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Abstract

Parsing is a computationally intensive task
due to the combinatorial explosion seen in
chart parsing algorithms that explore pos-
sible parse trees. In this paper, we propose
a method to limit the combinatorial explo-
sion by restricting the CYK chart parsing
algorithm based on the output of a chunk
parser. When tested on the three parsers
presented in (Collins, 1999), we observed
an approximate three–fold speedup with
only an average decrease of 0.17% in both
precision and recall.

1 Introduction
1.1 Motivation
Syntactic parsing is a computationally intensive
and slow task. The cost of parsing quickly be-
comes prohibitively expensive as the amount of
text to parse grows. Even worse, syntactic parsing
is a prerequisite for many natural language pro-
cessing tasks. These costs make it impossible to
work with large collections of documents in any
reasonable amount of time.

We started looking into methods and improve-
ments that would speed up syntactic parsing.
These are divided into simple software engineer-
ing solutions, which are only touched on briefly,
and an optimization to the CYK parsing algorithm,
which is the main topic of this paper.

While we made large speed gains through sim-
ple software engineering improvements, such as
internal symbolization, optimizing critical areas,
optimization of the training data format, et cetera,
the largest individual gain in speed was made by
modifying the CYK parsing algorithm to leverage
the decisions of a syntactic chunk parser so that it

avoided combinations that conflicted with the out-
put of the chunk parser.

1.2 Previous Work
Chart parsing is a method of building a parse tree
that systematically explores combinations based
on a set of grammatical rules, while using a chart
to store partial results. The general CYK algo-
rithm is a bottom-up parsing algorithm that will
generate all possible parse trees that are accepted
by a formal grammar. Michael Collins, first
in (1996), and then in his PhD thesis (1999), de-
scribes a modification to the standard CYK chart
parse for natural languages which uses probabili-
ties instead of simple context free grammars.

The CYK algorithm considers all possible com-
binations. In Figure 1, we present a CYK chart
graph for the sentence “The red balloon flew
away.” The algorithm will search the pyramid,
from left to right, from the bottom to the top. Each
box contains a pair of numbers that we will re-
fer to as the span, which represent the sequence
of words currently being considered. Calculating
each “box” in the chart means trying all combina-
tions of the lower parts of the box’s sub-pyramid
to form possible sub-parse trees. For example, one
calculates the results for the span (1, 4) by trying
to combine the results in (1, 1) and (2, 4), (1, 2)
and (3, 4), and (1, 3) and (4, 4).

In (Collins, 1999), Collins describes three new
parsers. The Model 2 gives the best output, pars-
ing section 23 at 88.26% precision and 88.05%
recall in 40 minutes. The Model 1 is by far the
fastest of the three, parsing section 23 of Tree-
bank (Marcus et al., 1994) at 87.75% precision and
87.45% recall in 26 minutes.

Syntactic Chunking is the partial parsing
process of segmenting a sentence into non-
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Figure 1: The CYK parse visualized as a pyramid.
CYK will search from the left to right, bottom to
top.

overlapping “chunks” of syntactically connected
words. (Tjong Kim Sang and Buchholz, 2000) Un-
like a parse tree, a set of syntactic chunks has
no hierarchical information on how sequences of
words relate to each other. The only information
given is an additional label describing the chunk.

We use the YamCha (Kudo and Matsumoto,
2003; Kudo and Matsumoto, 2001) chunker for
our text chunking. When trained on all of Penn
Treebank , except for section 23 and tested on sec-
tion 23, the model had a precision of 95.96% and
a recall of 96.08%. YamCha parses section 23 of
Treebank in 36 seconds.

Clause Identification is the partial parsing pro-
cess of annotating the hierarchical structure of
clauses—groupings of words that contain a sub-
ject and a predicate (Tjong Kim Sang and Déjean,
2001). Our clause identifier is an implementa-
tion of (Carreras et al., 2002), except that we use
C5.0 as the machine learning method instead of
Carreras’ own TreeBoost algorithm (Carreras and
Márquez, 2001). When trained and scored on the
CoNLL 2001 shared task data1 with the results
of our chunker, our clause identifier performs at
90.73% precision, 73.72% recall on the develop-
ment set and 88.85% precision, 70.22% recall on
the test set.

In this paper, we describe modifications to
the version of the CYK algorithm described in
(Collins, 1999) and experiment with the modi-
fications to both our proprietary parser and the
(Collins, 1999) parser.

1http://www.cnts.ua.ac.be/conll2001/clauses/clauses.tgz

2 Methods
2.1 Software Optimizations
While each of the following optimizations, in-
dividually, had a smaller effect on our parser’s
speed than the CYK restrictions, collectively, sim-
ple software engineering improvements resulted in
the largest speed increase to our syntactic parser.
In the experiments section, we will refer to this as
the “Optimized” version.

