
Proceedings of the COLING/ACL 2006 Main Conference Poster Sessions, pages 247–254,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Coreference handling in XMG

Claire Gardent
CNRS/LORIA

615, rue du jardin botanique, B.P. 101
54602 Villers lès Nancy CEDEX

France
Claire.Gardent@loria.fr

Yannick Parmentier
INRIA Lorraine

615, rue du jardin botanique, B.P. 101
54602 Villers lès Nancy CEDEX

France
Yannick.Parmentier@loria.fr

Abstract

We claim that existing specification lan-
guages for tree based grammars fail to
adequately support identifier managment.
We then show that XMG (eXtensible Meta-
Grammar) provides a sophisticated treat-
ment of identifiers which is effective in
supporting a linguist-friendly grammar de-
sign.

1 Specifying tree-based grammars

Whilst the development of standard unification-
based grammars is well supported by the design of
formalisms such as PATR-II, Ale or TDL (Krieger
and Schafer, 1994), the situation is less well es-
tablished for Tree-Based Grammars such as Tree
Adjoining Grammars (Joshi and Schabes, 1997),
Tree Description Grammars (Kallmeyer, 1996) or
Interaction Grammars (Perrier, 2003).

Roughly, two main types of specification for-
malism for Tree-Based Grammars can be distin-
guished: formalisms based on tree fragments and
non monotonic inheritance and formalisms based
on tree descriptions and monotonic inheritance.

The tree fragment approach is advocated in
(Evans et al., 1995) which proposes to encode lex-
icalised TAGs using the DATR representation lan-
guage1. In this approach, tree fragments are com-
bined within a non monotonic inheritance hierar-
chy. Furthermore, new fragments can be derived
from existing ones by means of lexical rules. This
first approach suffers from the procedural char-
acter of non-monotonic inheritance. In specify-
ing the grammar, the grammar writer must keep

1A tree based approach is also used in(Becker, 2000) but
this time in combination with metarules. In that particular
approach, procedural aspects also come into play as the order
in which metarules apply affect the results.

in mind the order in which non-monotonic state-
ments have been made so as to be able to pre-
dict how explicit statements interact with defaults
and non-monotonic inheritance in determining the
final output. When developing a large coverage
grammar, this rapidly become extremely cumber-
some. Moreover, as (Candito, 1996) remarks, non-
monotonicity may result in an information loss
which makes it impossible to express the relation
existing for instance between an active object and
the corresponding passive subject.

The approach based on tree descriptions (of-
ten called, the metagrammar approach) obviates
the procedural character of the non-monotonic
approach by taking tree descriptions rather than
trees to be the basic units (Candito, 1996; Xia et
al., 1999; Vijay-Shanker and Schabes, 1992). In
essence, tree fragments are described using tree
descriptions and tree descriptions are combined
through conjunction or inheritance. The idea is
that the minimal models satisfying the resulting
descriptions are TAG elementary trees. In some
cases, lexical rules are also used to derive new
trees from existing ones.

One main drawback with this second type of
approach concerns the management of node iden-
tifiers. Either nodes are represented by name-
less variables and node identification is forced by
well-formedness constraints e.g., wff-constraints
on trees and wff-constraints given by the input
tree description (cf. e.g., (Duchier and Gardent,
1999)) or nodes are named and nodes with iden-
tical names are forced to denote the same entity.
The first option is unrealistic when developing a
large core grammar as it is easy to omit a neces-
sary constraint and thereby permit overgeneration
(the description will be satisfied by more trees than
intended). The second option greatly degrades

247

modularity as the grammar writer must remem-
ber which names were used where and with which
interpretation. As we shall see below, it also has
the undesirable effect that the same tree fragment
cannot be used twice in a given tree description.
Nevertheless, this is the option that is adopted in
most grammar formalisms and grammar compil-
ers (Candito, 1996; Xia et al., 1999; Gaiffe et al.,
2002).

In this paper, we present an approach which
remedies these shortcomings by combining mono-
tonic inheritance of tree descriptions with an ex-
plicit management of identifier scope and identi-
fiers equality2 . The proposed approach thus es-
chews both the inconvenients induced by a non
monotonic framework (by using tree descriptions
rather than trees) and those resulting from a global
treatment of identifiers (by providing greater ex-
pressivity wrt identifiers).

