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Abstract 

Information Extraction (IE) is a fundamen-
tal technology for NLP. Previous methods 
for IE were relying on co-occurrence rela-
tions, soft patterns and properties of the 
target (for example, syntactic role), which 
result in problems of handling paraphrasing 
and alignment of instances. Our system 
ARE (Anchor and Relation) is based on the 
dependency relation model and tackles 
these problems by unifying entities accord-
ing to their dependency relations, which we 
found to provide more invariant relations 
between entities in many cases. In order to 
exploit the complexity and characteristics 
of relation paths, we further classify the re-
lation paths into the categories of ‘easy’, 
‘average’ and ‘hard’, and utilize different 
extraction strategies based on the character-
istics of those categories. Our extraction 
method leads to improvement in perform-
ance by 3% and 6% for MUC4 and MUC6 
respectively as compared to the state-of-art 
IE systems. 

1 Introduction 

Information Extraction (IE) is one of the funda-
mental problems of natural language processing. 
Progress in IE is important to enhance results in 
such tasks as Question Answering, Information 
Retrieval and Text Summarization. Multiple efforts 
in MUC series allowed IE systems to achieve near-
human performance in such domains as biological 
(Humphreys et al., 2000), terrorism (Kaufmann, 
1992; Kaufmann, 1993) and management succes-
sion (Kaufmann, 1995). 

The IE task is formulated for MUC series as 
filling of several predefined slots in a template. The 
terrorism template consists of slots Perpetrator, 
Victim and Target; the slots in the management 
succession template are Org, PersonIn, PersonOut 
and Post. We decided to choose both terrorism and 
management succession domains, from MUC4 and 

MUC6 respectively, in order to demonstrate that 
our idea is applicable to multiple domains. 

Paraphrasing of instances is one of the crucial 
problems in IE. This problem leads to data sparse-
ness in situations when information is expressed in 
different ways. As an example, consider the ex-
cerpts “Terrorists attacked victims” and “Victims 
were attacked by unidentified terrorists”. These 
instances have very similar semantic meaning. 
However, context-based approaches such as 
Autoslog-TS by Riloff (1996) and Yangarber et al. 
(2002) may face difficulties in handling these in-
stances effectively because the context of entity 
‘victims’ is located on the left context in the first 
instance and on the right context in the second. For 
these cases, we found that we are able to verify the 
context by performing dependency relation parsing 
(Lin, 1997), which outputs the word ‘victims’ as an 
object in both instances, with ‘attacked’ as a verb 
and ‘terrorists’ as a subject. After grouping of same 
syntactic roles in the above examples, we are able 
to unify these instances.  

Another problem in IE systems is word align-
ment. Insertion or deletion of tokens prevents in-
stances from being generalized effectively during 
learning. Therefore, the instances “Victims were 
attacked by terrorists” and “Victims were recently 
attacked by terrorists” are difficult to unify. The 
common approach adopted in GRID by Xiao et al. 
(2003) is to apply more stable chunks such as noun 
phrases and verb phrases. Another recent approach 
by Cui et al. (2005) utilizes soft patterns for prob-
abilistic matching of tokens. However, a longer 
insertion leads to a more complicated structure, as 
in the instance “Victims, living near the shop, went 
out for a walk and were attacked by terrorists”. 
Since there may be many inserted words, both ap-
proaches may also be inefficient for this case. Simi-
lar to the paraphrasing problem, the word align-
ment problem may be handled with dependency 
relations in many cases. We found that the relation 
subject-verb-object for words ‘victims’, ‘attacked’ 
and ‘terrorists’ remains invariant for the above two 
instances. 

Before IE can be performed, we need to iden-
tify sentences containing possible slots. This is 
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done through the identification of cue phrases 
which we call anchors or anchor cues. However, 
natural texts tend to have diverse terminologies, 
which require semantic features for generalization. 
These features include semantic classes, Named 
Entities (NE) and support from ontology (for ex-
ample, synsets in Wordnet). If such features are 
predefined, then changes in terminology (for in-
stance, addition of new terrorism organization) will 
lead to a loss in recall. To avoid this, we exploit 
automatic mining techniques for anchor cues. Ex-
amples of anchors are the words “terrorists” or 
“guerrilla” that signify a possible candidate for the 
Perpetrator slot. 

