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Abstract

Given a parallel corpus, semantic projec-
tion attempts to transfer semantic role an-
notations from one language to another,
typically by exploiting word alignments.
In this paper, we present an improved
method for obtaining constituent align-
ments between parallel sentences to guide
the role projection task. Our extensions
are twofold: (a) we model constituent
alignment as minimum weight edge cov-
ers in a bipartite graph, which allows us to
find a globally optimal solution efficiently;
(b) we propose tree pruning as a promising
strategy for reducing alignment noise. Ex-
perimental results on an English-German
parallel corpus demonstrate improvements
over state-of-the-art models.

1 Introduction

Recent years have witnessed increased interest in
data-driven methods for many natural language
processing (NLP) tasks, ranging from part-of-
speech tagging, to parsing, and semantic role la-
belling. The success of these methods is due partly
to the availability of large amounts of training data
annotated with rich linguistic information. Unfor-
tunately, such resources are largely absent for al-
most all languages except English. Given the data
requirements for supervised learning, and the cur-
rent paucity of suitable data for many languages,
methods for generating annotations (semi-)auto-
matically are becoming increasingly popular.

Annotation projection tackles this problem by
leveraging parallel corpora and the high-accuracy
tools (e.g., parsers, taggers) available for a
few languages. Specifically, through the use of
word alignments, annotations are transfered from
resource-rich languages onto low density ones.
The projection process can be decomposed into
three steps: (a) determining the units of projection;

these are typically words but can also be chunks
or syntactic constituents; (b) inducing alignments
between the projection units and projecting anno-
tations along these alignments; (c) reducing the
amount of noise in the projected annotations, often
due to errors and omissions in the word alignment.

The degree to which analyses are parallel across
languages is crucial for the success of projection
approaches. A number of recent studies rely on
this notion of parallelism and demonstrate that an-
notations can be adequately projected for parts of
speech (Yarowsky and Ngai, 2001; Hi and Hwa,
2005), chunks (Yarowsky and Ngai, 2001), and de-
pendencies (Hwa et al., 2002).

In previous work (Padó and Lapata, 2005) we
considered the annotation projection of seman-
tic roles conveyed by sentential constituents such
as AGENT, PATIENT, or INSTRUMENT. Semantic
roles exhibit a high degree of parallelism across
languages (Boas, 2005) and thus appear amenable
to projection. Furthermore, corpora labelled with
semantic role information can be used to train
shallow semantic parsers (Gildea and Jurafsky,
2002), which could in turn benefit applications in
need of broad-coverage semantic analysis. Exam-
ples include question answering, information ex-
traction, and notably machine translation.

Our experiments concentrated primarily on the
first projection step, i.e., establishing the right
level of linguistic analysis for effecting projec-
tion. We showed that projection schemes based
on constituent alignments significantly outperform
schemes that rely exclusively on word alignments.
A local optimisation strategy was used to find con-
stituent alignments, while relying on a simple fil-
tering technique to handle noise.

The study described here generalises our earlier
semantic role projection framework in two impor-
tant ways. First, we formalise constituent projec-
tion as the search for a minimum weight edge cover
in a weighted bipartite graph. This formalisation
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efficiently yields constituent alignments that are
globally optimal. Second, we propose tree prun-
ing as a general noise reduction strategy, which ex-
ploits both structural and linguistic information to
enable projection. Furthermore, we quantitatively
assess the impact of noise on the task by evaluating
both on automatic and manual word alignments.

In Section 2, we describe the task of role-
semantic projection and the syntax-based frame-
work introduced in Padó and Lapata (2005). Sec-
tion 3 explains how semantic role projection can
be modelled with minimum weight edge covers in
bipartite graphs. Section 4 presents our tree prun-
ing strategy. We present our evaluation framework
and results in Section 5. A discussion of related
and future work concludes the paper.

