a constant such that∑
i e
|N |
i=1 = 1, and 0 ≤ α ≤ 1 is a control parameter.

In vectorial form, Equation 1 can be written as

a(k) = αa(k−1)W + (1− α)e (2)

The underlying intuition is that a node ni has a high
score when (recursively) it has many high-scoring
backward neighbours with few forward neighbours
each; a node nj thus passes its score aj along to
its forward neighbours F (j), but this score is sub-
divided equally among the members of F (j). This
mechanism (that is represented by the summation in
Equation 1) is then “smoothed” by the ei constants,
whose role is (see (Bianchini et al., 2005) for de-
tails) to avoid that scores flow and get trapped into
so-called “rank sinks” (i.e., cliques with backward
neighbours but no forward neighbours).

The computational properties of the PageRank al-
gorithm, and how to compute it efficiently, have
been widely studied; the interested reader may con-
sult (Bianchini et al., 2005).

In the original application of PageRank for rank-
ing Web search results the elements of e are usually
taken to be all equal to 1

|N | . However, it is possible
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to give different values to different elements in e. In
fact, the value of ei amounts to an internal source
of score for ni that is constant across the iterations
and independent from its backward neighbours. For
instance, attributing a null ei value to all but a few
Web pages that are about a given topic can be used
in order to bias the ranking of Web pages in favour
of this topic (Haveliwala, 2003).

In this work we use the ei values as internal
sources of a given ORP (positivity or negativity),
by attributing a null ei value to all but a few “seed”
synsets known to possess that ORP. PageRank will
thus make the ORP flow from the seed synsets, at
a rate constant throughout the iterations, into other
synsets along the I relation, until a stable state is
reached; the final ai values can be used to rank the
synsets in terms of that ORP. Our method thus re-
quires two runs of PageRank; in the first e has non-
null scores for the positive seed synsets, while in the
second the same happens for the negative ones.

3.2 eXtended WordNet
The transformation of WordNet into a graph based
on the I relation would of course be non-
trivial, but is luckily provided by eXtended Word-
Net (Harabagiu et al., 1999), a publicly available
version of WordNet in which (among other things)
each term sk occurring in a WordNet gloss (ex-
cept those in example phrases) is lemmatized and
mapped to the synset in which it belongs2. We
use eXtended WordNet version 2.0-1.1, which refers
to WordNet version 2.0. The eXtended WordNet
resource has been automatically generated, which
means that the associations between terms and
synsets are likely to be sometimes incorrect, and this
of course introduces noise in our method.

3.3 PageRank, (eXtended) WordNet, and ORP
flow

We now discuss the application of PageRank to
ranking WordNet synsets by positivity and negativ-
ity. Our algorithm consists in the following steps:

1. The graph G = 〈N,L〉 on which PageRank
will be applied is generated. We define N to
be the set of all WordNet synsets; in WordNet
2.0 there are 115,424 of them. We define L to

2http://xwn.hlt.utdallas.edu/

contain a link from synset si to synset sk iff the
gloss of si contains at least a term belonging
to sk (terms occurring in the examples phrases
and terms occurring after a term that expresses
negation are not considered). Numbers, articles
and prepositions occurring in the glosses are
discarded, since they can be assumed to carry
no positivity and negativity, and since they do
not belong to a synset of their own. This leaves
only nouns, adjectives, verbs, and adverbs.

2. The graph G = 〈N,L〉 is “pruned” by remov-
ing “self-loops”, i.e., links going from a synset
si into itself (since we assume that there is no
flow of semantics from a concept unto itself).
The row-normalized adjacency matrix W of G
is derived.

3. The ei values are loaded into the e vector; all
synsets other than the seed synsets of renowned
positivity (negativity) are given a value of 0.
The α control parameter is set to a fixed value.
We experiment with several different versions
of the e vector and several different values of
α; see Section 4.3 for details.

4. PageRank is executed using W and e, iter-
ating until a predefined termination condition
is reached. The termination condition we use
in this work consists in the fact that the co-
sine of the angle between a(k) and a(k+1) is
above a predefined threshold χ (here we have
set χ = 1− 10−9).

