
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 667–674,
Sydney, July 2006.c©2006 Association for Computational Linguistics

URES : an Unsupervised Web Relation Extraction System

Benjamin Rosenfeld
Computer Science Department

Bar-Ilan University
Ramat-Gan, ISRAEL

grurgrur@gmail.com

Ronen Feldman
Computer Science Department

Bar-Ilan University
Ramat-Gan, ISRAEL

feldman@cs.biu.ac.il

Abstract

Most information extraction systems ei-
ther use hand written extraction patterns
or use a machine learning algorithm that
is trained on a manually annotated cor-
pus. Both of these approaches require
massive human effort and hence prevent
information extraction from becoming
more widely applicable. In this paper we
present URES (Unsupervised Relation
Extraction System), which extracts rela-
tions from the Web in a totally unsuper-
vised way. It takes as input the
descriptions of the target relations, which
include the names of the predicates, the
types of their attributes, and several seed
instances of the relations. Then the sys-
tem downloads from the Web a large col-
lection of pages that are likely to contain
instances of the target relations. From
those pages, utilizing the known seed in-
stances, the system learns the relation
patterns, which are then used for extrac-
tion. We present several experiments in
which we learn patterns and extract in-
stances of a set of several common IE re-
lations, comparing several pattern
learning and filtering setups. We demon-
strate that using simple noun phrase tag-
ger is sufficient as a base for accurate
patterns. However, having a named en-
tity recognizer, which is able to recog-
nize the types of the relation attributes
significantly, enhances the extraction
performance. We also compare our ap-
proach with KnowItAll’s fixed generic
patterns.

1 Introduction

The most common preprocessing technique for
text mining is information extraction (IE). It is
defined as the task of extracting knowledge out
of textual documents. In general, IE is divided
into two main types of extraction tasks – Entity
tagging and Relation extraction.

The main approaches used by most informa-
tion extraction systems are the knowledge engi-
neering approach and the machine learning
approach. The knowledge engineering (mostly
rule based) systems traditionally were the top
performers in most IE benchmarks, such as
MUC (Chinchor, Hirschman et al. 1994), ACE
and the KDD CUP (Yeh and Hirschman 2002).
Recently though, the machine learning systems
became state-of-the-art, especially for simpler
tagging problems, such as named entity recogni-
tion (Bikel, Miller et al. 1997), or field extrac-
tion (McCallum, Freitag et al. 2000). The
general idea is that a domain expert labels the
target concepts in a set of documents. The sys-
tem then learns a model of the extraction task,
which can be applied to new documents auto-
matically.

Both of these approaches require massive hu-
man effort and hence prevent information extrac-
tion from becoming more widely applicable. In
order to minimize the huge manual effort in-
volved with building information extraction sys-
tems, we have designed and developed URES
(Unsupervised Relation Extraction System)
which learns a set of patterns to extract relations
from the web in a totally unsupervised way. The
system takes as input the names of the target re-
lations, the types of its arguments, and a small
set of seed instances of the relations. It then uses
a large set of unlabeled documents downloaded
from the Web in order to build extraction pat-
terns. URES patterns currently have two modes
of operation. One is based upon a generic shal-
low parser, able to extract noun phrases and their

667

heads. Another mode builds patterns for use by
TEG (Rosenfeld, Feldman et al. 2004). TEG is a
hybrid rule-based and statistical IE system. It
utilizes a trained labeled corpus in order to com-
plement and enhance the performance of a rela-
tively small set of manually-built extraction
rules. When it is used with URES, the relation
extraction rules and training data are not built
manually but are created automatically from the
URES-learned patterns. However, URES does
not built rules and training data for entity extrac-
tion. For those, we use the grammar and training
data we developed separately.

It is important to note that URES is not a clas-
sic IE system. Its purpose is to extract as many
as possible different instances of the given rela-
tions while maintaining a high precision. Since
the goal is to extract instances and not mentions,
we are quite willing to miss a particular sentence
containing an instance of a target relation – if the
instance can be found elsewhere. In contrast, the
classical IE systems extract mentions of entities
and relations from the input documents. This
difference in goals leads to different ways of
measuring the performance of the systems.