2 Cross-lingual Semantic Role projection

Semantic role projection is illustrated in Figure 1
using English and German as the source-target
language pair. We assume a FrameNet-style se-
mantic analysis (Fillmore et al., 2003). In this
paradigm, the semantics of predicates and their
arguments are described in terms of frames, con-
ceptual structures which model prototypical situ-
ations. The English sentence Kim promised to be
on time in Figure 1 is an instance of the COM-
MITMENT frame. In this particular example, the
frame introduces two roles, i.e., SPEAKER (Kim)
and MESSAGE (to be on time). Other possible,
though unrealised, roles are ADDRESSEE, MES-
SAGE, and TOPIC. The COMMITMENT frame can
be introduced by promise and several other verbs
and nouns such as consent or threat.

We also assume that frame-semantic annota-
tions can be obtained reliably through shallow
semantic parsing.1 Following the assignment of
semantic roles on the English side, (imperfect)
word alignments are used to infer semantic align-
ments between constituents (e.g., to be on time
is aligned with pünktlich zu kommen), and the
role labels are transferred from one language to
the other. Note that role projection can only take
place if the source predicate (here promised ) is
word-aligned to a target predicate (here versprach )
evoking the same frame; if this is not the case
(e.g., in metaphors), projected roles will not be
generally appropriate.

We represent the source and target sentences
as sets of linguistic units, Us and Ut , respectively.

1See Carreras and Màrquez (2005) for an overview of re-
cent approaches to semantic parsing.

Kim versprach, pünktlich zu kommen

Kim promised to be on time
S

S

NP

NP

Commitment
MessageSp

eak
er

Commitment

Speaker Mess
age

Figure 1: Projection of semantic roles from En-
glish to German (word alignments as dotted lines)

The assignment of semantic roles on the source
side is a function roles : R → 2Us from roles to
sets of source units. Constituent alignments are
obtained in two steps. First, a real-valued func-
tion sim : Us ×Ut → R estimates pairwise simi-
larities between source and target units. To make
our model robust to alignment noise, we use only
content words to compute the similarity func-
tion. Next, a decision procedure uses the similar-
ity function to determine the set of semantically
equivalent, i.e., aligned units A ⊆Us×Ut . Once A
is known, semantic projection reduces to transfer-
ring the semantic roles from the source units onto
their aligned target counterparts:

rolet(r) = {ut |∃us ∈ roles(r) : (us,ut) ∈ A}

In Padó and Lapata (2005), we evaluated two
main parameters within this framework: (a) the
choice of linguistic units and (b) methods for com-
puting semantic alignments. Our results revealed
that constituent-based models outperformed word-
based ones by a wide margin (0.65 Fscore
vs. 0.46), thus demonstrating the importance of
bracketing in amending errors and omissions in
the automatic word alignment. We also com-
pared two simplistic alignment schemes, back-
ward alignment and forward alignment. The
first scheme aligns each target constituent to its
most similar source constituent, whereas the sec-
ond (A f ) aligns each source constituent to its most
similar target constituent:

A f = {(us,ut) |ut = argmax
u′t∈Ut

sim(us,u′t)}
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An example constituent alignment obtained from
the forward scheme is shown in Figure 2 (left
side). The nodes represent constituents in the
source and target language and the edges indicate
the resulting alignment. Forward alignment gener-
ally outperformed backward alignment (0.65 Fs-
core vs. 0.45). Both procedures have a time com-
plexity quadratic in the maximal number of sen-
tence nodes: O(|Us||Ut |) = O(max(|Us|, |Ut |)2).

A shortcoming common to both decision proce-
dures is that they are local, i.e., they optimise the
alignment for each node independently of all other
nodes. Consider again Figure 2. Here, the for-
ward procedure creates alignments for all source
nodes, but leaves constituents from the target set
unaligned (see target node (1)). Moreover, local
alignment methods constitute a rather weak model
of semantic equivalence since they allow one tar-
get node to correspond to any number of source
nodes (see target node (3) in Figure 2, which is
aligned to three source nodes). In fact, by allow-
ing any alignment between constituents, the lo-
cal models can disregard important linguistic in-
formation, thus potentially leading to suboptimal
results. We investigate this possibility by propos-
ing well-understood global optimisation models
which suitably constrain the resulting alignments.