From the reviewed works, we observe that the 
inefficient use of relations causes problems of 
paraphrasing and alignment and the related data 
sparseness problem in current IE systems. As a re-
sult, training and testing instances in the systems 
often lack generality. This paper aims to tackle 
these problems with the help of dependency rela-
tion-based model for IE. Although dependency re-
lations provide invariant structures for many in-
stances as illustrated above, they tend to be effi-
cient only for short sentences and make errors on 
long distance relations. To tackle this problem, we 
classify relations into ‘simple’, ‘average’ and 
‘hard’ categories, depending on the complexity of 
the dependency relation paths. We then employ 
different strategies to perform IE in each category. 

The main contributions of our work are as fol-
lows. First, we propose a dependency relation 
based model for IE. Second, we perform classifica-
tion of instances into several categories based on 
the complexity of dependency relation structures, 
and employ the action promotion strategy to tackle 
the problem of long distance relations. 

The remaining parts of the paper are organized 
as follows. Section 2 discusses related work and 
Section 3 introduces our approach for constructing 
ARE. Section 4 introduces our method for splitting 
instances into categories. Section 5 describes our 
experimental setups and results and, finally, Sec-
tion 6 concludes the paper. 

2 Related work 

There are several research directions in Information 
Extraction. We highlight a few directions in IE 
such as case frame based modeling in PALKA by 
Kim and Moldovan (1995) and CRYSTAL by So-
derland et al. (1995); rule-based learning in 
Autoslog-TS by Riloff et al. (1996); and classifica-
tion-based learning by Chieu et al. (2002). Al-
though systems representing these directions have 
very different learning models, paraphrasing and 
alignment problems still have no reliable solution.  

Case frame based IE systems incorporate do-
main-dependent knowledge in the processing and 
learning of semantic constraints. However, concept 
hierarchy used in case frames is typically encoded 
manually and requires additional human labor for 
porting across domains. Moreover, the systems 
tend to rely on heuristics in order to match case 
frames. PALKA by Kim and Moldovan (1995) per-
forms keyword-based matching of concepts, while 
CRYSTAL by Soderland et al. (1995) relied on 
additional domain-specific annotation and associ-
ated lexicon for matching. 

Rule-based IE models allow differentiation of 
rules according to their performance. Autoslog-TS 
by Riloff (1996) learns the context rules for extrac-
tion and ranks them according to their performance 
on the training corpus. Although this approach is 
suitable for automatic training, Xiao et al. (2004) 
stated that hard matching techniques tend to have 
low recall due to data sparseness problem. To over-
come this problem, (LP)2 by Ciravegna (2002) util-
izes rules with high precision in order to improve 
the precision of rules with average recall. However, 
(LP)2 is developed for semi-structured textual do-
main, where we can find consistent lexical patterns 
at surface text level. This is not the same for free-
text, in which different order of words or an extra 
clause in a sentence may cause paraphrasing and 
alignment problems respectively, such as the ex-
ample excerpts “terrorists attacked peasants” and 
“peasants were attacked 2 months ago by terrorists”.  

The classification-based approaches such as by 
Chieu and Ng (2002) tend to outperform rule-based 
approaches. However, Ciravegna (2001) argued 
that it is difficult to examine the result obtained by 
classifiers. Thus, interpretability of the learned 
knowledge is a serious bottleneck of the classifica-
tion approach. Additionally, Zhou and Su (2002) 
trained classifiers for Named Entity extraction and 
reported that performance degrades rapidly if the 
training corpus size is below 100KB. It implies that 
human experts have to spend long hours to annotate  
a sufficiently large amount of training corpus. 

Several recent researches focused on the ex-
traction of relationships using classifiers. Roth and 
Yih (2002) learned the entities and relations to-
gether. The joint learning improves the perform-
ance of NE recognition in cases such as “X killed 
Y”. It also prevents the propagation of mistakes in 
NE extraction to the extraction of relations. How-
ever, long distance relations between entities are 
likely to cause mistakes in relation extraction. A 
possible approach for modeling relations of differ-
ent complexity is the use of dependency-based ker-
nel trees in support vector machines by Culotta and 
Sorensen (2004). The authors reported that non-
relation instances are very heterogeneous, and 
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hence they suggested the additional step of extract-
ing candidate relations before classification. 