The rest of the paper is organized as follows:
in Section 2 we present the related work. In Sec-
tion 3 we outline the general design principles of
URES and the architecture of the system and
then describe the different components of URES
in details while giving examples to the input and
output of each component. In Section 4 we pre-
sent our experimental evaluation and then wrap
up with conclusions and suggestions for future
work.

2 Related Work

Information Extraction (IE) is a sub-field of
NLP, aims at aiding people to sift through large
volume of documents by automatically identify-
ing and tagging key entities, facts and events
mentioned in the text.

Over the years, much effort has been invested
in developing accurate and efficient IE systems.
Some of the systems are rule-based (Fisher, So-
derland et al. 1995; Soderland 1999), some are
statistical (Bikel, Miller et al. 1997; Collins and
Miller 1998; Manning and Schutze 1999; Miller,
Schwartz et al. 1999) and some are based on in-
ductive-logic-based (Zelle and Mooney. 1996;
Califf and Mooney 1998). Recent IE research
with bootstrap learning (Brin 1998; Riloff and
Jones 1999; Phillips and Riloff 2002; Thelen and
Riloff 2002) or learning from documents tagged

as relevant (Riloff 1996; Sudo, Sekine et al.
2001) has decreased, but not eliminated hand-
tagged training.

Snowball (Agichtein and Gravano 2000) is an
unsupervised system for learning relations from
document collections. The system takes as input
a set of seed examples for each relation, and uses
a clustering technique to learn patterns from the
seed examples. It does rely on a full fledges
Named Entity Recognition system. Snowball
achieved fairly low precision figures (30-50%)
on relations such as merger and acquisition on
the same dataset used in our experiments.

KnowItAll system is a direct predecessor of
URES. It is developed at University of Washing-
ton by Oren Etzioni and colleagues (Etzioni,
Cafarella et al. 2005). KnowItAll is an autono-
mous, domain-independent system that extracts
facts from the Web. The primary focus of the
system is on extracting entities (unary predi-
cates). The input to KnowItAll is a set of entity
classes to be extracted, such as “city”, “scien-
tist”, “movie”, etc., and the output is a list of
entities extracted from the Web. KnowItAll uses
a set of manually-built generic rules, which are
instantiated with the target predicate names, pro-
ducing queries, patterns and discriminator
phrases. The queries are passed to a search en-
gine, the suggested pages are downloaded and
processed with patterns. Every time a pattern is
matched, the extraction is generated and evalu-
ated using Web statistics – the number of search
engine hits of the extraction alone and the ex-
traction together with discriminator phrases.
KnowItAll has also a pattern learning module
(PL) that is able to learn patterns for extracting
entities. However, it is unsuitable for learning
patterns for relations. Hence, for extracting rela-
tions KnowItAll currently uses only the generic
hand written patterns.

3 Description of URES

The goal of URES is extracting instances of rela-
tions from the Web without human supervision.
Accordingly, the input of the system is limited to
(reasonably short) definition of the target rela-
tions. The output of the system is a large list of
relation instances, ordered by confidence. The
system consists of several largely independent
components. The Sentence Gatherer generates
(e.g., downloads from the Web) a large set of
sentences that may contain target instances. The
Pattern Learner uses a small number of known
seed instances to learn likely patterns of relation

668

occurrences. The Sentence Classifier filters the
set of sentences, removing those that are unlikely
to contain instances of the target relations. The
Instance Extractor extracts the attributes of the
instances from the sentences, and generates the
output of the system.

3.1 Sentence Gatherer
The Sentence Gatherer is currently implemented
in a very simple way. It gets a set of keywords as
input, and proceeds to download all documents
that contain one of those keywords. From the
documents, it extracts all sentences that contain
at least one of the keywords.

The keywords for a relation are the words that
are indicative of instances of the relation. The
keywords are given to the system as part of the
relation definition. Their number is usually
small. For instance, the set of keywords for Ac-
quisition in our experiments contains two words
– “acquired” and “acquisition”. Additional key-
words (such as “acquire”, “purchased”, and
“hostile takeover”) can be added automatically
by using WordNet (Miller 1995).

