
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 279–286,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Factoring Synchronous Grammars By Sorting

Daniel Gildea
Computer Science Dept.
University of Rochester
Rochester, NY 14627

Giorgio Satta
Dept. of Information Eng’g

University of Padua
I-35131 Padua, Italy

Hao Zhang
Computer Science Dept.
University of Rochester
Rochester, NY 14627

Abstract

Synchronous Context-Free Grammars
(SCFGs) have been successfully exploited
as translation models in machine trans-
lation applications. When parsing with
an SCFG, computational complexity
grows exponentially with the length of the
rules, in the worst case. In this paper we
examine the problem of factorizing each
rule of an input SCFG to a generatively
equivalent set of rules, each having the
smallest possible length. Our algorithm
works in time O(n log n), for each rule
of length n. This improves upon previous
results and solves an open problem about
recognizing permutations that can be
factored.

1 Introduction

Synchronous Context-Free Grammars (SCFGs)
are a generalization of the Context-Free Gram-
mar (CFG) formalism to simultaneously produce
strings in two languages. SCFGs have a wide
range of applications, including machine transla-
tion, word and phrase alignments, and automatic
dictionary construction. Variations of SCFGs go
back to Aho and Ullman (1972)’s Syntax-Directed
Translation Schemata, but also include the In-
version Transduction Grammars in Wu (1997),
which restrict grammar rules to be binary, the syn-
chronous grammars in Chiang (2005), which use
only a single nonterminal symbol, and the Multi-
text Grammars in Melamed (2003), which allow
independent rewriting, as well as other tree-based
models such as Yamada and Knight (2001) and
Galley et al. (2004).

When viewed as a rewriting system, an SCFG
generates a set of string pairs, representing some
translation relation. We are concerned here with
the time complexity of parsing such a pair, accord-
ing to the grammar. Assume then a pair with each

string having a maximum length of N , and con-
sider an SCFG G of size |G|, with a bound of n

nonterminals in the right-hand side of each rule in
a single dimension, which we call below the rank
of G. As an upper bound, parsing can be carried
out in time O(|G|Nn+4) by a dynamic program-
ming algorithm maintaining continuous spans in
one dimension. As a lower bound, parsing strate-
gies with discontinuous spans in both dimensions
can take time Ω(|G|N c

√

n) for unfriendly permu-
tations (Satta and Peserico, 2005). A natural ques-
tion to ask then is: What if we could reduce the
rank of G, preserving the generated translation?
As in the case of CFGs, one way of doing this
would be to factorize each single rule into several
rules of rank strictly smaller than n. It is not diffi-
cult to see that this would result in a new grammar
of size at most 2 · |G|. In the time complexities
reported above, we see that such a size increase
would be more than compensated by the reduction
in the degree of the polynomial in N . We thus
conclude that a reduction in the rank of an SCFG
would result in more efficient parsing algorithms,
for most common parsing strategies.

In the general case, normal forms with bounded
rank are not admitted by SCFGs, as shown in (Aho
and Ullman, 1972). Nonetheless, an SCFG with a
rank of n may not necessarily meet the worst case
of Aho and Ullman (1972). It is then reasonable
to ask if our SCFG G can be factorized, and what
is the smallest rank k < n that can be obtained
in this way. This paper answers these two ques-
tions, by providing an algorithm that factorizes the
rules of an input SCFG, resulting in a new, genera-
tively equivalent, SCFG with rank k as low as pos-
sible. The algorithm works in time O(n log n) for
each rule, regardless of the rank k of the factorized
rules. As discussed above, in this way we achieve
an improvement of the parsing time for SCFGs,
obtaining an upper bound of O(|G|N k+4) by us-
ing a parsing strategy that maintains continuous

279

1,2

1,2

2,1

2 1

1,2

3 4

3,1,4,2

7 5 8 6

4,1,3,5,2

7 1 2,4,1,3

4 6 3 5

8 2

Figure 1: Two permutation trees. The permuta-
tions associated with the leaves can be produced
by composing the permutations at the internal
nodes.

spans in one dimension.
Previous work on this problem has been pre-

sented in Zhang et al. (2006), where a method is
provided for casting an SCFG to a form with rank
k = 2. If generalized to any value of k, that algo-
rithm would run in time O(n2). We thus improve
existing factorization methods by almost a factor
of n. We also solve an open problem mentioned
by Albert et al. (2003), who pose the question of
whether irreducible, or simple, permutations can
be recognized in time less than Θ(n2).