Specifically, we show that the proposed ap-
proach supports several ways of identifying (node
or feature) values, we motivate this multiplicity
and we identify the linguistic and/or technical cri-
teria for choosing among the various possibilities.

The paper starts in section 2 by introducing the
syntax of the XMG formalism. In section 3, we
show that XMG provides four different ways of
identifying two (node or variable) identifiers. In
section 4, we motivate each of these four differ-
ent ways and indicate when each of them can and
should be used.

2 The XMG formalism

We start by briefly introducing XMG (eXtended
MetaGrammar). First, we show that it supports the
description and the combination of blocks consist-
ing of tree fragments and/or semantic representa-
tions. Then, we show that it supports a sophisti-
cated treatment of identifiers.

2.1 Defining blocks

At the syntactic level, the basic units are tree de-
scriptions which are specified using the following
tree logic:

2Recently, (Villemonte de la Clergerie, 2005) has pro-
posed a highly compact representation formalism for tree-
based grammars which also features explicit identifier man-
agement. His approach differs from ours in that it includes
neither a colouring mechanism (cf. section 3.4) nor interfaces
(cf. section 3.3).

Description ::= x → y | x →+
y | x →∗

y |

x ≺ y | x ≺+
y | x ≺∗

y |

x[f :E] | x = y |

Description ∧ Description

(1)

where x, y represent node variables, → immediate
dominance (x is directly above y),→+ strict dom-
inance (x is above y), and →∗ large dominance3

(x is above or equal to y). Similarly ≺ denotes
immediate precedence, ≺+ strict precedence, and
≺∗ large precedence. Finally x[f :E] constrains
feature f with associated expression E on node
x, and x = y indicates node identification.

The XMG formalism also supports the associa-
tion of semantic representations with elementary
trees. The semantic representation language is a
flat semantic representation language (Bos, 1995)
with the following syntax:

Description ::= `:p(E1, ..., En) |

¬`:p(E1, ..., En) | Ei � Ej

Description ∧ Description

(2)

where ` is a label, p is a predicate and E1, .., En

are parameters. Further, ¬ denotes negation and
Ei � Ej expresses a scope constraint between Ei

and Ej (Ej is in the scope of Ei).

2.2 Combining blocks

As in other existing tree-based formalisms, in
XMG, blocks can be combined using inheritance.
However, XMG additionally supports block con-
junction and block disjunction.

Specifically, a Class associates a name with a
content:

Class ::= Name → {Content } (3)

A Content is either a Description (i.e., a tree
description, a semantic formula or both), a class
name, a conjunction or a disjunction of class
name:

Content ::= Description | Name |

Name ∨ Name | Name ∧ Name
(4)

Further, XMG allows multiple inheritance: a given
class can import or inherit one or more classes
(written Ci here):

3By large, we mean the transitive reflexive closure of
dominance.

248

Class ::= Name 6 C1 ∧ . . . ∧ Cn → {Content } (5)

The semantic of the import instruction is to in-
clude the description of the imported class within
the current one. This makes it possible to refine a
class e.g., by adding information to a node or by
adding new nodes4 .

2.3 Managing identifiers

We now introduce the treatment of identifiers sup-
ported by XMG. We show in particular, that it in-
tegrates:

• a convenient way of managing identifier
scope based on import/export declarations
inspired from standard Object Oriented Pro-
gramming techniques (section 2.3.1);

• an alternative means of identifying feature
values based on the use of unification

• polarity- (here called colour-) based node
identification as first proposed in (Muskens
and Krahmer, 1998) and later used in
(Duchier and Thater, 1999; Perrier, 2000).

The next sections will detail the linguistic and
technical motivations behind this variety of identi-
fier handling techniques.