3.2 Pattern Learner
The task of the Pattern Learner is to learn the
patterns of occurrence of relation instances. This
is an inherently supervised task, because at least
some occurrences must be known in order to be
able to find patterns among them. Consequently,
the input to the Pattern Learner includes a small
set (10-15 instances) of known instances for
each target relation. Our system assumes that the
seeds are a part of the target relation definition.
However, the seeds need not be created manu-
ally. Instead, they can be taken from the top-
scoring results of a high-precision low-recall
unsupervised extraction system, such as
KnowItAll. The seeds for our experiments were
produced in exactly this way.

The Pattern Learner proceeds as follows: first,
the gathered sentences that contain the seed in-
stances are used to generate the positive and
negative sets. From those sets the pattern are
learned. Then, the patterns are post-processed
and filtered. We shall now describe those steps
in detail.

Preparing the positive and negative sets
The positive set of a predicate (the terms predi-
cate and relation are interchangeable in our
work) consists of sentences that contain a known
instance of the predicate, with the instance at-

tributes changed to “<AttrN>”, where N is the
attribute index. For example, assuming there is a
seed instance Acquisition(Oracle, PeopleSoft),
the sentence

The Antitrust Division of the U.S. De-
partment of Justice evaluated the likely
competitive effects of Oracle's proposed
acquisition of PeopleSoft.

will be changed to

The Antitrust Division… …of <Attr1>'s
proposed acquisition of <Attr2>.

The positive set of a predicate P is generated
straightforwardly, using substring search.

The negative set of a predicate consists of
similarly modified sentences with known false
instances of the predicate. We build the negative
set as a union of two subsets. The first subset is
generated from the sentences in the positive set
by changing the assignment of one or both at-
tributes to some other suitable entity. In the first
mode of operation, when only a shallow parser is
available, any suitable noun phrase can be as-
signed to an attribute. Continuing the example
above, the following sentences will be included
in the negative set:

<Attr1> of <Attr2> evaluated the likely…
<Attr2> of the U.S. … …acquisition of
<Attr1>.
etc.

In the second mode of operation, when the
NER is available, only entities of the correct
type get assigned to an attribute.

The other subset of the negative set contains
all sentences produced in a similar way from the
positive sentences of all other target predicates.
We assume without loss of generality that the
predicates that are being extracted simultane-
ously are all disjoint. In addition, the definition
of each predicate indicates whether the predicate
is symmetric (like “merger”) or antisymmetric
(like “acquisition”). In the former case, the sen-
tences produced by exchanging the attributes in
positive sentences are placed into the positive
set, and in the later case – into the negative set of
the predicate.

The following pseudo code shows the process
of generating the positive and negative sets in
detail:

669

Let S be the set of gathered sentences.
For each predicate P
 For each s∈S containing a word from Keywords(P)
 For each known seed P(A1, A2) of the predicate P
 If A1 and A2 are each found exactly once inside s
 For all entities e1, e2 ∈ s, such that e2 ≠ e1, and
 Type(e1) = type of Attr1 of P, and
 Type(e2) = type of Attr2 of P
 Let s' := s with eN changed to “<AttrN>”.
 If e1 = A1 and e2 = A2
 Add s' to the PositiveSet(P).
 Elseif e1 = A2 and e2 = A1 and symmetric(P)
 Add s' to the PositiveSet(P).
 Else
 Add s' to the NegativeSet(P).
For each predicate P
 For each predicate P2 ≠ P
 For each sentence s ∈ PositiveSet(P2)
 Put s into the NegativeSet(P).

Generating the patterns
The patterns for predicate P are generalizations
of pairs of sentences from the positive set of P.
The function Generalize(S1, S2) is applied to
each pair of sentences S1 and S2 from the positive
set of the predicate. The function generates a
pattern that is the best (according to the objective
function defined below) generalization of its two
arguments. The following pseudo code shows
the process of generating the patterns:

For each predicate P
 For each pair S1, S2 from PositiveSet(P)
 Let Pattern := Generalize(S1, S2).
 Add Pattern to PatternsSet(P).