2 Synchronous CFGs and permutation
trees

We begin by describing the synchronous CFG for-
malism, which is more rigorously defined by Aho
and Ullman (1972) and Satta and Peserico (2005).
Let us consider strings defined over some set of
nonterminal and terminal symbols, as defined for
CFGs. We say that two such strings are syn-
chronous if some bijective relation is given be-
tween the occurrences of the nonterminals in the
two strings. A synchronous context-free gram-
mar (SCFG) is defined as a CFG, with the dif-
ference that it uses synchronous rules of the form
[A1 → α1, A2 → α2], with A1, A2 nonterminals
and α1, α2 synchronous strings. We can use pro-
duction [A1 → α1, A2 → α2] to rewrite any syn-
chronous strings [γ11A1γ12, γ21A2γ22] into the
synchronous strings [γ11α1γ12, γ21α2γ22], un-
der the condition that the indicated occurrences
of A1 and A2 be related by the bijection asso-
ciated with the source synchronous strings. Fur-
thermore, the bijective relation associated with the
target synchronous strings is obtained by compos-
ing the relation associated with the source syn-
chronous strings and the relation associated with
synchronous pair [α1, α2], in the most obvious
way.

As in standard constructions that reduce the

rank of a CFG, in this paper we focus on each
single synchronous rule and factorize it into syn-
chronous rules of lower rank. If we view the bijec-
tive relation associated with a synchronous rule as
a permutation, we can further reduce our factoriza-
tion problem to the problem of factorizing a per-
mutation of arity n into the composition of several
permutations of arity k < n. Such factorization
can be represented as a tree of composed permuta-
tions, called in what follows a permutation tree.
A permutation tree can be converted into a set of
k-ary SCFG rules equivalent to the input rule. For
example, the input rule:

[X → A(1)B(2)C(3)D(4)E(5)F (6)G(7)H(8),

X → B(2)A(1)C(3)D(4)G(7)E(5)H(8)F (6)]

yields the permutation tree of Figure 1(left). In-
troducing a new grammar nonterminal Xi for each
internal node of the tree yields an equivalent set of
smaller rules:

[X → X
(1)
1 X

(2)
2 , X → X

(1)
1 X

(2)
2]

[X1 → X
(1)
3 X

(2)
4 , X1 → X

(1)
3 X

(2)
4]

[X3 → A(1)B(2), X3 → B(2)A(1)]

[X4 → C(1)D(2), X4 → C(1)D(2)]

[X2 → E(1)F (2)G(3)H(4),

X2 → G(3)E(1)H(4)F (2)]

In the case of stochastic grammars, the rule cor-
responding to the root of the permutation tree is
assigned the original rule’s probability, while all
other rules, associated with new grammar nonter-
minals, are assigned probability 1. We process
each rule of an input SCFG independently, pro-
ducing an equivalent grammar with the smallest
possible arity.

3 Factorization Algorithm

In this section we specify and discuss our factor-
ization algorithm. The algorithm takes as input a
permutation defined on the set {1, · · · , n}, repre-
senting a rule of some SCFG, and provides a per-
mutation tree of arity k ≤ n for that permutation,
with k as small as possible.

Permutation trees covering a given input permu-
tation are unambiguous with the exception of se-
quences of binary rules of the same type (either
inverted or straight) (Albert et al., 2003). Thus,
when factorizing a permutation into a permutation

280

tree, it is safe to greedily reduce a subsequence
into a new subtree as soon as a subsequence is
found which represents a continuous span in both
dimensions of the permutation matrix1 associated
with the input permutation. For space reasons, we
omit the proof, but emphasize that any greedy re-
duction turns out to be either necessary, or equiv-
alent to the other alternatives.