2.3.1 Import/Export declaration

In XMG, the default scope of an identifier is the
class in which it is declared. However, export
specifications can be used to extend the scope of
a given identifier outside its declaration class. The
export of identifier ?X ouside class A is written :5

A?X → { . . . ?X . . . }

Export declarations interact with inheritance,
conjunction and disjunction specifications as fol-
lows (where A,B,C are classes):

Inheritance: if the class A is imported either di-
rectly or indirectly by a class B, then ?X is
visible in B. In case of multiple inheritance

4Note that disjunctive inheritance is not supported which
would allow a block to be defined as importing one or more
classes from a given set of imported classes

5Similarly, import declaration can be used to restrict the
set of accessible identifiers to a subset of it.

e.g., if B 6 C1 ∧ . . . ∧ Cn , then all identi-
fiers exported by C1 ∧ . . . ∧ Cn are visible
from B provided they have distinct names.
In other words, if two (or more) classes in
C1 ∧ . . . ∧ Cn export the same identifier ?X,
then ?X is not directly visible from B. It can
be accessed though using the dot operator.
First A is identified with a local identifier
(e.g., ?T = A), then ?T.?X can be used to
refer to the identifier ?X exported by A.

Conjunction: if classes A and B are conjoined in-
side a class C, then all the identifiers exported
by A or B are visible within C using the dot
operator.

Disjunction: if classes A and B are disjoined in-
side a class C, then all the identifiers exported
by A or B are visible within C using the dot
operator. However in this case, both A and
B have to be associated with the same local
identifier.

In sum, export/import declarations permit ex-
tending/restricting the scope of an identifier within
a branch of the inheritance hierarchy whilst the
dot operator allows explicit access to an inherited
identifier in case the inheriting class either dis-
plays multiple inheritance or is combined by con-
junction or disjunction with other classes. More
specifically, inheritance allows implicit corefer-
ence (the use of an imported name ensures coref-
erence with the object referred to when declaring
this name) and the dot operator explicit corefer-
ence (through an explicit equality statement e.g.,
?A.?X = ?B.?Y).

2.3.2 Class interface

In XMG, a class can be associated with a class
interface i.e., with a feature structure. Further-
more, when two classes are related either by in-
heritance or by combination (conjunction or dis-
junction), their interfaces are unified. Hence class
interfaces can be used to ensure the unification of
identifiers across classes.

Here is an illustrating example:

A → { . . . ?X . . . }∗ = [n1 = ?X]

B → { . . . ?Y . . . }∗ = [n1 = ?Y]

In A (resp. B), the local identifier ?X (resp. ?Y) is
associated with an interface feature named n1. If

249

these two classes are combined either by conjunc-
tion or by inheritance, their interfaces are unified
and as a result, the local identifiers ?X and ?Y are
unified. In the case of a disjunction, the interface
of the current class (C here) is non deterministi-
cally unified with that of A or B.

In practice, interface-based identification of val-
ues is particularly useful when two distinct fea-
tures need to be assigned the same value. In (Gar-
dent, 2006) for instance, it is used to identify the
semantic index associated with e.g., the subject
node of a verbal tree and the corresponding seman-
tic index in the semantic representation associated
with that tree.

2.3.3 Colouring nodes

Finally, XMG provides a very economical way
of identifying node variables based on the use of
colours (also called polarities in the literature).
The idea is that node variables are associated with
a specific colour and that this colouring will either
prevent or trigger node identifications based on the
following identification rules:

•B •R ◦W ⊥
•B ⊥ ⊥ •B ⊥
•R ⊥ ⊥ ⊥ ⊥
◦W •B ⊥ ◦W ⊥
⊥ ⊥ ⊥ ⊥ ⊥

and on the requirement that valid trees only
have red or black nodes. In effect, node colour-
ing enforces the following constraints : (i) a white
node must be identified with a black node, (ii) a
red node cannot be identified with any other node
and (iii) a black node may be identified with one
or more white nodes.

Contrary to other means of value identification,
colours are restricted to node identifiers. Hence
they are best used to induce node identification in
those contexts where neither inheritance nor ex-
plicit identification are appropriate (see section 4).

3 XMG at work

Recall (section 1) that one main problem when de-
veloping a factorised specification of tree based
grammars is to ensure a consistent treatment of
identifiers and in particular, of identifier unifica-
tion. That is, when combining two units of infor-
mation, the grammar writer must ensure that her
specification correctly states which objects are the
same and which are distinct.

In what follows, we show that XMG supports
four different ways of identifying objects. We il-

lustrate this by demonstrating that the following
tree can be obtained in four different ways:

s

n v

Figure 1: A tree that can be derived in four ways

In section 4, we will show that these four ways
of identifying nodes and/or features values support
both explicitness and economy thereby reducing
the risks of specification errors.