Besides matching constituents reliably, poor
word alignments are a major stumbling block
for achieving accurate projections. Previous re-
search addresses this problem in a post-processing
step, by reestimating parameter values (Yarowsky
and Ngai, 2001), by applying transformation
rules (Hwa et al., 2002), by using manually la-
belled data (Hi and Hwa, 2005), or by relying on
linguistic criteria (Padó and Lapata, 2005). In this
paper, we present a novel filtering technique based
on tree pruning which removes extraneous con-
stituents in a preprocessing stage, thereby disasso-
ciating filtering from the alignment computation.

In the remainder of this paper, we present the
details of our global optimisation and filtering
techniques. We only consider constituent-based
models, since these obtained the best performance
in our previous study (Padó and Lapata, 2005).

3 Globally optimal constituent alignment

We model constituent alignment as a minimum
weight bipartite edge cover problem. A bipartite
graph is a graph G = (V,E) whose node set V is
partitioned into two nonempty sets V1 and V2 in
such a way that every edge E joins a node in V1

to a node in V2. In a weighted bipartite graph a
weight is assigned to each edge. An edge cover is
a subgraph of a bipartite graph so that each node is
linked to at least one node of the other partition. A
minimum weight edge cover is an edge cover with
the least possible sum of edge weights.

In our projection application, the two parti-
tions are the sets of source and target sentence
constituents, Us and Ut , respectively. Each source
node is connected to all target nodes and each tar-
get node to all source nodes; these edges can be
thought of as potential constituent alignments. The
edge weights, which represent the (dis)similarity
between nodes us and ut are set to 1− sim(us,ut).2

The minimum weight edge cover then represents
the alignment with the maximal similarity be-
tween source and target constituents. Below, we
present details on graph edge covers and a more
restricted kind, minimum weight perfect bipartite
matchings. We also discuss their computation.

Edge covers Given a bipartite graph G, a min-
imum weight edge cover Ae can be defined as:

Ae = argmin
Edge cover E

∑
(us,ut)∈E

1− sim(us,ut)

An example edge cover is illustrated in Figure 2
(middle). Edge covers are somewhat more con-
strained compared to the local model described
above: all source and target nodes have to take part
in some alignment. We argue that this is desirable
in modelling constituent alignment, since impor-
tant linguistic units will not be ignored. As can be
seen, edge covers allow one-to-many alignments
which are common when translating from one lan-
guage to another. For example, an English con-
stituent might be split into several German con-
stituents or alternatively two English constituents
might be merged into a single German constituent.
In Figure 2, the source nodes (3) and (4) corre-
spond to target node (4). Since each node of either
side has to participate in at least one alignment,
edge covers cannot account for insertions arising
when constituents in the source language have no
counterpart in their target language, or vice versa,
as is the case for deletions.

Weighted perfect bipartite matchings Per-
fect bipartite matchings are a more constrained
version of edge covers, in which each node has ex-
actly one adjacent edge. This restricts constituent

2The choice of similarity function is discussed in Sec-
tion 5.
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Figure 2: Constituent alignments and role projections resulting from different decision procedures
(Us,Ut : sets of source and target constituents; r1,r2: two semantic roles). Left: local forward alignment;
middle: edge cover; right: perfect matching with dummy nodes

alignment to a bijective function: each source
constituent is linked to exactly one target con-
stituent, and vice versa. Analogously, a minimum
weight perfect bipartite matching Am is a mini-
mum weight edge cover obeying the one-to-one
constraint:

Am = argmin
Matching M

∑
(us,ut)∈M

1− sim(us,ut)

An example of a perfect bipartite matching is
given in Figure 2 (right), where each node has ex-
actly one adjacent edge. Note that the target side
contains two nodes labelled (d), a shorthand for
“dummy” node. Since sentence pairs will often
differ in length, the resulting graph partitions will
have different sizes as well. In such cases, dummy
nodes are introduced in the smaller partition to
enable perfect matching. Dummy nodes are as-
signed a similarity of zero with all other nodes.
Alignments to dummy nodes (such as for source
nodes (3) and (6)) are ignored during projection.