3 Our approach 

Differing from previous systems, the language 
model in ARE is based on dependency relations 
obtained from Minipar by Lin (1997). In the first 
stage, ARE tries to identify possible candidates for 
filling slots in a sentence. For example, words such 
as ‘terrorist’ or ‘guerrilla’ can fill the slot for Per-
petrator in the terrorism domain. We refer to these 
candidates as anchors or anchor cues. In the sec-
ond stage, ARE defines the dependency relations 
that connect anchor cues. We exploit dependency 
relations to provide more invariant structures for 
similar sentences with different syntactic structures. 
After extracting the possible relations between an-
chor cues, we form several possible parsing paths 
and rank them.  Based on the ranking, we choose 
the optimal filling of slots.  

Ranking strategy may be unnecessary in cases 
when entities are represented in the SVO form. 
Ranking strategy may also fail in situations of long 
distance relations. To handle such problems, we 
categorize the sentences into 3 categories of: sim-
ple, average and hard, depending on the complexity 
of the dependency relations. We then apply differ-
ent strategies to tackle sentences in each category 
effectively. The following subsections discuss de-
tails of our approach. 

 
Features Perpetrator_Cue 

(A) 
Action_Cue 
(D) 

Victim_Cue 
(A) 

Target_Cue 
(A) 

Lexical  
(Head 
noun) 

terrorists,  
individuals,  
soldiers 

attacked, 
murder,  
massacre 

mayor, 
general, 
priests 

bridge,  
house,  
ministry 

Part-of-
Speech 

Noun Verb Noun Noun 

Named 
Entities 

Soldiers  
(PERSON) 

- Jesuit priests 
(PERSON) 

WTC  
(OBJECT) 

Synonyms Synset 130, 166 Synset 22 Synset 68 Synset 71 
Concept 
Class 

ID 2, 3 ID 9  ID 22, 43 ID 61, 48 

Co-
referenced 
entity 

He -> terrorist, 
soldier 

- They -> 
peasants 

- 

Table 1. Linguistic features for anchor extraction 

Every token in ARE may be represented at a 
different level of representations, including: Lexi-
cal, Part-of-Speech, Named Entities, Synonyms and 
Concept classes. The synonym set and concept 
classes are mainly obtained from Wordnet. We use 
NLProcessor from Infogistics Ltd for the extraction 
of part-of-speech, noun phrases and verb phrases 
(we refer to them as phrases). Named Entities are 
extracted with the program used in Yang et al. 
(2003). Additionally, we employed the co-
reference module for the extraction of meaningful 
pronouns. It is used for linking entities across 
clauses or sentences, for example in “John works in 
XYZ Corp. He was appointed as a vice-president a 
month ago” and could achieve an accuracy of 62%. 

After preprocessing and feature extraction, we ob-
tain the linguistic features in Table 1. 

3.1 Mining of anchor cues 

In order to extract possible anchors and relations 
from every sentence, we need to select features to 
support the generalization of words. This generali-
zation may be different for different classes of 
words. For example, person names may be general-
ized as a Named Entity PERSON, whereas for 
‘murder’ and ‘assassinate’, the optimal generaliza-
tion would be the concept class ‘kill’ in the Word-
Net hypernym tree. To support several generaliza-
tions, we need to store multiple representations of 
every word or token. 

Mining of anchor cues or anchors is crucial in 
order to unify meaningful entities in a sentence, for 
example words ‘terrorists’, ‘individuals’ and ‘sol-
diers’ from Table 1. In the terrorism domain, we 
consider 4 types of anchor cues: Perpetrator, Action, 
Victim, and Target of destruction. For management 
succession domain, we have 6 types: Post, Person 
In, Person Out, Action and Organization. Each set 
of anchor cues may be seen as a pre-defined se-
mantic type where the tokens are mined automati-
cally. The anchor cues are further classified into 
two categories: general type A and action type D. 
Action type anchor cues are those with verbs or 
verb phrases describing a particular action or 
movement. General type encompasses any prede-
fined type that does not fall under the action type 
cues.  