3.1 Using explicit identification
The most basic way to identify two identifiers is to
explicitly state their identity. Thus the above tree
can be produced by combining the following two
classes6 :

A?X,?Y → { ?X [cat : s] → ?Y [cat : n] }

B1 → { ?U [cat : s] → ?Z [cat : v]

∧ A ∧ ?U = A.?X ∧ A.?Y ≺ ?Z }

To improve readability, we use from now on a
graphical representation. For instance, the classes
above are represented as follows (exported identi-
fiers are underlined and boxed letters indicate class
names):

�

�

�

�A s ?X

�

�

�

�
B1 s ?U

n ?Y v ?Z

∧ A ∧ ?U = A.?X
∧ A.?Y ≺ ?Z

Thus, the class A describes the left branch of the
tree in Figure 1 and the class B1 its right branch.
The root of A and B are named ?X and ?U re-
spectively. Since ?X is exported, ?X is visible in
B1. The explicit identification ?U=A.?X then en-
forces that the two roots are identified thus con-
straining the solution to be the tree given in Fig-
ure 1.

3.2 Using inheritance

Using inheritance instead of conjunction, the same
nodes identification can be obtained in a more eco-
nomical way. We reuse the same class A as before,
but we now define a class B 2 as a sub-class of A:

�

�

�

�A s ?X

�

�

�

�
B2

6 A s ?X

n ?Y v ?Z

∧ ?Y ≺ ?Z

6Here and in what follows, we abbreviate the conjunction
of a class identification ?T = A and a dot notation T.?X to
A.?X. That is,

?T = A ∧ T.?X→abbrev A.?X

250

Since the identifiers ?X and ?Y are exported by A,
they are visible in B2. Thus, in the latter we only
have to indicate the precedence relation between
?Y and ?Z.

In sum, the main difference between explicit
identification and identification through simple ex-
ports, is that whilst inheritance of exported identi-
fiers gives direct access to these identifiers, class
combination requires the use of a prefix and dot
statement. Note nevertheless that with the latter,
identifiers conflicts are a lot less likely to appear.

3.3 Using interfaces

A third possibility is to use interfaces to force node
identifications as illustrated in figure 2.

�

�

�

�A s ?X

�

�

�

�
B3 s ?U

n ?Y n ?W ≺ v ?V

∧ A

[root = ?X, [root = ?U,
nNode = ?Y] nNode = ?W]

Figure 2: Structure sharing using interfaces

Class A is the same as before except that the
identifiers ?X and ?Y are no longer exported. In-
stead they are associated with the interface fea-
tures root and nNode respectively. Similarly,
class B3 associates the identifiers (?U and ?V) with
the interface features root and nNode. As the tree
fragment of class B3 is conjoined with A, the inter-
face features of A and B3 are unified so that ?X is
identified with ?U and ?Y with ?V.

3.4 Using node colours

Finally, colours can be used as illustrated in the
Figure below:

�

�

�

�A s •
�

�

�

�
B4 s ◦

n • n ◦ ≺ v •
∧ A

Now, class B4 contains three nodes: two white
ones whose categories are s and n and which must
be identified with compatible black nodes in A;
and a black node that may but need not be identi-
fied with a white one. To satisfy these constraints,
the black s node in A must be identified with the
white s node in B and similarly for the n nodes.
The result is again the tree given in Figure 1.

Note that in this case, none of the identifiers
need to be exported. Importantly, the use of
colours supports a very economical way of forcing

nodes identification. Indeed, nodes that are identi-
fied through colouration need neither be exported
nor even be named.

4 Which choice when?

As shown in the previous section, XMG allows
four ways of identifying values (i.e., nodes or fea-
ture values): through simple exports, through ex-
plicit identification, through colour constraints and
through the interface. We now identify when each
of these four possibilities is best used.

4.1 Exports

As shown in section 2.3, an identifier ?X can be
explicitly exported by a class Cwith the effect that,
within all classes that inherit from C, all occur-
rences of ?X denote the same object.