5. We rank all the synsets of WordNet in descend-
ing order of their ai score.

The process is run twice, once for positivity and
once for negativity.

The last question to be answered is: “why PageR-
ank?” Are the characteristics of PageRank more
suitable to the problem of ranking synsets than other
random-walk algorithms? The answer is yes, since
it seems reasonable that:

1. If terms contained in synset sk occur in the
glosses of many positive synsets, and if the pos-
itivity scores of these synsets are high, then it
is likely that sk is itself positive (the same hap-
pens for negativity). This justifies the summa-
tion of Equation 1.
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2. If the gloss of a positive synset that contains
a term in synset sk also contains many other
terms, then this is a weaker indication that sk is
itself positive (this justifies dividing by |F (j)|
in Equation 1).

3. The ranking resulting from the algorithm needs
to be biased in favour of a specific ORP; this
justifies the presence of the (1 − α)ei factor in
Equation 1).

The fact that PageRank is the “right” random-walk
algorithm for our application is also confirmed by
some experiments (not reported here for reasons of
space) we have run with slightly different variants of
the model (e.g., one in which we challenge intuition
2 above and thus avoid dividing by |F (j)| in Equa-
tion 1). These experiments have always returned
inferior results with respect to standard PageRank,
thereby confirming the correctness of our intuitions.

4 Experiments

4.1 The benchmark

To evaluate the quality of the rankings produced
by our experiments we have used the Micro-WNOp
corpus (Cerini et al., 2007) as a benchmark3. Micro-
WNOp consists in a set of 1,105 WordNet synsets,
each of which was manually assigned a triplet of
scores, one of positivity, one of negativity, one
of neutrality. The evaluation was performed by
five MSc students of linguistics, proficient second-
language speakers of English. Micro-WNOp is rep-
resentative of WordNet with respect to the different
parts of speech, in the sense that it contains synsets
of the different parts of speech in the same propor-
tions as in the entire WordNet. However, it is not
representative of WordNet with respect to ORPs,
since this would have brought about a corpus largely
composed of neutral synsets, which would be pretty
useless as a benchmark for testing automatically de-
rived lexical resources for opinion mining. It was
thus generated by randomly selecting 100 positive +
100 negative + 100 neutral terms from the General
Inquirer lexicon (see (Turney and Littman, 2003) for
details) and including all the synsets that contained

3http://www.unipv.it/wnop/

at least one such term, without paying attention to
POS. See (Cerini et al., 2007) for more details.

The corpus is divided into three parts:

• Common: 110 synsets which all the evaluators
evaluated by working together, so as to align
their evaluation criteria.

• Group1: 496 synsets which were each inde-
pendently evaluated by three evaluators.

• Group2: 499 synsets which were each inde-
pendently evaluated by the other two evalua-
tors.

Each of these three parts has the same balance, in
terms of both parts of speech and ORPs, of Micro-
WNOp as a whole. We obtain the positivity (nega-
tivity) ranking from Micro-WNOp by averaging the
positivity (negativity) scores assigned by the evalua-
tors of each group into a single score, and by sorting
the synsets according to the resulting score. We use
Group1 as a validation set, i.e., in order to fine-tune
our method, and Group2 as a test set, i.e., in order
to evaluate our method once all the parameters have
been optimized on the validation set.

The result of applying PageRank to the graph G
induced by the I relation, given a vector e of in-
ternal sources of positivity (negativity) score and a
value for the α parameter, is a ranking of all the
WordNet synsets in terms of positivity (negativity).
By using different e vectors and different values of
α we obtain different rankings, whose quality we
evaluate by comparing them against the ranking ob-
tained from Micro-WNOp.

4.2 The effectiveness measure
A ranking � is a partial order on a set of objects
N = {o1 . . . o|N |}. Given a pair (oi, oj) of objects,
oi may precede oj (oi � oj), it may follow oi (oi �
oj), or it may be tied with oj (oi ≈ oj).