Optimization of the training data and inter-
nal symbolization: We discovered that our parser
was bound by the number of probability hash-table
lookups. We changed the format for our training
data/hash keys so that they were as short as possi-
ble, eliminating deliminators and using integers to
represent a closed set of POS tags that were seen
in the training data, reducing the two to four byte
POS tags such as “VP” or “ADJP” down to single
byte integers. In the most extreme cases, this re-
duces the length of non-word characters in a hash
from 28 characters to 6. The training data takes up
less space, hashes faster, and many string compar-
isons are reduced to simple integer comparisons.

Optimization of our hash-table implementa-
tion: The majority of look ups in the hash-table
at runtime were for non-existent keys. We put
a bloomfilter on each hash bucket so that such
lookups would often be trivially rejected, instead
of having to compare the lookup key with ev-
ery key in the bucket. We also switched to the
Fowler/Noll/Vo (Noll, 2005) hash function, which
is faster and has less collisions then our previous
hash function.

Optimization of critical areas: There were
several areas in our code that were optimized af-
ter profiling our parser.

Rules based pre/post-processing: We were
able to get very minor increases in precision, re-
call and speed by adding hard coded rules to our
parser that handle things that are handled poorly,
specifically parenthetical phrases and quotations.

2.2 CYK restrictions
In this section, we describe modifications that re-
strict the chart search based on the output of a
partial parser (in this case, a chunker) that marks
groups of constituents.

First, we define a span to be a pair c = (s, t),
where s is the index of the first word in the span
and t is the index of the last word in the span. We
then define a set S, where S is the set of spans
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c1, . . . , cn that represent the restrictions placed on
the CYK parse. We say that c1 and c2 overlap iff
s1 < s2 ≤ t1 < t2 or s2 < s1 ≤ t2 < t1, and we
note it as c1 ∼ c2.2

When using the output of a chunker, S is the set
of spans that describe the non-VP, non-PP chunks
where ti − si > 0.

During the CYK parse, after a span’s start and
end points are selected, but before iterating across
all splits of that span and their generative rules,
we propose that the span in question be checked
to make sure that it does not overlap with any
span in set S. We give the pseudocode in Al-
gorithm 1, which is a modification of the parse()
function given in Appendix B of (Collins, 1999).

Algorithm 1 The modified parse() function
initialize()
for span = 2 to n do

for start = 1 to n− span + 1 do
end← start + span − 1
if ∀x ∈ S(x 6∼ (start, end)) then

complete(start, end)
end if

end for
end for
X ← edge in chart[1,n,TOP] with highest
probability
return X

For example, given the chunk parse:

[The red balloon]NP [flew]V P [away]ADV P ,

S = {(1, 3)} because there is only one chunk
with a length greater than 1.

Suppose we are analyzing the span (3, 4) on
the example sentence above. This span will be
rejected, as it overlaps with the chunk (1, 3);
the leaf nodes “balloon” and “flew” are not go-
ing to be children of the same parsetree parent
node. Thus, this method does not compute the
generative rules for all the splits of the spans
{(2, 4), (2, 5), (3, 4), (3, 5)}. This will also reduce
the number of calculations done when calculating
higher spans. When computing (1, 4) in this ex-
ample, time will be saved since the spans (2, 4)
and (3, 4) were not considered. This example is
visualized in Figure 2.

A more complex, real–world example from
section 23 of Treebank is visualized in Fig-

2This notation was originally used in (Carreras et al.,
2002).

ure 3, using the sentence “Under an agreement
signed by the Big Board and the Chicago Mer-
cantile Exchange, trading was temporarily halted
in Chicago.” This sentence has three usable
chunks, [an agreement]NP , [the Big Board]NP ,
and [the Chicago Mercantile Exchange]NP . This
example shows the effects of the above algorithm
on a longer sentence with multiple chunks.

(1,1) (2,2) (3,3) (4,4) (5,5)
(1,2) (2,3) (3,4) (4,5)

The red balloon flew away

(1,3) (2,4)
(2,5)

(1,5)
(1,4)

Chunk Span

(3,5)

Figure 2: The same CYK example as in Fig-
ure 1. Blacked out box spans will not be calcu-
lated, while half toned box spans do not have to
calculate as many possibilities because they de-
pend on an uncalculated span.

3 Experiments & Results
3.1 Our parser with chunks
Our parser uses a simplified version of the model
presented in (Collins, 1996). For this experi-
ment,we tested four versions of our internal parser:

• Our original parser. No optimizations or
chunking information.

• Our original parser with chunking informa-
tion.

• Our optimized parser without chunking infor-
mation.

• Our optimized parser with chunking informa-
tion.

For parsers that use chunking information, the
runtime of the chunk parsing is included in the
parser’s runtime, to show that total gains in run-
time offset the cost of running the chunker.