In essence, exports supports variable naming
that is global to a branch of the inheritance hier-
archy. It is possible to name an identifier within
a given class C and to reuse it within any other
class that inherits from C. Thus the empirical dif-
ficulty associated with the use of exported iden-
tifiers is that associated with global names. That
is, the grammar writer must remember the names
used and their intended interpretation. When de-
veloping a large size grammar, this rapidly makes
grammar writing, maintenance and debugging an
extremely difficult task. Hence global identifiers
should be use sparingly.

But although non trivial (this was in fact one
of the main motivations for developing XMG), this
empirical limitation is not the only one. There are
two additional formal restrictions which prevent a
general use of exported identifiers.

First, as remarked upon in (Crabbe and Duchier,
2004), global names do not support multiple use
of the same class within a class. For instance, con-
sider the case illustrated in Figure 3.

s s s

v pp → v pp pp

p n p n p n

Figure 3: Case of double prepositional phrase.

In this case, the aim is to produce the elemen-
tary tree for a verb taking two prepositional argu-
ments such as parler à quelqu’un de quelque chose
(to tell someone about something). Ideally, this is
done by combining the verbal fragment on the left

251

with two occurrences of the PP class in the mid-
dle to yield the tree on the right. However if, as is
likely in a large size metagrammar, any of the pp,
the p or the n node bears an exported identifier,
then the two occurrences of this node will be iden-
tified so that the resulting tree will be that given in
(4).

s

v pp

p n

Figure 4: Double prepositional phrase with ex-
ported identifiers.

We will see below how colours permit a natural
account of such cases.

Second, exported modifiers do not support iden-
tifier unification in cases of conjunction, disjunc-
tion and multiple inheritance. That is, in each of
the three cases below, the various occurrences of
?X are not identified.

C1 ?X ∧ C2 ?X

C1 ?X ∨ C2 ?X

C3 ?X
6 C1 ?X ∧ C2 ?X

In such cases, the multiple occurrences of ?X
need to be explicitly identified (see below).

In practice then, the safest use of simple exports
(ie without explicit identifier equalities) consists in
using them

• in combination with inheritance only and

• within a linguistically motivated subpart of
the inheritance hierarchy

4.2 Colours

As discussed in section 2.3, node identifications
can be based on colours. In particular, if a node is
white, it must be identified with a black node.

The main advantage of this particular identifica-
tion mechanism is that it is extremely economical.
Not only is there no longer any need to remember
names, there is in fact no need to chose a name.
When developing a metagrammar containing sev-
eral hundreds of nodes, this is a welcome feature.

This “no-name” aspect of the colour mecha-
nism is in particular very useful when a given class
needs to be combined with many other classes.
For instance, in SEMFRAG (Gardent, 2006), the
semantic index of a semantic functor (i.e., a verb,

an adjective, a preposition or a predicative noun)
needs to be projected from the anchor to the root
node as illustrated in Figure 5. This can be done,
as shown in the figure by conjoining CSem with CV

or CA and letting the colour unify the appropriate
nodes.

s • s • ◦i2

np • vp • np • np • ap • np • ◦i2
i1

v • cop • adj •
◦i1

v | adj
�

�

�

�
CV

�

�

�

�
CA

�

�

�

�
CSem

Figure 5: Case of semantic projections.

Colouring also solves the problem raised by the
multiple reuse of the same class in the definition
of a given class. The colouring will be as shown
in Figure 6. Since the pp, p and n nodes are black,
their two occurrences cannot be identified. The
two white s nodes however will both be unified
with the black one thus yielding the expected tree.

s • s ◦ s •

v • pp • → v • pp • pp •

p • n • p • n • p • n •

Figure 6: Case of double prepositional phrase with
coloured descriptions.

As for exports however, colours cannot always
be used to force identifications.

First, colours can only be used in combination
with conjunction or inheritance of non exported
identifiers. Indeed, inheritance does not allow the
identification of two different objects. Hence if a
class C containing a white node named ?X inherits
from another class C’ exporting a black node also
named ?X, compilation will fail as a given identi-
fier can only have one colour7 . In contrast, when
solving a description containing the conjunction of
a black and a white node (where these two nodes
have either no names or distinct names), the well
formedness constraint on coloured tree will ensure
that these two nodes are in fact the same (since a
tree containing a white node is ill formed).