Perfect matchings are more restrictive models
of constituent alignment than edge covers. Being
bijective, the resulting alignments cannot model
splitting or merging operations at all. Insertions
and deletions can be modelled only indirectly by
aligning nodes in the larger partition to dummy
nodes on the other side (see the source side in Fig-
ure 2 where nodes (3) and (6) are aligned to (d)).
Section 5 assesses if these modelling limitations
impact the quality of the resulting alignments.

Algorithms Minimum weight perfect match-
ings in bipartite graphs can be computed effi-
ciently in cubic time using algorithms for net-
work optimisation (Fredman and Tarjan, 1987;
time O(|Us|2 log |Us|+ |Us|2|Ut |)) or algorithms for

the equivalent linear assignment problem (Jonker
and Volgenant, 1987; time O(max(|Us|, |Ut |)3)).
Their complexity is a linear factor slower than the
quadratic runtime of the local optimisation meth-
ods presented in Section 2.

The computation of (general) edge covers has
been investigated by Eiter and Mannila (1997) in
the context of distance metrics for point sets. They
show that edge covers can be reduced to minimum
weight perfect matchings of an auxiliary bipar-
tite graph with two partitions of size |Us|+ |Ut |.
This allows the computation of general minimum
weight edge covers in time O((|Us|+ |Ut |)3).

4 Filtering via Tree Pruning

We introduce two filtering techniques which effec-
tively remove constituents from source and target
trees before alignment takes place. Tree pruning as
a preprocessing step is more general and more effi-
cient than our original post-processing filter (Padó
and Lapata, 2005) which was embedded into the
similarity function. Not only does tree pruning not
interfere with the similarity function but also re-
duces the size of the graph, thus speeding up the
algorithms discussed in the previous section.

We present two instantiations of tree pruning:
word-based filtering, which subsumes our earlier
method, and argument-based filtering, which elim-
inates unlikely argument candidates.

Word-based filtering This technique re-
moves terminal nodes from parse trees accord-
ing to certain linguistic or alignment-based crite-
ria. We apply two word-based filters in our ex-
periments. The first removes non-content words,
i.e., all words which are not adjectives, adverbs,
verbs, or nouns, from the source and target sen-
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Kim versprach, pünktlich zu kommen.

VP

S

VP

S

Figure 3: Filtering of unlikely arguments (predi-
cate in boldface, potential arguments in boxes).

tences (Padó and Lapata, 2005). We also use a
novel filter which removes all words which remain
unaligned in the automatic word alignment. Non-
terminal nodes whose terminals are removed by
these filters, are also pruned.

Argument filtering Previous work in shal-
low semantic parsing has demonstrated that not
all nodes in a tree are equally probable as seman-
tic roles for a given predicate (Xue and Palmer,
2004). In fact, assuming a perfect parse, there is
a “set of likely arguments”, to which almost all
semantic roles roles should be assigned to. This
set of likely arguments consists of all constituents
which are a child of some ancestor of the pred-
icate, provided that (a) they do not dominate the
predicate themselves and (b) there is no sentence
boundary between a constituent and its predicate.
This definition covers long-distance dependencies
such as control constructions for verbs, or support
constructions for nouns and adjectives, and can be
extended slightly to accommodate coordination.

This argument-based filter reduces target trees
to a set of likely arguments. In the example in Fig-
ure 3, all tree nodes are removed except Kim and
pünktlich zu kommen.

5 Evaluation Set-up

Data For evaluation, we used the parallel cor-
pus3 from our earlier work (Padó and Lapata,
2005). It consists of 1,000 English-German sen-
tence pairs from the Europarl corpus (Koehn,
2005). The sentences were automatically parsed
(using Collin’s 1997 parser for English and
Dubey’s 2005 parser for German), and manually
annotated with FrameNet-like semantic roles (see
Padó and Lapata 2005 for details.)