In the first stage, we need to extract anchor 
cues for every type. Let P be an input phrase, and 
Aj be the anchor of type j that we want to match. 
The similarity score of P for Aj in sentence S is 
given by: 
  

Phrase_Scores(P,Aj)=δ1* S_lexicalS(P,Aj+δ2* S_POSS(P,Aj) 
                         +δ3* S_NES(P,Aj) +δ4 * S_SynS(P,Aj)  
                         +δ5* S_Concept-ClassS(P,Aj)   (1) 
 

where S_XXXS(P,Aj) is a score function for the type 
Aj and δi is the importance weight for Aj. In order to 
extract the score function, we use entities from 
slots in the training instances. Each S_XXXS(P,Aj) is 
calculated as a ratio of occurrence in positive slots 
versus all the slots: 

 

  )2(
)(#

)(#
),(_

j

j
jS Atypetheofslotsall

AtypetheofslotspositiveinP
APXXXS =  

 

We classify the phrase P as belonging to an anchor 
cue A of type j if Phrase_ScoreS(P,Aj) ≥ ω, where 
ω is an empirically determined threshold. The 
weights ( )51 ,..., δδδ = are learned automatically 
using Expectation Maximization by Dempster et al. 
(1977). Using anchors from training instances as 
ground truth, we iteratively input different sets of 
weights into EM to maximize the overall score. 
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Consider the excerpts “Terrorists attacked 
victims”, “Peasants were murdered by unidentified 
individuals” and “Soldiers participated in massacre 
of Jesuit priests”. Let Wi denotes the position of 
token i in the instances. After mining of anchors, 
we are able to extract meaningful anchor cues in 
these sentences as shown in Table 2: 
  

W-3 W-2 W-1 W0 W1 W2 W3

 Perp_Cue Action_Cue Victim_Cue    
   Victim_Cue were Action_Cue by

In Action_Cue Of Victim_Cue    
Table 2. Instances with anchor cues 

3.2 Relationship extraction and ranking 

In the next stage, we need to 
find meaningful relations to 
unify instances using the anchor 
cues. This unification is done 
using dependency trees of sen-
tences. The dependency 
relations for the first sentence 
are given in Figure 1.  
 

 From the dependency tree, we need to identify 
the SVO relations between anchor cues. In cases 
when there are multiple relations linking many po-
tential subjects, verbs or objects, we need to select 
the best relations under the circumstances. Our 
scheme for relation ranking is as follows.  

First, we rank each single relation individually 
based on the probability that it appears in the re-
spective context template slot in the training data. 
We use the following formula to capture the quality 
of a relation Rel which gives higher weight to more 
frequently occurring relations:  

 

)3(
||}|{||

||},|{||
),,( 21 ∑
∑

∈

=∈
=

S iii

S iii

SRR
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AAleRQuality

where S is a set of sentences containing relation 
Rel, anchors A1 and A2; R denotes relation path con-
necting A1 and A2 in a sentence Si; ||X|| denotes size 
of the set X. 
 Second, we need to take into account the entity 
height in the dependency tree. We calculate height 
as a distance to the root node. Our intuition is that 
the nodes on the higher level of dependency tree 
are more important, because they may be linked to 
more nodes or entities. The following example in 
Figure 2 illustrates it.  

 
 

Figure 2. Example of entity in a dependency tree 

Here, the node ‘terrorists’ is the most representative 
in the whole tree, and thus relations nearer to ‘ter-
rorists’ should have higher weight. Therefore, we 
give a slightly higher weight to the links that are 
closer to the root node as follows: 

 

   Heights(Rel) = log2(Const – Distance(Root, Rel))         (4) 
 

where Const is set to be larger than the depth of 
nodes in the tree.  

Third, we need to calculate the score of rela-
tion path Ri->j between each pair of anchors Ai and 
Aj, where Ai and Aj belong to different anchor cue 
types. The path score of Ri->j depends on both qual-
ity and height of participating relations:  
 

Scores(Ai, Aj)=ΣRi∈R {Heights(Ri)*Quality(Ri)}/Lengthij   (5) 
 

where Lengthij is the length of path Ri->j. Division 
on Lengthij allows normalizing Score against the 
length of Ri->j. The formula (5) tends to give higher 
scores to shorter paths. Therefore, the path ending 
with ‘terrorist’ will be preferred in the previous 
example to the equivalent path ending with 
‘MRTA’. 
 Finally, we need to find optimal filling of a 
template T. Let C = {C1, .. , CK} be the set of slot 
types in T and A = {A1, .., AL} be the set of ex-
tracted anchors. First, we regroup anchors A ac-
cording to their respective types. Let 

},...,{ )()(
1

)( k
L

kk
k

AAA =  be the projection of A onto 

the type Ck, ∀k∈N, k ≤ K. Let F = A(1) × A(2) ×..× 
A(K) be the set of possible template fillings. The 
elements of F are denoted as F1, ..,FM, where every 
Fi ∈ F is represented as Fi = {Ai