Second, colour based identification is non de-
terministic. For instance, in Figure 5, if the lowest

7However, different occurrences of the same unnamed
node can have distinct colours.

252

node b of CSem was not labelled cat = v | adj,
CA∧ CSem would yield not one but two trees: one
where b is identified with the cop node and the
other where it is identified with the adj one. In
other words, colour based unification is only pos-
sible in cases where node decorations (or explicit
node identifications) are sufficiently rich to con-
strain the possible unifications.

To sum up, colours are useful in situations
where:

• a given class needs to be combined with
many other classes – in this case it is unlikely
that the names used in all classes to be com-
bined are consistent (ie that they are the same
for information that must be unified and that
they are different for information that must
not) and

• the nodes to be identified are unambigu-
ous (the white and the black nodes contain
enough information so that it is clear which
white node must be identified with which
black one)

4.3 Interfaces

Interfaces provide another mechanism for global
naming. They are particularly useful in cases
where two fundamentally different objects contain
non-node identifiers that must be unified.

Recall (cf. section 4.2) that exported identifiers
are best used within restricted, linguistically well
defined hierarchies. In a case where the objects
containing the two identifiers to be identified are
different, these will belong to distinct part of the
inheritance hierarchy hence identifier export is not
a good option.

Node colouring is another possibility but as the
name indicates, it only works for nodes, not for
feature values.

In such a situation then, interfaces come in
handy. This is the case for instance, when com-
bining a semantic representation with a tree. The
semantic formula and the tree are distinct objects
but in the approach to semantic construction de-
scribed in (Gardent and Kallmeyer, 2003), they
share some semantic indices. For instance, the
subject node in the tree is labelled with an index
feature whose value must be (in an active form
tree) that of the first argument occurring in the
semantic representation. The encoding of the re-
quired coreference can be sketched as follows:

Subj →{ . . . ?X . . .}∗ = [subjectIdx = ?X]

Sem →{ . . . ?Y . . .}∗ = [arg1 = ?Y]

Tree →Subj∗ = [subjectIdx = ?Z]∧

Sem∗ = [arg1 = ?Z]

The first two lines show the naming of the iden-
tifiers ?X and ?Y through the interface, the third
illustrates how unification can be used to identify
the values named by the interface: since the same
variable ?Z is the value of the two features arg1
and subjectIdx, the corresponding values in the
Subj and Sem classes are identified.

4.4 Explicit identification of exported
identifiers

The explicit identification of exported identifiers is
the last resort solution. It is not subject to any of
the restrictions listed above and can be combined
with conjunction, disjunction and inheritance. It
is however uneconomical and complexifies gram-
mar writing (since every node identification must
be explicitly declared). Hence it should be used as
little as possible.

In practice, explicit identification of exported
identifiers is useful :

• to further constrain colour based identifica-
tion (when the feature information present in
the nodes does not suffice to force identifica-
tion of the appropriate nodes)

• to model general principles that apply to sev-
eral subtrees in a given hierarchy

The second point is illustrated by Subject/Verb
agreement. Suppose that in the metagrammar,
we want to have a separate class to enforce this
agreement. This class consists of a subject node
?SubjAgr bearing agreement feature ?X and of
a verb node ?VerbAgr bearing the same agree-
ment feature. It must then be combined with all
verbal elementary trees described by the meta-
grammar whereby in each such combination the
nodes ?SubjAgr, ?VerbAgr must be identi-
fied with the subject and the verb node respec-
tively. This is a typical case of multiple inheri-
tance because both the subject and the verb nodes
are specified by inheritance and ?SubjAgr,
?VerbAgr must be further inherited. Since
nodes must be identified and multiple inheritance
occur, simple identifier exports cannot be used (cf.
section 2.3.1). If colours cannot be sufficiently

253

Pros Cons Practice
Export Economy Name management Use in linguistically motivated

Not with multiple inheritance sub-hierarchy
Not with conjunction
Not with disjunction

Not with multiple reuse
Colours Economy ++ Non deterministic

Multiple reuse OK Not with inheritance Use when a given class
and identically named identifiers combines with many classes

Interface Global Name management Use for Syntax/Semantic interface
Explicit identification Usable in all cases Uneconomical Last Resort solution

Figure 7: Summary of the pros and cons of sharing mechanisms.

constrained by features, then the only solution left
is explicit node identification.