Any sequences of binary rules can be rear-
ranged into a normalized form (e.g. always left-
branching) as a postprocessing step, if desired.

The top-level structure of the algorithm exploits
a divide-and-conquer approach, and is the same as
that of the well-known mergesort algorithm (Cor-
men et al., 1990). We work on subsequences of
the original permutation, and ‘merge’ neighbor-
ing subsequences into successively longer subse-
quences, combining two subsequences of length
2i into a subsequence of length 2i+1 until we have
built one subsequence spanning the entire permu-
tation. If each combination of subsequences can
be performed in linear time, then the entire permu-
tation can be processed in time O(n log n). As in
the case of mergesort, this is an application of the
so-called master theorem (Cormen et al., 1990).

As the algorithm operates, we will maintain the
invariant that we must have built all subtrees of
the target permutation tree that are entirely within
a given subsequence that has been processed. This
is analogous to the invariant in mergesort that all
processed subsequences are in sorted order. When
we combine two subsequences, we need only build
nodes in the tree that cover parts of both sub-
sequences, but are entirely within the combined
subsequence. Thus, we are looking for subtrees
that span the midpoint of the combined subse-
quence, but have left and right boundaries within
the boundaries of the combined subsequence. In
what follows, this midpoint is called the split
point.

From this invariant, we will be guaranteed to
have a complete, correct permutation tree at the
end of last subsequence combination. An example
of the operation of the general algorithm is shown
in Figure 2. The top-level structure of the algo-
rithm is presented in function KARIZE of Figure 3.

There may be more than one reduction neces-
sary spanning a given split point when combin-
ing two subsequences. Function MERGE in Fig-

1A permutation matrix is a way of representing a permuta-
tion, and is obtained by rearranging the row (or the columns)
of an identity matrix, according to the permutation itself.

2 1 3 4 7 5 8 6

2,1

2 1

1,2

3 4 7 5 8 6

1,2

2,1

2 1

1,2

3 4

3,1,4,2

7 5 8 6

1,2

1,2

2,1

2 1

1,2

3 4

3,1,4,2

7 5 8 6

Figure 2: Recursive combination of permutation
trees. Top row, the input permutation. Second row,
after combination into sequences of length two, bi-
nary nodes have been built where possible. Third
row, after combination into sequences of length
four; bottom row, the entire output tree.

ure 3 initializes certain data structures described
below, and then checks for reductions repeatedly
until no further reduction is possible. It looks first
for the smallest reduction crossing the split point
of the subsequences being combined. If SCAN,
described below, finds a valid reduction, it is com-
mitted by calling REDUCE. If a reduction is found,
we look for further reductions crossing either the
left or right boundary of the new reduction, repeat-
ing until no further reductions are possible. Be-
cause we only need to find reductions spanning
the original split point at a given combination step,
this process is guaranteed to find all reductions
needed.

We now turn to the problem of identifying a
specific reduction to be made across a split point,
which involves identifying the reduction’s left and
right boundaries. Given a subsequence and can-
didate left and right boundaries for that subse-
quence, the validity of making a reduction over
this span can be tested by verifying whether the
span constitutes a permuted sequence, that is,
a permutation of a contiguous sequence of inte-
gers. Since the starting permutation is defined
on a set {1, 2, · · · , n}, we have no repeated in-
tegers in our subsequences, and the above condi-

281

function KARIZE(π)
. initialize with identity mapping

h← hmin← hmax← (0..|π|);
. mergesort core

for size← 1; size ≤ |π|; size← size * 2 do
for min← 0;

min < |π|-size+1;
min← min + 2 * size do

div = min + size - 1;
max← min(|π|, min + 2*size - 1);
MERGE(min, div, max);

function MERGE(min, div, max)
. initialize h

sort h[min..max] according to π[i];
sort hmin[min..max] according to π[i];
sort hmax[min..max] according to π[i];

. merging sorted list takes linear time
. initialize v

for i← min; i ≤ max; i← i + 1 do
v [h[i]]← i;