(1),..,Ai
(K)}. Our aim 

is to evaluate F and find the optimal filling F0 ∈ F. 
For this purpose, we use the previously calculated 
scores of relation paths between every two anchors 
Ai and Aj.  
 Based on the previously defined ScoreS(Ai, Aj), 
it is possible to rank all the fillings in F. For each 
filling Fi∈F we calculate the aggregate score for all 
the involved anchor pairs: 

)7(
),(

)(_ ,1

M

AAcoreS
FScoreelationR
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iS

∑ ≤≤=

where K is number of slot types and M denotes the 
number of relation paths between anchors in Fi.  
 After calculating Relation_ScoreS(Fi), it is used 
for ranking all possible template fillings. The next 
step is to join entity and relation scores. We defined 
the entity score of Fi as an average of the scores of 
participating anchors:   
 

)8(/)(_)(_
1

)(∑ ≤≤
=

Kk
k

iSiS KAScorePhraseFScoreEntity

We combine entity and relation scores of Fi into the 
overall formula for ranking. 
 

 RankS(Fi)=λ*Entity_ScoreS(Fi)+(1-λ)*Relation_ScoreS(Fi )      (9) 
 

The application of Subject-Verb-Object (SVO) 
relations facilitates the grouping of subjects, 

Figure 1.  
Dependency tree 
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verbs and objects together. For the 3 instances in 
Table 2 containing the anchor cues, the unified 
SVO relations are given in Table 3. 
 

W-2 W-1 W0 Instance is 
Perp_Cue attacked Victim_Cue + 
Perp_Cue murdered Victim_Cue + 
Perp_Cue participated ? - 

Table 3.  Unification based on SVO relations  
The first 2 instances are unified correctly. The 
only exception is the slot in the third case, which 
is missing because the target is not an object of 
‘participated’. 

4 Category Splitting 

Through our experiments, we found that the com-
bination of relations and anchors are essential for 
improving IE performance. However, relations 
alone are not applicable across all situations be-
cause of long distance relations and possible de-
pendency relation parsing errors, especially for 
long sentences. Since the relations in long sen-
tences are often complicated, parsing errors are 
very difficult to avoid. Furthermore, application of 
dependency relations on long sentences may lead to 
incorrect extractions and decrease the performance.  

Through the analysis of instances, we noticed 
that dependency trees have different complexity for 
different sentences. Therefore, we decided to clas-
sify sentences into 3 categories based on the com-
plexity of dependency relations between the action 
cues (V) and the likely subject (S) and object cues 
(O). Category 1 is when the potential SVO’s are 
connected directly to each other (simple category); 
Category 2 is when S or O is one link away from V 
in terms of nouns or verbs (average category); and 
Category 3 is when the path distances between po-
tential S, V, and Os are more than 2 links away 
(hard category).  

 

 
 

  

   

Figure 3. Simple category   Figure 4. Average category  
Figure 3 and Figure 4 illustrate the dependency 

parse trees for the simple and average categories 
respectively derived from the sentences: “50 peas-
ants of have been kidnapped by terrorists” and “a 
colonel was involved in the massacre of the Jesu-

its”. These trees represent 2 common structures in 
the MUC4 domain. By taking advantage of this 
commonality, we can further improve the perform-
ance of extraction. We notice that in the simple 
category, the perpetrator cue (‘terrorists’) is always 
a subject, action cue (‘kidnapped’) a verb, and vic-
tim cue (‘peasants’) an object. For the average 
category, perpetrator and victim commonly appear 
under 3 relations: subject, object and pcomp-n. The 
most difficult category is the hard category, since 
in this category relations can be distant. We thus 
primarily rely on anchors for extraction and have to 
give less importance to dependency parsing.   
 In order to process the different categories, we 
utilize the specific strategies for each category. As 
an example, the instance “X murdered Y” requires 
only the analysis of the context verb ‘murdered’ in 
the simple category. It is different from the in-
stances “X investigated murder of Y” and “X con-
ducted murder of Y” in the average category, in 
which transition of word ‘investigated’ into ‘con-
ducted’ makes X a perpetrator. We refer to the an-
chor ‘murder’ in the first and second instances as 
promotable and non-promotable respectively. Ad-
ditionally, we denote that the token ‘conducted’ is 
the optimal node for promotion of ‘murder’, 
whereas the anchor ‘investigate’ is not. This exam-
ple illustrates the importance of support verb analy-
sis specifically for the average category.  
 