To evaluate the rankings produced by PageRank
we have used the p-normalized Kendall τ distance
(noted τp – see e.g., (Fagin et al., 2004)) between
the Micro-WNOp rankings and those predicted by
PageRank. A standard function for the evaluation of
rankings with ties, τp is defined as

τp =
nd + p · nu

Z
(3)
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where nd is the number of discordant pairs, i.e.,
pairs of objects ordered one way in the gold stan-
dard and the other way in the prediction; nu is the
number of pairs ordered (i.e., not tied) in the gold
standard and tied in the prediction, and p is a penal-
ization to be attributed to each such pair; and Z is
a normalization factor (equal to the number of pairs
that are ordered in the gold standard) whose aim is
to make the range of τp coincide with the [0, 1] in-
terval. Note that pairs tied in the gold standard are
not considered in the evaluation.

The penalization factor is set to p = 1
2 , which

is equal to the probability that a ranking algorithm
correctly orders the pair by random guessing; there
is thus no advantage to be gained from either ran-
dom guessing or assigning ties between objects. For
a prediction which perfectly coincides with the gold
standard τp equals 0; for a prediction which is ex-
actly the inverse of the gold standard τp equals 1.

4.3 Setup

In order to produce a ranking by positivity (nega-
tivity) we need to provide an e vector as input to
PageRank. We have experimented with several dif-
ferent definitions of e, each for both positivity and
negativity. For reasons of space, we only report re-
sults from the five most significant ones.

We have first tested a vector (hereafter dubbed
e1) with all values uniformly set to 1

|N | . This is the
e vector originally used in (Brin and Page, 1998)
for Web page ranking, and brings about an unbiased
(that is, with respect to particular properties) rank-
ing of WordNet. Of course, it is not meant to be
used for ranking by positivity or negativity; we have
used it as a baseline in order to evaluate the impact
of property-biased vectors.

The first sensible, albeit minimalistic, definition
of e we have used (dubbed e2) is that of a vec-
tor with uniform non-null ei scores assigned to the
synsets that contain the adjective good (bad), and
null scores for all other synsets. A further, still fairly
minimalistic definition we have used (dubbed e3) is
that of a vector with uniform non-null ei scores as-
signed to the synsets that contain at least one of the
seven “paradigmatic” positive (negative) adjectives
used as seeds in (Turney and Littman, 2003)4, and

4The seven positive adjectives are good, nice, excellent,

null scores for all other synsets.
We have also tested a more complex version of

e, with ei scores obtained from release 1.0 of Senti-
WordNet (Esuli and Sebastiani, 2006b)5. This latter
is a lexical resource in which each WordNet synset
is given a positivity score, a negativity score, and a
neutrality score. We produced an e vector (dubbed
e4) in which the score assigned to a synset is propor-
tional to the positivity (negativity) score assigned to
it by SentiWordNet, and in which all entries sum up
to 1. In a similar way we also produced a further e
vector (dubbed e5) through the scores of a newer re-
lease of SentiWordNet (release 1.1), resulting from a
slight modification of the approach that had brought
about release 1.0 (Esuli and Sebastiani, 2007b).

PageRank is parametric on α, which determines
the balance between the contributions of the a(k−1)

vector and the e vector. A value of α = 0 makes
the a(k) vector coincide with e, and corresponds to
discarding the contribution of the random-walk al-
gorithm. Conversely, setting α = 1 corresponds
to discarding the contribution of e, and makes a(k)

uniquely depend on the topology of the graph; the
result is an “unbiased” ranking. The desirable cases
are, of course, in between. As first hinted in Sec-
tion 4.1, we thus optimize the α parameter on the
synsets in Group1, and then test the algorithm with
the optimal value of α on the synsets in Group2.
All the 101 values of α from 0.0 to 1.0 with a step of
.01 have been tested in the optimization phase. Op-
timization is performed anew for each experiment,
which means that different values of α may be even-
tually selected for different e vectors.

5 Results

The results show that the use of PageRank in com-
bination with suitable vectors e almost always im-
proves the ranking, sometimes significantly so, with
respect to the original ranking embodied by the e
vector.