The patterns are sequences of tokens, skips
(denoted *), limited skips (denoted *?) and slots.
The tokens can match only themselves, the skips
match zero or more arbitrary tokens, and slots
match instance attributes. The limited skips
match zero or more arbitrary tokens, which must
not belong to entities of the types equal to the
types of the predicate attributes. The General-
ize(s1, s2) function takes two patterns (note, that
sentences in the positive and negative sets are
patterns without skips) and generates the least
(most specific) common generalization of both.
The function does a dynamical programming
search for the best match between the two pat-
terns (Optimal String Alignment algorithm),
with the cost of the match defined as the sum of
costs of matches for all elements. We use the
following numbers: two identical elements
match at cost 0, a token matches a skip or an
empty space at cost 10, a skip matches an empty
space at cost 2, and different kinds of skip match
at cost 3. All other combinations have infinite
cost. After the best match is found, it is con-

verted into a pattern by copying matched identi-
cal elements and adding skips where non-
identical elements are matched. For example,
assume the sentences are

Toward this end, <Attr1> in July acquired
<Attr2>
Earlier this year, <Attr1> acquired <Attr2>
from X

After the dynamical programming-based
search, the following match will be found:

Table 1 - Best Match between Sentences
Toward (cost 10)

Earlier (cost 10)
this this (cost 0)
end (cost 10)

year (cost 10)
, , (cost 0)
<Attr1 > <Attr1 > (cost 0)
in July (cost 20)
acquired acquired (cost 0)
<Attr2 > <Attr2 > (cost 0)

from (cost 10)
X (cost 10)

at total cost = 80. The match will be converted to
the pattern (assuming the NER mode, so the only
entity belonging to the same type as one of the
attributes is “X”):

*? *? this *? *? , <Attr1> *? acquired <Attr2> *? *

which becomes, after combining adjacent skips,
*? this *? , <Attr1> *? acquired <Attr2> *

Note, that the generalization algorithm allows
patterns with any kind of elements beside skips,
such as CapitalWord, Number, CapitalizedSe-
quence, etc. As long as the costs and results of
matches are properly defined, the Generalize
function is able to find the best generalization of
any two patterns. However, in the present work
we stick with the simplest pattern definition as
described above.

Post-processing, filtering, and scoring
The number of patterns generated at the previous
step is very large. Post-processing and filtering
tries to reduce this number, keeping the most
useful patterns and removing the too specific and
irrelevant ones.

First, we remove from patterns all “stop
words” surrounded by skips from both sides,

670

such as the word “this” in the last pattern in the
previous subsection. Such words do not add to
the discriminative power of patterns, and only
needlessly reduce the pattern recall. The list of
stop words includes all functional and very
common English words, as well as puncuation
marks. Note, that the stop words are removed
only if they are surrounded by skips, because
when they are adjacent to slots or non-stop
words they often convey valuable information.
After this step, the pattern above becomes

 *? , <Attr1> *? acquired <Attr2> *

In the next step of filtering, we remove all pat-
terns that do not contain relevant words. For
each predicate, the list of relevant words is
automatically generated from WordNet by fol-
lowing all links to depth at most 2 starting from
the predicate keywords. For example, the pattern

 * <Attr1> * by <Attr2> *

will be removed, while the pattern

 * <Attr1> * purchased <Attr2> *

will be kept, because the word “purchased” can
be reached from “acquisition” via synonym and
derivation links.

The final (optional) filtering step removes all
patterns, that contain slots surrounded by skips
on both sides, keeping only the patterns, whose
slots are adjacent to tokens or to sentence
boundaries. Since both the shallow parser and
the NER system that we use are far from perfect,
they often place the entity boundaries incor-
rectly. Using only patterns with anchored slots
significantly improves the precision of the whole
system. In our experiments we compare the per-
formance of anchored and unanchored patterns.

The filtered patterns are then scored by their
performance on the positive and negative sets.
Currently we use a simple scoring method – the
score of a pattern is the number of positive
matches divided by the number of negative
matches plus one:

| { : matches } |()
|{ : matches } | 1

S PositiveSet Pattern SScore Pattern
S NegativeSet Pattern S

∈
=

∈ +
This formula is purely empirical and produces

reasonable results. The threshold is applied to
the set of patterns, and all patterns scoring less
than the threshold (currently, it is set to 6) are
discarded.