 

 
 

Figure 5. Category processing 

The main steps of our algorithm for performing IE 
in different categories are given in Figure 5. Al-
though some steps are common for every category, 
the processing strategies are different. 
 

Simple category 
For simple category, we reorder tokens according 
to their slot types. Based on this reordering, we fill 
the template. 
 

Algorithm 
 

1) Analyze category  
     If(simple)  
       - Perform token reordering based on SVO relations 
     Else if (average) ProcessAverage 
     Else ProcessHard 
2) Fill template slots 
 

Function ProcessAverage 
1) Find the nearest missing anchor in the previous sentences  
2) Find the optimal linking node for action anchor in every Fi 
3) Find the filling Fi

(0) = argmaxi Rank(Fi) 
4) Use Fi for filling the template if Rank0 > θ2, where θ2 is an 

empirical threshold 
 

Function ProcessHard 
1) Perform token reordering based on anchors 
2) Use linguistic+ syntactic + semantic feature of the head 

noun. Eg. Caps, ‘subj’, etc 
3) Find the optimal linking node for action anchor in every Fi 
4) Find the filling Fi

(0) = argmaxi Rank(Fi) 
5) Use Fi for filling the template if Rank0 > θ3, where θ3 is an 

empirical threshold 
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Average category 
For average category, our strategy consists of 4 
steps. First, in the case of missing anchor type we 
try to find it in the nearest previous sentence. Con-
sider an example from MUC-6: “Look at what hap-
pened to John Sculley, Apple Computer's former 
chairman. Earlier this month he abruptly resigned 
as chairman of troubled Spectrum Information 
Technologies.” In this example, a noisy cue ‘he’ 
needs to be substituted with “John Sculley”, which 
is a strong anchor cue. Second, we need to find an 
optimal promotion of a support verb. For example, 
in “X conducted murder of Y”, the verb ‘murder’ 
should be linked with X and in the excerpt “X in-
vestigated murder of Y”, it should not be promoted. 
Thus, we need to make 2 steps for promotion: (a) 
calculate importance of every word connecting the 
action cue such as ‘murder’ and ‘distributed’ and (b) 
find the optimal promotion for the word ‘murder’. 
Third, using the predefined threshold λ we cutoff 
the instances with irrelevant support verbs (e.g., 
‘investigated’). Fourth, we reorder the tokens in 
order to group them according to the anchor types. 

The following algorithm in Figure 6 estimates 
the importance of a token W for type D in the sup-
port verb structure. The input of the algorithm con-
sists of sentences S1…SN and two sets of tokens 
Vneg, Vpos co-occurring with anchor cue of type D. 
Vneg and Vpos are automatically tagged as irrelevant 
and relevant respectively based on preliminary 
marked keys in the training instances. The algo-
rithm output represents the importance value be-
tween 0 to 1.  
 

 
Figure 6. Evaluation of word importance 

We use the linguistic features for W and D as given 
in Table 1 to form the instances.  
 

Hard category 
In the hard category, we have to deal with long-
distance relations: at least 2 anchors are more than 
2 links away in the dependency tree. Consequently, 
dependency tree alone is not reliable for connecting 
nodes. To find an optimal connection, we primarily 
rely on comparison between several possible fill-
ings of slots based on previously extracted anchor 
cues. Depending on the results of such comparison, 
we chose the filling that has the highest score. As 
an example, consider the hard category in the ex-
cerpt “MRTA today distributed leaflets claiming 
responsibility for the murder of former defense 
minister Enrique Lopez Albujar”. The dependency 
tree for this instance is given in Figure 7.  

 

Although words ‘MRTA’, ‘murder’ and ‘min-
ister’ might be correctly extracted as anchors, the 
challenging problem is to decide whether ‘MRTA’ 
is a perpetrator. Anchors ‘MRTA’ and ‘minister’ 
are connected via the verb ‘distributed’. However, 
the word ‘murder’ belongs to another branch of this 
verb. 
 