. check if start of new reduced block
if i = min or

hmin[i] 6= hmin[i-1] then
vmin← i;

vmin[h[i]]← vmin;
for i← max; i ≥ min; i← i - 1 do

. check if start of new reduced block
if i = max or

hmax[i] 6= hmax[i+1] then
vmax← i ;

vmax[h[i]]← vmax;
. look for reductions

if SCAN(div) then
REDUCE(scanned reduction);
while SCAN(left) or SCAN(right) do

REDUCE(smaller reduction);
function REDUCE(left, right, bot, top)

for i← bot..top do
hmin[i]← left;
hmax[i]← right;

for i← left..right do
vmin[i]← bot;
vmax[i]← top;

print “reduce:” left..right ;

Figure 3: KARIZE: Top level of algorithm, iden-
tical to that of mergesort. MERGE: combines two
subsequences of size 2i into new subsequence of
size 2i+1. REDUCE: commits reduction by updat-
ing min and max arrays.

tion can be tested by scanning the span in ques-
tion, finding the minimum and maximum integers
in the span, and checking whether their difference
is equal to the length of the span minus one. Be-
low we call this condition the reduction test. As
an example of the reduction test, consider the sub-
sequence (7, 5, 8, 6), and take the last three ele-
ments, (5, 8, 6), as a candidate span. We see that
5 and 8 are the minimum and maximum integers
in the corresponding span, respectively. We then
compute 8 − 5 = 3, while the length of the span
minus one is 2, implying that no reduction is possi-
ble. However, examining the entire subsequence,
the minimum is 5 and the maximum is 8, and
8 − 5 = 3, which is the length of the span minus
one. We therefore conclude that we can reduce
that span by means of some permutation, that is,
parse the span by means of a node in the permuta-
tion tree. This reduction constitutes the 4-ary node
in the permutation tree of Figure 2.

A trivial implementation of the reduction test
would be to tests all combinations of left and right
boundaries for the new reduction. Unfortunately,
this would take time Ω(n2) for a single subse-
quence combination step, whereas to achieve the
overall O(n log n) complexity we need linear time
for each combination step.

It turns out that the boundaries of the next re-
duction, covering a given split point, can be com-
puted in linear time with the technique shown in
function SCAN of Figure 5. We start with left and
right candidate boundaries at the two points imme-
diately to the left and right of the split point, and
then repeatedly check whether the current left and
right boundaries identify a permuted sequence by
applying the reduction test, and move the left and
right boundaries outward as necessary, as soon as
‘missing’ integers are identified outside the cur-
rent boundaries, as explained below. We will show
that, as we move outward, the number of possible
configurations achieved for the positions of the left
and the right boundaries is linearly bounded in the
length of the combined subsequence (as opposed
to quadratically bounded).

In order to efficiently implement the above idea,
we will in fact maintain four boundaries for the
candidate reduction, which can be visualized as
the left, right, top and bottom boundaries in the
permutation matrix. No explicit representation
of the permutation matrix itself is constructed, as
that would require quadratic time. Rather, we

282

7 1 4 6 3 5 8 2π 4
7

2
1
1

3

2
4

4

3
6

1

6
3

8

7
5

5

8
8

6

5
2

7

v
π

h

Figure 4: Permutation matrix for input permuta-
tion π (left) and within-subsequence permutation
v (right) for subsequences of size four.

maintain two arrays: h, which maps from vertical
to horizontal positions within the current subse-
quence, and v which maps from horizontal to ver-
tical positions. These arrays represent the within-
subsequence permutation obtained by sorting the
elements of each subsequence according to the
input permutation, while keeping each element
within its block, as shown in Figure 4.

Within each subsequence, we alternate between
scanning horizontally from left to right, possibly
extending the top and bottom boundaries (Figure 5
lines 9 to 14), and scanning vertically from bottom
to top, possibly extending the left and right bound-
aries (lines 20 to 26). Each extension is forced
when, looking at the within-subsequence permuta-
tion, we find that some element is within the cur-
rent boundaries in one dimension but outside the
boundaries in the other. If the distance between
vertical boundaries is larger in the input permu-
tation than in the subsequence permutation, nec-
essary elements are missing from the current sub-
sequence and no reduction is possible at this step
(line 18). When all necessary elements are present
in the current subsequence and no further exten-
sions are necessary to the boundaries (line 30), we
have satisfied the reduction test on the input per-
mutation, and make a reduction.