Word alignments were computed with the
GIZA++ toolkit (Och and Ney, 2003), using the

3The corpus can be downloaded from http://www.
coli.uni-saarland.de/~pado/projection/.

entire English-German Europarl bitext as training
data (20M words). We used the GIZA++ default
settings to induce alignments for both directions
(source-target, target-source). Following common
practise in MT (Koehn et al., 2003), we considered
only their intersection (bidirectional alignments
are known to exhibit high precision). We also pro-
duced manual word alignments for all sentences
in our corpus, using the GIZA++ alignments as a
starting point and following the Blinker annotation
guidelines (Melamed, 1998).

Method and parameter choice The con-
stituent alignment models we present are unsu-
pervised in that they do not require labelled data
for inferring correct alignments. Nevertheless, our
models have three parameters: (a) the similarity
measure for identifying semantically equivalent
constituents; (b) the filtering procedure for remov-
ing noise in the data (e.g., wrong alignments); and
(c) the decision procedure for projection.

We retained the similarity measure introduced
in Padó and Lapata (2005) which computes the
overlap between a source constituent and its can-
didate projection, in both directions. Let y(cs) and
y(ct) denote the yield of a source and target con-
stituent, respectively, and al(T ) the union of all
word alignments for a token set T :

sim(cs,ct) =
|y(ct)∩al(y(cs))|

|y(cs)|
|y(cs)∩al(y(ct))|

|y(ct)|

We examined three filtering procedures (see Sec-
tion 4): removing non-aligned words (NA), re-
moving non-content words (NC), and removing
unlikely arguments (Arg). These were combined
with three decision procedures: local forward
alignment (Forward), perfect matching (Perf-
Match), and edge cover matching (EdgeCover)
(see Section 3). We used Jonker and Vol-
genant’s (1987) solver4 to compute weighted per-
fect matchings.

In order to find optimal parameter settings for
our models, we split our corpus randomly into a
development and test set (both 50% of the data)
and examined the parameter space exhaustively
on the development set. The performance of the
best models was then assessed on the test data.
The models had to predict semantic roles for Ger-
man, using English gold standard roles as input,
and were evaluated against German gold standard

4The software is available from http://www.
magiclogic.com/assignment.html.
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Model Prec Rec F-score
WordBL 45.6 44.8 45.1
Forward 66.0 56.5 60.9
PerfMatch 71.7 54.7 62.1

N
o

Fi
lte

r

EdgeCover 65.6 57.3 61.2
UpperBnd 85.0 84.0 84.0

Model Prec Rec F-score
WordBL 45.6 44.8 45.1
Forward 74.1 56.1 63.9
PerfMatch 73.3 62.1 67.2

N
A

Fi
lte

r

EdgeCover 70.5 62.9 66.5
UpperBnd 85.0 84.0 84.0

Model Prec Rec F-score
WordBL 45.6 44.8 45.1
Forward 64.3 47.8 54.8
PerfMatch 73.1 56.9 64.0

N
C

Fi
lte

r

EdgeCover 67.5 57.0 61.8
UpperBnd 85.0 84.0 84.0

Model Prec Rec F-score
WordBL 45.6 44.8 45.1
Forward 69.9 60.7 65.0
PerfMatch 80.4 48.1 60.2

A
rg

Fi
lte

r

EdgeCover 69.6 60.6 64.8
UpperBnd 85.0 84.0 84.0

Table 1: Model comparison using intersective alignments (development set)

roles. To gauge the extent to which alignment er-
rors are harmful, we present results both on inter-
sective and manual alignments.

Upper bound and baseline In Padó and La-
pata (2005), we assessed the feasibility of seman-
tic role projection by measuring how well anno-
tators agreed on identifying roles and their spans.
We obtained an inter-annotator agreement of 0.84
(F-score), which can serve as an upper bound for
the projection task. As a baseline, we use a sim-
ple word-based model (WordBL) from the same
study. The units of this model are words, and the
span of a projected role is the union of all target
terminals aligned to a terminal of the source role.

6 Results

Development set Our results on the develop-
ment set are summarised in Table 1. We show how
performance varies for each model according to
different filtering procedures when automatically
produced word alignments are used. No filtering
is applied to the baseline model (WordBL).