 
Figure 7. Hard case 

Processing of such categories is challenging. 
Since relations are not reliable, we first need to rely 
on the anchor extraction stage. Nevertheless, the 
promotion strategy for the anchor cue ‘murder’ is 
still possible, although the corresponding branch in 
the dependency tree is long. Henceforth, we try to 
replace the verb ‘distributed’ by promoting the an-
chor ‘murder’. To do so, we need to evaluate 
whether the nodes in between may be eliminated. 
For example, such elimination is possible in the 
pairs ‘conducted’ -> ‘murder’ and not possible in 
the pair ‘investigated’ -> ‘murder’, since in the ex-
cerpt “X investigated murder” X is not a perpetra-
tor. If the elimination is possible, we apply the 
promotion algorithm given on Figure 8: 
 

 
Figure 8. Token promotion algorithm 

The algorithm checks path Pj1->j2 that connect an-
chors Ai

(j1) and Ai
(j2) in the filling Fi; the nodes from 

Pj1->j2 are added to the set Z. Finally, the top node 
of the set Z is chosen as an optimal node for the 
promotion. The example optimal node for promo-
tion of the word ‘murder’ on Figure 7 is the node 
‘distributed’. 

Another important difference between the hard 
and average cases is in the calculation of RankS (Fi) 
in Equation (9). We set λhard > λaverage because long 
distance relations are less reliable in the hard case 
than in the average case. 

CalculateImportance (W, D) 
 

1) Select sentences that contain anchor cue D 
2) Extract linguistic features of Vpos, Vneg and D 
3) Train using SVM on instances (Vpos,D) and  

instances (Vneg,D) 
4) Return Importance(W) using SVM 

FindOptimalPromotion (Fi) 
1) Z = ∅ 
2) For each Ai

(j1), Ai
(j2) ∈ Fi 

   Z = Z ∪ Pj1->j2 

     End_for 
3) Output Top(Z) 
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5 Evaluation 

In order to evaluate the efficiency of our method, 
we conduct our experiments in 2 domains: MUC4 
(Kaufmann, 1992) and MUC6 (Kaufmann, 1995). 
The official corpus of MUC4 is released with 
MUC3; it covers terrorism in the Latin America 
region and consists of 1,700 texts. Among them, 
1,300 documents belong to the training corpus. 
Testing was done on 25 relevant and 25 irrelevant 
texts from TST3, plus 25 relevant and 25 irrelevant 
texts from TST4, as is done in Xiao et al. (2004). 
MUC6 covers news articles in Management Suc-
cession domain. Its training corpus consists of 1201 
instances, whereas the testing corpus consists of 76 
person-ins, 82 person-outs, 123 positions, and 79 
organizations. These slots we extracted in order to 
fill templates on a sentence-by-sentence basis, as is 
done by Chieu et al. (2002) and Soderland (1999). 

Our experiments were designed to test the 
effectiveness of both case splitting and action verb 
promotion. The performance of ARE is compared 
to both the state-of-art systems and our baseline 
approach. We use 2 state-of-art systems for MUC4 
and 1 system for MUC6. Our baseline system, 
Anc+rel, utilizes only anchors and relations 
without category splitting as described in Section 3. 
For our ARE system with case splitting, we present 
the results on Overall corpus, as well as separate 
results on Simple, Average and Hard categories. 
The Overall performance of ARE represents the 
result for all the categories combined together. 
Additionally, we test the impact of the action 
promotion (in the right column) for the average and 
hard categories. 
 

 Without promotion With promotion 

Case (%) P R F1 P R F1 
GRID 58% 56% 57% - - - 

Riloff’05 46% 52% 48% - - - 
Anc+rel (100%) 58% 59% 58% 58% 59% 58% 
Overall (100%) 57% 60% 59% 58% 61% 60% 
Simple (13%) 79% 86% 82% 79% 86% 82% 

Average (22%) 64% 70% 67% 67% 71% 69% 
Hard (65%) 50% 52% 51% 51% 53% 52% 

Table 4. Results on MUC4 with case splitting 
 

The comparative results are presented in Table 
4 and Table 5 for MUC4 and MUC6, respectively. 
First, we review our experimental results on MUC4 
corpus without promotion (left column) before pro-
ceeding to the right column. 
a) From the results on Table 4 we observe that our 
baseline approach Anc+rel outperforms all the 
state-of-art systems. It demonstrates that both an-
chors and relations are useful. Anchors allow us to 
group entities according to their semantic meanings 