We trained the chunk parser on all of Treebank
except for section 23, which will be used as the
test set. We trained our parser on all of Treebank
except for section 23. Scoring of the parse trees

297



an agreement by Big the Exchange in Chicagosigned the Board
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Precision Recall Time
Original 82.79% 83.19% 25’45”
With chunks 84.40% 83.74% 7’37”
Optimized 83.86% 83.24% 4’28”
With chunks 84.42% 84.06% 1’35”

Table 1: Results from our parser on Section 23

Precision Recall Time
Model 1 87.75% 87.45% 26’18”
With chunks 87.63% 87.27% 8’54”
Model 2 88.26% 88.05% 40’00”
With chunks 88.04% 87.87% 13’47”
Model 3 88.25% 88.04% 42’24”
With chunks 88.10% 87.89% 14’58”

Table 2: Results from the Collins parsers on Sec-
tion 23 with chunking information

was done using the EVALB package that was used
to score the (Collins, 1999) parser. The numbers
represent the labeled bracketing of all sentences;
not just those with 40 words or less.

The experiment was run on a dual Pentium 4,
3.20Ghz machine with two gigabytes of memory.

The results are presented in Table 1.
The most notable result is the greatly reduced

time to parse when chunking information was
added. Both versions of our parser saw an average
three–fold increase in speed by leveraging chunk-
ing decisions. We also saw small increases in both
precision and recall.

3.2 Collins Parsers with chunks
To show that this method is general and does
not exploit weaknesses in the lexical model of
our parser, we repeated the previous experiments
with the three models of parsers presented in the
(Collins, 1999). We made sure to use the exact
same chunk post-processing rules in the Collins
parser code to make sure that the same chunk in-
formation was being used. We used Collins’ train-
ing data. We did not retrain the parser in any way
to optimize for chunked input. We only modified
the parsing algorithm.

Once again, the chunk parser was trained on
all of Treebank except for section 23, the trees
are evaluated with EVALB, and these experiments
were run on the same dual Pentium 4 machine.

These results are presented in Table 2.
Like our parser, each Collins parser saw a

Precision Recall Time
Optimized 83.86% 83.24% 4’28”
With chunks 84.42% 84.06% 1’35”
With clauses 83.66% 83.06% 5’02”
With both 84.20% 83.84% 2’26”

Table 3: Results from our parser on Section
23 with clause identification information. Data
copied from the first experiment has been itali-
cized for comparison.

slightly under three fold increase in speed. But
unlike our parser, all three models of the Collins
parser saw slight decreases in accuracy, averag-
ing at -0.17% for both precision and recall. We
theorize that this is because the errors in our lex-
ical model are more severe than the errors in the
chunks, but the Collins parser models make fewer
errors in word grouping at the leaf node level than
the chunker does. We theorize that a more accu-
rate chunker would result in an increase in the pre-
cision and recall of the Collins parsers, while pre-
serving the substantial speed gains.

3.3 Clause Identification

Encouraged by the improvement brought by using
chunking as a source of restrictions, we used the
data from our clause identifier.

Again, our clause identifier was derived from
(Carreras et al., 2002), using boosted C5.0 deci-
sion trees instead of their boosted binary decision
tree method, which performs below their numbers:
88.85% precision, 70.22% recall on the CoNLL
2001 shared task test set.

These results are presented in Table 3.
Adding clause detection information hurt per-

formance in every category. The increases in run-
time are caused by the clause identifier’s runtime
complexity of over O(n3). The time to identify
clauses is greater then the speed increases gained
by using the output as restrictions.

In terms of the drop in precision and recall,
we believe that errors from the clause detector
are grouping words together that are not all con-
stituents of the same parent node. While errors in
a chunk parse are relatively localized, errors in the
hierarchical structure of clauses can affect the en-
tire parse tree, preventing the parser from explor-
ing the correct high-level structure of the sentence.
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4 Future Work
While the modification given in section 2.2 is
specific to CYK parsing, we believe that plac-
ing restrictions based on the output of a chunk
parser is general enough to be applied to any gen-
erative, statistical parser, such as the Charniak
parser (2000), or a Lexical Tree Adjoining Gram-
mar based parser (Sarkar, 2000). Restrictions can
be placed where the parser would explore possi-
ble trees that would violate the boundaries deter-
mined by the chunk parser, pruning paths that will
not yield the correct parse tree.

5 Conclusion
Using decisions from partial parsing greatly re-
duces the time to perform full syntactic parses, and
we have presented a method to apply the informa-
tion from partial parsing to full syntactic parsers
that use a variant of the CYK algorithm. We have
shown that this method is not specific to the im-
plementation of our parser and causes a negligible
effect on precision and recall, while decreasing the
time to parse by an approximate factor of three.
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Introduction to the conll-2001 shared task: Clause
identification. In Walter Daelemans and Rémi Za-
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