The trick used to keep the iterative scanning lin-
ear is that we skip the subsequence scanned on the
previous iteration on each scan, in both the hori-
zontal and vertical directions. Lines 13 and 25 of
Figure 5 perform this skip by advancing the x and y
counters past previously scanned regions. Consid-
ering the horizontal scan of lines 9 to 14, in a given
iteration of the while loop, we scan only the items
between newleft and left and between right and
newright. On the next iteration of the while loop,
the newleft boundary has moved further to the left,

1: function SCAN (div)
2: left←−∞;
3: right←−∞;
4: newleft← div;
5: newright← div + 1 ;
6: newtop←−∞;
7: newbot←∞;
8: while 1 do

. horizontal scan
9: for x← newleft; x ≤ newright ; do

10: newtop← max(newtop, vmax[x]);
11: newbot← min(newbot, vmin[x]);

. skip to end of reduced block
12: x← hmax[vmin[x]] + 1;

. skip section scanned on last iter
13: if x = left then
14: x← right + 1;
15: right← newright;
16: left← newleft;

. the reduction test
17: if newtop - newbot <

18: π[h[newtop]] - π[h[newbot]] then
19: return (0);

. vertical scan
20: for y← newbot; y ≤ newtop ; do
21: newright←
22: max(newright, hmax[y]);
23: newleft← min(newleft, hmin[y]);

. skip to end of reduced block
24: y← vmax[hmin[y]] + 1;

. skip section scanned on last iter
25: if y = bot then
26: y← top + 1;
27: top← newtop;
28: bot← newbot;

. if no change to boundaries, reduce
29: if newright = right
30: and newleft = left then
31: return (1, left, right, bot, top);

Figure 5: Linear time function to check for a sin-
gle reduction at split point div.

283

while the variable left takes the previous value of
newleft, ensuring that the items scanned on this it-
eration are distinct from those already processed.
Similarly, on the right edge we scan new items,
between right and newright. The same analysis
applies to the vertical scan. Because each item in
the permutation is scanned only once in the verti-
cal direction and once in the horizontal direction,
the entire call to SCAN takes linear time, regard-
less of the number of iterations of the while loop
that are required.

We must further show that each call to MERGE
takes only linear time, despite that fact that it
may involve many calls to SCAN. We accom-
plish this by introducing a second type of skipping
in the scans, which advances past any previously
reduced block in a single step. In order to skip
past previous reductions, we maintain (in func-
tion REDUCE) auxiliary arrays with the minimum
and maximum positions of the largest block each
point has been reduced to, in both the horizontal
and vertical dimensions. We use these data struc-
tures (hmin, hmax, vmin, vmax) when advancing to
the next position of the scan in lines 12 and 24 of
Figure 5. Because each call to SCAN skips items
scanned by previous calls, each item is scanned
at most twice across an entire call to MERGE,
once when scanning across a new reduction’s left
boundary and once when scanning across the right
boundary, guaranteeing that MERGE completes in
linear time.

4 An Example

In this section we examine the operation of the
algorithm on a permutation of length eight, re-
sulting in the permutation tree of Figure 1(right).
We will build up our analysis of the permutation
by starting with individual items of the input per-
mutation and building up subsequences of length
2, 4, and finally 8. In our example permutation,
(7, 1, 4, 6, 3, 5, 8, 2), no reductions can be made
until the final combination step, in which one per-
mutation of size 4 is used, and one of size 5.

We begin with the input permutation along the
bottom of Figure 6a. We represent the interme-
diate data structures h, hmin, and hmax along the
vertical axis of the figure; these three arrays are all
initialized to be the sequence (1, 2, · · · , 8).