For positivity, the rankings produced using
PageRank and any of the vectors from e2 to e5 all
improve on the original rankings, with a relative im-
provement, measured as the relative decrease in τp,

positive, fortunate, correct, superior, and the seven negative
ones are bad, nasty, poor, negative, unfortunate, wrong, in-
ferior.

5http://sentiwordnet.isti.cnr.it/
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ranging from −4.88% (e5) to −6.75% (e4). These
rankings are also all better than the rankings pro-
duced by using PageRank and the uniform-valued
vector e1, with a minimum relative improvement
of −5.04% (e3) and a maximum of −34.47% (e4).
This suggests that the key to good performance is
indeed a combination of positivity flow and internal
source of score.

For the negativity rankings, the performance of
both SentiWordNet-based vectors is still good, pro-
ducing a −4.31% (e4) and a −3.45% (e5) improve-
ment with respect to the original rankings. The
“minimalistic” vectors (i.e., e2 and e3) are not as
good as their positive counterparts. The reason
seems to be that the generation of a ranking by neg-
ativity seems a somehow harder task than the gen-
eration of a ranking by positivity; this is also shown
by the results obtained with the uniform-valued vec-
tor e1, in which the application of PageRank im-
proves with respect to e1 for positivity but deteri-
orates for negativity. However, against the baseline
constituted by the results obtained with the uniform-
valued vector e1 for negativity, our rankings show
a relevant improvement, ranging from −8.56% (e2)
to −48.27% (e4).

Our results are particularly significant for the e4
vectors, derived by SentiWordNet 1.0, for a num-
ber of reasons. First, e4 brings about the best value
of τp obtained in all our experiments (.325 for pos-
itivity, .284 for negativity). Second, the relative im-
provement with respect to e4 is the most marked
among the various choices for e (6.75% for positiv-
ity, 4.31% for negativity). Third, the improvement
is obtained with respect to an already high-quality
resource, obtained by the same techniques that, at
the term level, are still the best performers for po-
larity detection on the widely used General Inquirer
benchmark (Esuli and Sebastiani, 2005).

Finally, observe that the fact that e4 outperforms
all other choices for e (and e2 in particular) was not
necessarily to be expected. In fact, SentiWordNet
1.0 was built by a semi-supervised learning method
that uses vectors e2 as its only initial training data.
This paper thus shows that, starting from e2 as the
only manually annotated data, the best results are
obtained neither by the semi-supervised method that
generated SentiWordNet 1.0, nor by PageRank, but
by the concatenation of the former with the latter.

Positivity Negativity
e PageRank? τp ∆ τp ∆

e1
before .500 .500
after .496 (-0.81%) .549 (9.83%)

e2
before .500 .500
after .467 (-6.65%) .502 (0.31%)

e3
before .500 .500
after .471 (-5.79%) .495 (-0.92%)

e4
before .349 .296
after .325 (-6.75%) .284 (-4.31%)

e5
before .400 .407
after .380 (-4.88%) .393 (-3.45%)

Table 1: Values of τp between predicted rankings
and gold standard rankings (smaller is better). For
each experiment the first line indicates the ranking
obtained from the original e vector (before the ap-
plication of PageRank), while the second line indi-
cates the ranking obtained after the application of
PageRank, with the relative improvement (a nega-
tive percentage indicates improvement).

6 Conclusions

We have investigated the applicability of a random-
walk model to the problem of ranking synsets ac-
cording to positivity and negativity. However, we
conjecture that this model can be of more general
use, i.e., for the determination of other properties of
term senses, such as membership in a domain. This
paper thus presents a proof-of-concept of the model,
and the results of experiments support our intuitions.

Also, we see this work as a proof of concept
for the applicability of general random-walk algo-
rithms (and not just PageRank) to the determination
of the semantic properties of synsets. In a more re-
cent paper (Esuli and Sebastiani, 2007a) we have
investigated a related random-walk model, one in
which, symmetrically to the intuitions of the model
presented in this paper, semantics flows from the
definiens to the definiendum; a metaphor that proves
no less powerful than the one we have championed
in this paper.
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