Figure 7 summarises the pros and the cons of
each approach.

5 Conclusion

In this paper, we have introduced a specification
formalism for Tree-Based Grammars and shown
that its expressivity helps solving specification
problems which might be encountered when de-
velopping a large scale tree-based grammar.

This formalism has been implemented within
the XMG system and successfully used to encode
both a core TAG for French (Crabbe, 2005; Gar-
dent, 2006) and a core Interaction Grammar (Per-
rier, 2003). We are currently exploring ways
in which the XMG formalism could be extended
to automatically enforce linguistically-based well-
formedness principles such as for instance, a kind
of Head Feature Principle for TAG.

References
T. Becker. 2000. Patterns in metarules. In A. Abeille and

O. Rambow, editors, Tree Adjoining Grammars: formal,
computational and linguistic aspects. CSLI publications,
Stanford.

J. Bos. 1995. Predicate Logic Unplugged. In Proceedings of
the 10th Amsterdam Colloquium, Amsterdam.

M.H. Candito. 1996. A principle-based hierarchical rep-
resentation of LTAGs. In Proceedings of COLING’96,
Kopenhagen.

B. Crabbe and D. Duchier. 2004. Metagrammar Redux. In
Proceedings of CSLP 2004, Copenhagen.

B. Crabbe. 2005. Représentation informatique de gram-
maires fortement lexicalisées : Application à la gram-
maire d’arbres adjoints. Ph.D. thesis, Université Nancy
2.

D. Duchier and C. Gardent. 1999. A constraint based treat-
ment of descriptions. In Proceedings of the 3rd IWCS,
Tilburg.

Denys Duchier and Stefan Thater. 1999. Parsing with tree
descriptions: a constraint-based approach. In NLULP,
pages 17–32, Las Cruces, New Mexico.

R. Evans, G. Gazdar, and D. Weir. 1995. Encoding lexi-
calized tree adjoining grammars with a nonmonotonic in-
heritance hierarchy. In Proceedings of the 33rd Annual
Meeting of the ACL, 77-84.

B. Gaiffe, B. Crabbe, and A. Roussanaly. 2002. A new meta-
grammar compiler. In Proceedings of TAG+6, Venice.

C. Gardent and L. Kallmeyer. 2003. Semantic construction
in FTAG. In Proceedings of EACL’03, Budapest.

C. Gardent. 2006. Intégration d’une dimension sémantique
dans les grammaires d’arbres adjoints. In Actes de La
13ème édition de la conférence sur le TALN (TALN 2006).

A. Joshi and Y. Schabes. 1997. Tree-adjoining grammars.
In G. Rozenberg and A. Salomaa, editors, Handbook of
Formal Languages, volume 3, pages 69 – 124. Springer,
Berlin, New York.

L. Kallmeyer. 1996. Tree description grammars. In Results
of the 3rd KONVENS Conference, pages 330 – 341. Mou-
ton de Gruyter ed., Hawthorne, NY, USA.

H.-U. Krieger and U. Schafer. 1994. TDL – a type descrip-
tion language for constraint-based grammars. In Proceed-
ings of COLING-94, pp. 893–899.

R. Muskens and E. Krahmer. 1998. Description theory, ltags
and underspecified semantics. In TAG’4.

G. Perrier. 2000. Interaction grammars. In Proceedings of
18th International Conference on Computational Linguis-
tics (CoLing 2000), Sarrebrcken.

G. Perrier. 2003. Les grammaires d’interaction. HDR en
informatique, Université Nancy 2.

K. Vijay-Shanker and Y. Schabes. 1992. Structure sharing
in lexicalized tree adjoining grammars. In Proceedings of
COLING’92, Nantes, pp. 205 - 212.

E. Villemonte de la Clergerie. 2005. DyALog: a tabular
logic programming based environment for NLP. In Pro-
ceedings of CSLP’05, Barcelona.

F. Xia, M. Palmer, and K. Vijay-Shanker. 1999. To-
ward semi-automating grammar development. In Proc. of
NLPRS-99, Beijing, China.

254