Figure 6b shows the combination of individual
items into subsequences of length two. Each new
subsequence of the h array is sorted according to

a)

7
1
1
1

111
1
2
2
2

222

4
3
3
3

333

6
4
4
4

444

3
5
5
5

555

5
6
6
6

666

8
7
7
7

777

2
8
8
8

888

π

v

vmin
vmax

hhm
in

hm
ax

1
7

1
2
1

2

3
4

3

4
6

4

5
3

5

6
5

6

7
8

7

8
2

8

v
π

h

b)

7
2
2
2

222
1
1
1
1

111

4
3
3
3

333

6
4
4
4

444

3
5
5
5

555

5
6
6
6

666

8
8
8
8

888

2
7
7
7

777

π

v

vmin
vmax

hhm
in

hm
ax

2
7

2
1
1

1

3
4

3

4
6

4

5
3

5

6
5

6

8
8

8

7
2

7

v
π

h

c)

7
4
4
4

222
1
1
1
1

333

4
2
2
2

444

6
3
3
3

111

3
6
6
6

888

5
7
7
7

555

8
8
8
8

666

2
5
5
5

777

π

v

vmin
vmax

hhm
in

hm
ax

4
7

2
1
1

3

2
4

4

3
6

1

6
3

8

7
5

5

8
8

6

5
2

7

v
π

h

Figure 6: Steps in an example computation,
with input permutation π on left and within-
subsequence permutation described by v array on
right. Panel (a) shows initial blocks of unit size,
(b) shows combination of unit blocks into blocks
of size two, and (c) size two into size four. No
reductions are possible in these stages; example
continued in next figure.

284

a)

7
7
7
7

222
1
1
1
1

888

4
4
4
4

555

6
6
6
6

333

3
3
3
3

666

5
5
5
5

444

8
8
8
8

111

2
2
2
2

777

π

v

vmin
vmax

hhm
in

hm
ax b)

7
7
7
7

222
1
1
1
1

888

4
4
3
6

536

6
6
3
6

336

3
3
3
6

636

5
5
3
6

436

8
8
8
8

111

2
2
2
2

777

π

v

vmin
vmax

hhm
in

hm
ax

Left and right boundaries are initialized
to be adjacent to horizontal split point.

Vertical scan shows left and right bound-
aries must be extended. Permutation of
size four is reduced.

c)

7
7
7
7

222
1
1
1
1

888

4
4
3
6

536

6
6
3
6

336

3
3
3
6

636

5
5
3
6

436

8
8
8
8

111

2
2
2
2

777

π

v

vmin
vmax

hhm
in

hm
ax d)

7
7
7
7

222
1
1
1
1

888

4
4
3
6

536

6
6
3
6

336

3
3
3
6

636

5
5
3
6

436

8
8
8
8

111

2
2
2
2

777

π

v

vmin
vmax

hhm
in

hm
ax

Search for next reduction: left and right
boundaries initialized to be adjacent to
left edge of previous reduction.

Vertical scan shows right boundary must
be extended.

e)

7
7
7
7

222
1
1
1
1

888

4
4
3
6

536

6
6
3
6

336

3
3
3
6

636

5
5
3
6

436

8
8
8
8

111

2
2
2
2

777

π

v

vmin
vmax

hhm
in

hm
ax f)

7
7
1
8

218
1
1
1
8

818

4
4
1
8

518

6
6
1
8

318

3
3
1
8

618

5
5
1
8

418

8
8
1
8

118

2
2
1
8

718

π

v

vmin
vmax

hhm
in

hm
ax

Horizontal scan shows top boundary must
be extended.

Vertical scan shows left boundary must
be extended. Permutation of size five is
reduced.

Figure 7: Steps in scanning for final combination of subsequences, where v = π. Area within current
left, right, top and bottom boundaries is shaded; darker shading indicates a reduction. In each scan, the
span scanned in the previous panel is skipped over.

285

the vertical position of the dots in the correspond-
ing columns. Thus, because π[7] = 8 > π[8] = 2,
we swap 7 and 8 in the h array. The algorithm
checks whether any reductions can be made at this
step by computing the difference between the in-
tegers on each side of each split point. Because
none of the pairs of integers in are consecutive, no
reductions are made at this step.