and thus to select of the most prominent candidates. 
Relations allow us to capture more invariant repre-
sentation of instances. However, a sentence may 
contain very few high-quality relations. It implies 
that the relations ranking step is fuzzy in nature. In 
addition, we noticed that some anchor cues may be 
missing, whereas the other anchor types may be 
represented by several anchor cues. All these fac-
tors lead only to moderate improvement in per-
formance, especially in comparison with GRID 
system. 
b) Overall, the splitting of instances into categories 
turned out to be useful. Due to the application of 
specific strategies the performance increased by 1% 
over the baseline. However, the large dominance of 
the hard cases (65%) made this improvement mod-
est. 
c) We notice that the amount of variations for con-
necting anchor cues in the Simple category is rela-
tively small. Therefore, the overall performance for 
this case reaches F1=82%. The main errors here 
come from missing anchors resulting partly from 
mistakes in such component as NE detection. 
d) The performance in the Average category is 
F1=67%. It is lower than that for the simple cate-
gory because of higher variability in relations and 
negative influence of support verbs. For example, 
for excerpt such as “X investigated murder of Y”, 
the processing tends to make mistake without the 
analysis of semantic value of support verb ‘investi-
gated’. 
e) Hard category achieves the lowest performance 
of F1=51% among all the categories. Since for this 
category we have to rely mostly on anchors, the 
problem arises if these anchors provide the wrong 
clues. It happens if some of them are missing or are 
wrongly extracted. The other cause of mistakes is 
when ARE finds several anchor cues which belong 
to the same type. 

Additional usage of promotion strategies al-
lowed us to improve the performance further. 
f) Overall, the addition of promotion strategy en-
ables the system to further boost the performance to 
F1=60%. It means that the promotion strategy is 
useful, especially for the average case. The im-
provement in comparison to the state-of-art system 
GRID is about 3%. 
g) It achieved an F1=69%, which is an improve-
ment of 2%, for the Average category. It implies 
that the analysis of support verbs helps in revealing 
the differences between the instances such as “X 
was involved in kidnapping of Y” and “X reported 
kidnapping of Y”.  
h) The results in the Hard category improved mod-
erately to F1=52%. The reason for the improvement 
is that more anchor cues are captured after the 
promotion. Still, there are 2 types of common mis-

577



takes: 1) multiple or missing anchor cues of the 
same type and 2) anchors can be spread across sev-
eral sentences or several clauses in the same sen-
tence.  
 

 Without promotion With promotion 

Case (%) P R F1 P R F1 
Chieu et al.’02 74% 49% 59% - - - 

Anc+rel (100%) 78% 52% 62% 78% 52% 62% 
Overall (100%) 72% 58% 64% 73% 58% 65% 
Simple (45%) 85% 67% 75% 87% 68% 76% 

Average (27%) 61% 55% 58% 64% 56% 60% 
Hard (28%) 59% 44% 50% 59% 44% 50% 

Table 5. Results on MUC6 with case splitting 

For the MUC6 results given in Table 5, we ob-
serve that the overall improvement in performance 
of ARE system over Chieu et al.’02 is 6%. The 
trends of results for MUC6 are similar to that in 
MUC4. However, there are few important differ-
ences. First, 45% of instances in MUC6 fall into 
the Simple category, therefore this category domi-
nates. The reason for this is that the terminologies 
used in Management Succession domain are more 
stable in comparison to the Terrorism domain. Sec-
ond, there are more anchor types for this case and 
therefore the promotion strategy is applicable also 
to the simple case. Third, there is no improvement 
in performance for the Hard category. We believe 
the primary reason for it is that more stable lan-
guage patterns are used in MUC6. Therefore, de-
pendency relations are also more stable in MUC6 
and the promotion strategy is not very important. 
Similar to MUC4, there are problems of missing 
anchors and mistakes in dependency parsing. 

6 Conclusion 

The current state-of-art IE methods tend to use co-
occurrence relations for extraction of entities. Al-
though context may provide a meaningful clue, the 
use of co-occurrence relations alone has serious 
limitations because of alignment and paraphrasing 
problems. In our work, we proposed to utilize de-
pendency relations to tackle these problems. Based 
on the extracted anchor cues and relations between 
them, we split instances into ‘simple’, ‘average’ 
and ‘hard’ categories. For each category, we ap-
plied specific strategy. This approach allowed us to 
outperform the existing state-of-art approaches by 
3% on Terrorism domain and 6% on Management 
Succession domain. In our future work we plan to 
investigate the role of semantic relations and inte-
grate ontology in the rule generation process. An-
other direction is to explore the use of bootstrap-
ping and transduction approaches that may require 
less training instances. 
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