3.3 Sentence Classifier
The task of the Sentence Classifier is to filter out
from the large pool of sentences produced by the
Sentence Gatherer the sentences that do not con-
tain the target predicate instances. In the current
version of our system, this is only done in order
to reduce the number of sentences that need to
be processed by the Slot Extractor. Therefore, in
this stage we just remove the sentences that do
not match any of the regular expressions gener-
ated from the patterns. Regular expressions are
generated from patterns by replacing slots with
skips.

3.4 Instance Extractor
The task of the Instance Extractor is to use the
patterns generated by the Pattern Learner on the
sentences that were passed through by the Sen-
tence Classifier. However, the patterns cannot be
directly matched to the sentences, because the
patterns only define the placeholders for instance
attributes and cannot by themselves extract the
values of the attributes.

We currently have two different ways to solve
this problem – using a general-purpose shallow
parser, which is able to recognize noun phrases
and their heads, and using an information extrac-
tion system called TEG (Rosenfeld, Feldman et
al. 2004), together with a trained grammar able
to recognize the entities of the types of the
predicates’ attributes. We shall briefly describe
the two modes of operation.

Shallow Parser mode
In the first mode of operation, the predicates
may define attributes of two different types:
ProperName and CommonNP. We assume that
the values of the ProperName type are always
heads of proper noun phrases. And the values of
the
CommonNP type are simple common noun
phrases (with possible proper noun modifiers,
e.g. “the Kodak camera”).

We use a Java-written shallow parser from the
OpenNLP (http://opennlp.sourceforge.net/)
package. Each sentence is tokenized, tagged with
part-of-speech, and tagged with noun phrase
boundaries. The pattern matching and extraction
is straightforward.

TEG mode
TEG (Trainable Extraction Grammars)
(Rosenfeld, Feldman et al. 2004) is general-

671

purpose hybrid rule-based and statistical IE sys-
tem, able to extract entities and relations at the
sentence level. It is adapted to any domain by
writing a suitable set of rules, and training them
using an annotated corpus. The TEG rule lan-
guage is a straightforward extension of a con-
text-free grammar syntax. A complete set of
rules is compiled into a PCFG (Probabilistic
Context Free Grammar), which is then trained
upon the training corpus.

Some of the nonterminals inside the TEG
grammar can be marked as target concepts.
Wherever such nonterminal occurs in a final
parse of a sentence, TEG generates an output
label. The target concept rules may specify some
of their parts as attributes. Then the concept is
considered to be a relation, with the values of the
attributes determined by the concept parse. Con-
cepts without attributes are entities.

For the TEG-based instance extractor we util-
ize the NER ruleset of TEG and an internal train-
ing corpus called INC, as described in
(Rosenfeld, Feldman et al. 2004). The ruleset
defines a grammar with a set of concepts for
Person, Location, and Organization entities. In
addition, the grammar defines a generic Noun-
Phrase concept, which can be used for capturing
the entities that do not belong to any of the entity
types above.

In order to do the extraction, the patterns gener-
ated by the Pattern Learner are converted to the
TEG syntax and added to the pre-built NER
grammar. This produces a grammar, which is
able to extract relations. This grammar is trained
upon the automatically labeled positive set from
the Pattern Learning. The resulting trained
model is applied to the sets of sentences pro-
duced by the Sentence Classifier.

4 Experimental Evaluation

In order to evaluate URES, we used five predi-
cates

Acquisition(BuyerCompany, BoughtCom-
pany),
Merger(Company1, Company2),
CEO_Of(Company, Name),
MayorOf(City, Name),
InventorOf(InventorName, Invention).

Merger is symmetric predicate, in the sense that
the order of its attributes does not matter. Acqui-
sition is antisymmetric, and the other three are
tested as bound in the first attribute. For the

bound predicates, we are only interested in the
instances with particular prespecified values of
the first attribute.