Without filtering, local and global models yield
comparable performance. Models based on perfect
bipartite matchings (PerfMatch) and edge covers
(EdgeCover) obtain slight F-score improvements
over the forward alignment model (Forward). It
is worth noticing that PerfMatch yields a signifi-
cantly higher precision (using a χ2 test, p < 0.01)
than Forward and EdgeCover. This indicates that,
even without filtering, PerfMatch delivers rather
accurate projections, however with low recall.

Model performance seems to increase with tree
pruning. When non-aligned words are removed
(Table 1, NA Filter), PerfMatch and EdgeCover

reach an F-score of 67.2 and 66.5, respectively.
This is an increase of approximately 3% over the
local Forward model. Although the latter model
yields high precision (74.1%), its recall is sig-
nificantly lower than PerfMatch and EdgeCover
(p < 0.01). This demonstrates the usefulness of
filtering for the more constrained global models
which as discussed in Section 3 can only represent
a limited set of alignment possibilities.

The non-content words filter (NC filter) yields
smaller improvements. In fact, for the Forward
model, results are worse than applying no filter-
ing at all. We conjecture that NC is an overly
aggressive filter which removes projection-critical
words. This is supported by the relatively low re-
call values. In comparison to NA, recall drops
by 8.3% for Forward and by almost 6% for Perf-
Match and EdgeCover. Nevertheless, both Perf-
Match and EdgeCover outperform the local For-
ward model. PerfMatch is the best performing
model reaching an F-score of 64.0%.

We now consider how the models behave when
the argument-based filter is applied (Arg, Table 1,
bottom). As can be seen, the local model benefits
most from this filter, whereas PerfMatch is worst
affected; it obtains its highest precision (80.4%) as
well as its lowest recall (48.1%). This is somewhat
expected since the filter removes the majority of
nodes in the target partition causing a proliferation
of dummy nodes. The resulting edge covers are
relatively “unnatural”, thus counterbalancing the
advantages of global optimisation.

To summarise, we find on the development set
that PerfMatch in the NA Filter condition obtains
the best performance (F-score 67.2%), followed
closely by EdgeCover (F-score 66.5%) in the same

1166



Model Prec Rec F-score
WordBL 45.7 45.0 43.3
Forward (Arg) 72.4 63.2 67.5
PerfMatch (NA) 75.7 63.7 69.2
EdgeCover (NA) 73.0 64.9 68.7

In
te

rs
ec

tiv
e

UpperBnd 85.0 84.0 84.0

Model Prec Rec F-score
WordBL 62.1 60.7 61.4
Forward (Arg) 72.2 68.6 70.4
PerfMatch (NA) 75.7 67.5 71.4
EdgeCover (NA) 71.9 69.3 70.6M

an
ua

l

UpperBnd 85.0 84.0 84.0

Table 2: Model comparison using intersective and
manual alignments (test set)

condition. In general, PerfMatch seems less sensi-
tive to the type of filtering used; it yields best re-
sults in three out of four filtering conditions (see
boldface figures in Table 1). Our results further in-
dicate that Arg boosts the performance of the local
model by guiding it towards linguistically appro-
priate alignments.5

A comparative analysis of the output of Perf-
Match and EdgeCover revealed that the two mod-
els make similar errors (85% overlap). Disagree-
ments, however, arise with regard to misparses.
Consider as an example the sentence pair:

The Charter is [NP an opportunity to
bring the EU closer to the people.]

Die Charta ist [NP eine Chance], [S die
EU den Bürgern näherzubringen.]

An ideal algorithm would align the English NP
to both the German NP and S. EdgeCover, which
can model one-to-many-relationships, acts “con-
fidently” and aligns the NP to the German S to
maximise the overlap similarity, incurring both a
precision and a recall error. PerfMatch, on the
other hand, cannot handle one-to-many relation-
ships, acts “cautiously” and aligns the English NP
to a dummy node, leading to a recall error. Thus,
even though EdgeCover’s analysis is partly right,
it will come out worse than PerfMatch, given the
current dataset and evaluation method.