Figure 6c shows the combination the pairs
into subsequences of length four. The two split
points to be examined are between the second and
third position, and the sixth and seventh position.
Again, no reductions are possible.

Finally we combine the two subsequences of
length four to complete the analysis of the entire
permutation. The split point is between the fourth
and fifth positions of the input permutation, and
in the first horizontal scan of these two positions,
we see that π[4] = 6 and π[5] = 3, meaning our
top boundary will be 6 and our bottom boundary
3, shown in Figure 7a. Scanning vertically from
position 3 to 6, we see horizontal positions 5, 3,
6, and 4, giving the minimum, 3, as the new left
boundary and the maximum, 6, as the new right
boundary, shown in Figure 7b. We now perform
another horizontal scan starting at position 3, but
then jumping directly to position 6, as horizontal
positions 4 and 5 were scanned previously. Af-
ter this scan, the minimum vertical position seen
remains 3, and the maximum vertical position is
still 6. At this point, because we have the same
boundaries as on the previous scan, we can stop
and verify whether the region determined by our
current boundaries has the same length in the ver-
tical and horizontal dimensions. Both dimensions
have length four, meaning that we have found a
subsequence that is continuous in both dimensions
and can safely be reduced, as shown in Figure 6d.

After making this reduction, we update the hmin
array to have all 3’s for the newly reduced span,
and update hmax to have all sixes. We then check
whether further reductions are possible covering
this split point. We repeat the process of scan-
ning horizontally and vertically in Figure 7c-f,
this time skipping the span just reduced. One fur-
ther reduction is possible, covering the entire input
permutation, as shown in Figure 7f.

5 Conclusion

The algorithm above not only identifies whether
a permutation can be factored into a composi-

tion of permutations, but also returns the factor-
ization that minimizes the largest rule size, in time
O(n log n). The factored SCFG with rules of size
at most k can be used to synchronously parse
in time O(Nk+4) by dynamic programming with
continuous spans in one dimension.

As mentioned in the introduction, the optimal
parsing strategy for SCFG rules with a given
permutation may involve dynamic programming
states with discontinuous spans in both dimen-
sions. Whether these optimal parsing strategies
can be found efficiently remains an interesting
open problem.

Acknowledgments This work was partially sup-
ported by NSF ITR IIS-09325646 and NSF ITR
IIS-0428020.

References

Albert V. Aho and Jeffery D. Ullman. 1972. The
Theory of Parsing, Translation, and Compiling, vol-
ume 1. Prentice-Hall, Englewood Cliffs, NJ.

M. H. Albert, M. D. Atkinson, and M. Klazar. 2003.
The enumeration of simple permutations. Journal
of Integer Sequences, 6(03.4.4):18 pages.

David Chiang. 2005. A hierarchical phrase-based
model for statistical machine translation. In Pro-
ceedings of ACL-05, pages 263–270.

Thomas H. Cormen, Charles E. Leiserson, and
Ronald L. Rivest. 1990. Introduction to algorithms.
MIT Press, Cambridge, MA.

Michel Galley, Mark Hopkins, Kevin Knight, and
Daniel Marcu. 2004. What’s in a translation rule?
In Proceedings of HLT/NAACL.

I. Dan Melamed. 2003. Multitext grammars and syn-
chronous parsers. In Proceedings of HLT/NAACL.

Giorgio Satta and Enoch Peserico. 2005. Some com-
putational complexity results for synchronous
context-free grammars. In Proceedings of
HLT/EMNLP, pages 803–810.

Dekai Wu. 1997. Stochastic inversion transduction
grammars and bilingual parsing of parallel corpora.
Computational Linguistics, 23(3):377–403.

Kenji Yamada and Kevin Knight. 2001. A syntax-
based statistical translation model. In Proceedings
of ACL-01.

Hao Zhang, Liang Huang, Daniel Gildea, and Kevin
Knight. 2006. Synchronous binarization for ma-
chine translation. In Proceedings of HLT/NAACL.

286