 We test both modes of operation – using shal-
low parser and using TEG. In the shallow parser
mode, the Invention attribute of the InventorOf
predicate is of type CommonNP, and all other
attributes are of type ProperName. In the TEG
mode, the “Company” attributes are of type Or-
ganization, the “Name” attributes are of type
Person, the “City” attribute is of type Location,
and the “Invention” attribute is of type Noun-
Phrase.

We evaluate our system by running it over a
large set of sentences, counting the number of
extracted instances, and manually checking a
random sample of the instances to estimate pre-
cision. In order to be able to compare our results
with KnowItAll-produced results, we used the
set of sentences collected by the KnowItAll’s
crawler as if they were produced by the Sentence
Gatherer.

The set of sentences for the Acquisition and
Merger predicates contained around 900,000
sentences each. For the other three predicates,
each of the sentences contained one of the 100
predefined values for the first attribute. The val-
ues (100 companies for CEO_Of, 100 cities for
MayorOf, and 100 inventors for InventorOf) are
entities collected by KnowItAll, half of them are
frequent entities (>100,000 hits), and another
half are rare (<10,000 hits).

In all of the experiments, we use ten top
predicate instances extracted by KnowItAll for
the relation seeds needed by the Pattern Learner.

The results of our experiments are summa-
rized in the Table 2. The table displays the num-
ber of extracted instances and estimated
precision for three different URES setups, and
for the KnowItAll manually built patterns. Three
results are shown for each setup and each rela-
tion – extractions supported by at least one, at
least two, and at least three different sentences,
respectively.

Several conclusions can be drawn from the re-
sults. First, both modes of URES significantly
outperform KnowItAll in recall (number of ex-
tractions), while maintaining the same level of
precision or improving it. This demonstrates util-
ity of our pattern learning component. Second, it
is immediately apparent, that using only an-
chored patterns significantly improves precision
of NP Tagger-based URES, though at a high cost
in recall. The NP tagger-based URES with an-
chored patterns performs somewhat worse than

672

Table 2 - Experimental results.

 Acquisition CEO_Of InventorOf MayorOf Merger
 support Count Prec Count Prec Count Prec Count Prec Count Prec

≥ 1 10587 0.74 545 0.7 1233 0.84 2815 0.6 25071 0.71
≥ 2 815 0.87 221 0.92 333 0.92 717 0.74 2981 0.8

NP Tagger
All patterns

 ≥ 3 234 0.9 133 0.94 185 0.96 442 0.84 1245 0.88
≥ 1 5803 0.84 447 0.8 1035 0.86 2462 0.65 17107 0.8
≥ 2 465 0.96 186 0.94 284 0.92 652 0.78 2481 0.83

NP Tagger
Anchored
patterns ≥ 3 148 0.98 123 0.96 159 0.96 411 0.88 1084 0.9

≥ 1 8926 0.82 618 0.83 2322 0.65 2434 0.85 15002 0.8
≥ 2 1261 0.94 244 0.94 592 0.85 779 0.93 2932 0.86

TEG
All patterns

 ≥ 3 467 0.98 158 0.98 334 0.88 482 0.98 1443 0.9
≥ 1 2235 0.84 421 0.81 604 0.8 725 0.76 3233 0.82KnowItAll

 ≥ 2 257 0.98 190 0.98 168 0.92 308 0.92 352 0.92

TEG-based URES on all predicates except In-
ventorOf, as expected. For the InventorOf, TEG
performs worse, because of overly simplistic
implementation of the NounPhrase concept in-
side the TEG grammar – it is defined as a se-
quence of zero or more adjectives followed by a
sequence of nouns. Such definition often leads to
only part of a correct invention name being ex-
tracted.

5 Conclusions and Future Work

We have presented the URES system for autono-
mously extracting relations from the Web.
URES bypasses the bottleneck created by classic
information extraction systems that either relies
on manually developed extraction patterns or on
manually tagged training corpus. Instead, the
system relies upon learning patterns from a large
unlabeled set of sentences downloaded from
Web.