Test set We now examine whether our results
carry over to the test data. Table 2 shows the

5Experiments using different filter combinations did not
lead to performance gains over individual filters and are not
reported here due to lack of space.

performance of the best models (Forward (Arg),
PerfMatch (NA), and EdgeCover (NA)) on auto-
matic (Intersective) and manual (Manual) align-
ments.6 All models perform significantly better
than the baseline but significantly worse than the
upper bound (both in terms of precision and recall,
p < 0.01). PerfMatch and EdgeCover yield better
F-scores than the Forward model. In fact, Perf-
Match yields a significantly better precision than
Forward (p < 0.01).

Relatively small performance gains are ob-
served when manual alignments are used. The F-
score increases by 2.9% for Forward, 2.2% for
PerfMatch, and 1.9% for EdgeCover. Also note
that this better performance is primarily due to a
significant increase in recall (p < 0.01), but not
precision. This is an encouraging result indicating
that our filters and graph-based algorithms elim-
inate alignment noise to a large extent. Analysis
of the models’ output revealed that the remain-
ing errors are mostly due to incorrect parses (none
of the parsers employed in this work were trained
on the Europarl corpus) but also to modelling de-
ficiencies. Recall from Section 3 that our global
models cannot currently capture one-to-zero cor-
respondences, i.e., deletions and insertions.

7 Related work

Previous work has primarily focused on the pro-
jection of grammatical (Yarowsky and Ngai, 2001)
and syntactic information (Hwa et al., 2002). An
exception is Fung and Chen (2004), who also
attempt to induce FrameNet-style annotations in
Chinese. Their method maps English FrameNet
entries to concepts listed in HowNet7, an on-line
ontology for Chinese, without using parallel texts.

The present work extends our earlier projection
framework (Padó and Lapata, 2005) by proposing
global methods for automatic constituent align-
ment. Although our models are evaluated on the
semantic role projection task, we believe they also
show promise in the context of statistical ma-
chine translation. Especially for systems that use
syntactic information to enhance translation qual-
ity. For example, Xia and McCord (2004) exploit
constituent alignment for rearranging sentences in
the source language so as to make their word or-

6Our results on the test set are slightly higher in compar-
ison to the development set. The fluctuation reflects natural
randomness in the partitioning of our corpus.

7See http://www.keenage.com/zhiwang/e_
zhiwang.html.
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der similar to that of the target language. They
learn tree reordering rules by aligning constituents
heuristically using a naive local optimisation pro-
cedure analogous to forward alignment. A simi-
lar approach is described in Collins et al. (2005);
however, the rules are manually specified and the
constituent alignment step reduces to inspection of
the source-target sentence pairs. The global opti-
misation models presented in this paper could be
easily employed for the reordering task common
to both approaches.

Other approaches treat rewrite rules not as a
preprocessing step (e.g., for reordering source
strings), but as a part of the translation model
itself (Gildea, 2003; Gildea, 2004). Constituent
alignments are learnt by estimating the probabil-
ity of tree transformations, such as node deletions,
insertions, and reorderings. These models have a
greater expressive power than our edge cover mod-
els; however, this implies that approximations are
often used to make computation feasible.

8 Conclusions

In this paper, we have proposed a novel method
for obtaining constituent alignments between par-
allel sentences and have shown that it is use-
ful for semantic role projection. A key aspect of
our approach is the formalisation of constituent
alignment as the search for a minimum weight
edge cover in a bipartite graph. This formalisation
provides efficient mechanisms for aligning con-
stituents and yields results superior to heuristic ap-
proaches. Furthermore, we have shown that tree-
based noise filtering techniques are essential for
good performance.

Our approach rests on the assumption that con-
stituent alignment can be determined solely from
the lexical similarity between constituents. Al-
though this allows us to model constituent align-
ments efficiently as edge covers, it falls short of
modelling translational divergences such as substi-
tutions or insertions/deletions. In future work, we
will investigate minimal tree edit distance (Bille,
2005) and related formalisms which are defined
on tree structures and can therefore model diver-
gences explicitly. However, it is an open ques-
tion whether cross-linguistic syntactic analyses are
similar enough to allow for structure-driven com-
putation of alignments.
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