One of the topics we would like to further ex-
plore is the complexity of the patterns that we
learn. Currently we use a very simple pattern
language that just has 4 types of elements, slots,
constants and two types of skips. We want to see
if we can achieve higher precision with more
complex patterns. In addition we would like to
test URES on n-ary predicates, and to extend the
system to handle predicates that are allowed to
lack some of the attributes.

References
Agichtein, E. and L. Gravano (2000). Snowball: Ex-

tracting Relations from Large Plain-Text Collec-
tions. Proceedings of the 5th ACM International
Conference on Digital Libraries (DL).

Bikel, D. M., S. Miller, et al. (1997). Nymble: a high-
performance learning name-finder. Proceedings of
ANLP-97: 194-201.

Brin, S. (1998). Extracting Patterns and Relations
from the World Wide Web. WebDB Workshop,
EDBT '98.

Califf, M. E. and R. J. Mooney (1998). Relational
Learning of Pattern-Match Rules for Information
Extraction. Working Notes of AAAI Spring Sym-
posium on Applying Machine Learning to Dis-
course Processing. Menlo Park, CA, AAAI Press:
6-11.

Chinchor, N., L. Hirschman, et al. (1994). "Evaluat-
ing Message Understanding Systems: An Analysis
of the Third Message Understanding Conference
(MUC-3)." Computational Linguistics 3(19): 409-
449.

Collins, M. and S. Miller (1998). Semantic Tagging
using a Probabilistic Context Free Grammar. Pro-
ceedings of the Sixth Workshop on Very Large
Corpora.

Etzioni, O., M. Cafarella, et al. (2005). "Unsupervised
named-entity extraction from the Web: An ex-
perimental study." Artificial Intelligence.

Fisher, D., S. Soderland, et al. (1995). Description of
the UMass Systems as Used for MUC-6. 6th Mes-
sage Understanding Conference: 127-140.

673

Manning, C. and H. Schutze (1999). Foundations of
Statistical Natural Language Processing. Cam-
bridge, US, The MIT Press.

McCallum, A., D. Freitag, et al. (2000). Maximum
Entropy Markov Models for Information Extrac-
tion and Segmentation. Proc. 17th International
Conf. on Machine Learning, Morgan Kaufmann,
San Francisco, CA: 591-598.

Miller, D., R. Schwartz, et al. (1999). Named entity
extraction from broadcast news. Proceedings of
DARPA Broadcast News Workshop. Herndon,
VA.

Miller, G. A. (1995). "WordNet: A lexical database
for English." CACM 38(11): 39-41.

Phillips, W. and E. Riloff (2002). Exploiting Strong
Syntactic Heuristics and Co-Training to Learn
Semantic Lexicons. Conference on Empirical
Methods in Natural Language Processing
(EMNLP 2002).

Riloff, E. (1996). Automatically Generating Extrac-
tion Patterns from Untagged Text. AAAI/IAAI,
Vol. 2: 1044-1049.

Riloff, E. and R. Jones (1999). Learning Dictionaries
for Information Extraction by Multi-level Boot-
strapping. Proceedings of the Sixteenth National
Conference on Artificial Intelligence, The AAAI
Press/MIT Press: 1044-1049.

Rosenfeld, B., R. Feldman, et al. (2004). TEG: a hy-
brid approach to information extraction. CIKM
2004, Arlington, VA.

Soderland, S. (1999). "Learning Information Extrac-
tion Rules for Semi-Structured and Free Text."
Machine Learning 34(1-3): 233-272.

Sudo, K., S. Sekine, et al. (2001). Automatic pattern
acquisition for Japanese information extraction.
Human Language Technology Conference
(HTL2001).

Thelen, M. and E. Riloff (2002). A Bootstrapping
Method for Learning Semantic Lexicons using
Extraction Pattern Contexts. Conference on Em-
pirical Methods in Natural Language Processing
(EMNLP 2002).

Yeh, A. and L. Hirschman (2002). "Background and
overview for kdd cup 2002 task 1: Information ex-
traction from biomedical articles." KDD Ex-
plorarions 4(2): 87-89.

Zelle, J. M. and R. J. Mooney. (1996). Learning to
parse database queries using inductive logic pro-
gramming. 13th National Conference on Artificial
Intelligence (AAAI-96).

674

