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Abstract 

We have constructed a corpus of news ar-
ticles in which events are annotated for 
estimated bounds on their duration. Here 
we describe a method for measuring in-
ter-annotator agreement for these event 
duration distributions. We then show that 
machine learning techniques applied to 
this data yield coarse-grained event dura-
tion information, considerably outper-
forming a baseline and approaching hu-
man performance. 

1 Introduction 

Consider the sentence from a news article: 

George W. Bush met with Vladimir Putin in 
Moscow. 

How long was the meeting?  Our first reaction 
to this question might be that we have no idea.  
But in fact we do have an idea.  We know the 
meeting was longer than 10 seconds and less 
than a year.  How much tighter can we get the 
bounds to be?  Most people would say the meet-
ing lasted between an hour and three days. 

There is much temporal information in text 
that has hitherto been largely unexploited, en-
coded in the descriptions of events and relying 
on our knowledge of the range of usual durations 
of types of events.  This paper describes one part 
of an exploration into how this information can 
be captured automatically.  Specifically, we have 
developed annotation guidelines to minimize dis-
crepant judgments and annotated 58 articles, 
comprising 2288 events; we have developed a 
method for measuring inter-annotator agreement 
when the judgments are intervals on a scale; and 
we have shown that machine learning techniques 
applied to the annotated data considerably out-

perform a baseline and approach human per-
formance.   

This research is potentially very important in 
applications in which the time course of events is 
to be extracted from news. For example, whether 
two events overlap or are in sequence often de-
pends very much on their durations.  If a war 
started yesterday, we can be pretty sure it is still 
going on today.  If a hurricane started last year, 
we can be sure it is over by now. 

The corpus that we have annotated currently 
contains all the 48 non-Wall-Street-Journal (non-
WSJ) news articles (a total of 2132 event in-
stances), as well as 10 WSJ articles (156 event 
instances), from the TimeBank corpus annotated 
in TimeML (Pustejovky et al., 2003). The non-
WSJ articles (mainly political and disaster news) 
include both print and broadcast news that are 
from a variety of news sources, such as ABC, 
AP, and VOA. 

In the corpus, every event to be annotated was 
already identified in TimeBank.  Annotators 
were instructed to provide lower and upper 
bounds on the duration of the event, encompass-
ing 80% of the possibilities, excluding anoma-
lous cases, and taking the entire context of the 
article into account. For example, here is the 
graphical output of the annotations (3 annotators) 
for the “finished” event (underlined) in the sen-
tence 

After the victim, Linda Sanders, 35, had fin-
ished her cleaning and was waiting for her 
clothes to dry,... 
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This graph shows that the first annotator be-
lieves that the event lasts for minutes whereas the 
second annotator believes it could only last for 
several seconds. The third annotates the event to 
range from a few seconds to a few minutes. A 
logarithmic scale is used for the output because 
of the intuition that the difference between 1 sec-
ond and 20 seconds is significant, while the dif-
ference between 1 year 1 second and 1 year 20 
seconds is negligible.  

A preliminary exercise in annotation revealed 
about a dozen classes of systematic discrepancies 
among annotators’ judgments.  We thus devel-
oped guidelines to make annotators aware of 
these cases and to guide them in making the 
judgments.  For example, many occurrences of 
verbs and other event descriptors refer to multi-
ple events, especially but not exclusively if the 
subject or object of the verb is plural.  In “Iraq 
has destroyed its long-range missiles”, there is 
the time it takes to destroy one missile and the 
duration of the interval in which all the individ-
ual events are situated – the time it takes to de-
stroy all its missiles.  Initially, there were wide 
discrepancies because some annotators would 
annotate one value, others the other.  Annotators 
are now instructed to make judgments on both 
values in this case.  The use of the annotation 
guidelines resulted in about 10% improvement in 
inter-annotator agreement (Pan et al., 2006), 
measured as described in Section 2. 

There is a residual of gross discrepancies in 
annotators’ judgments that result from differ-
ences of opinion, for example, about how long a 
government policy is typically in effect.  But the 
number of these discrepancies was surprisingly 
small. 

The method and guidelines for annotation are 
described in much greater detail in (Pan et al., 
2006).  In the current paper, we focus on how 
inter-annotator agreement is measured, in Sec-
tion 2, and in Sections 3-5 on the machine learn-
ing experiments.  Because the annotated corpus 
is still fairly small, we cannot hope to learn to 
make fine-grained judgments of event durations 
that are currently annotated in the corpus, but as 
we demonstrate, it is possible to learn useful 
coarse-grained judgments.   

Although there has been much work on tem-
poral anchoring and event ordering in text 
(Hitzeman et al., 1995; Mani and Wilson, 2000; 
Filatova and Hovy, 2001; Boguraev and Ando, 
2005), to our knowledge, there has been no seri-
ous published empirical effort to model and learn 
vague and implicit duration information in natu-

ral language, such as the typical durations of 
events, and to perform reasoning over this infor-
mation. (Cyc apparently has some fuzzy duration 
information, although it is not generally avail-
able; Rieger (1974) discusses the issue for less 
than a page; there has been work in fuzzy logic 
on representing and reasoning with imprecise 
durations (Godo and Vila, 1995; Fortemps, 
1997), but these make no attempt to collect hu-
man judgments on such durations or learn to ex-
tract them automatically from texts.) 

2 Inter-Annotator Agreement 

Although the graphical output of the annotations 
enables us to visualize quickly the level of agree-
ment among different annotators for each event, 
a quantitative measurement of the agreement is 
needed. 

The kappa statistic (Krippendorff, 1980; Car-
letta, 1996) has become the de facto standard to 
assess inter-annotator agreement. It is computed 
as: 
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P(A) is the observed agreement among the an-
notators, and P(E) is the expected agreement, 
which is the probability that the annotators agree 
by chance.  

In order to compute the kappa statistic for our 
task, we have to compute P(A) and P(E), but 
those computations are not straightforward.  

P(A): What should count as agreement among 
annotators for our task?  

P(E): What is the probability that the annota-
tors agree by chance for our task? 

2.1 What Should Count as Agreement? 

Determining what should count as agreement is 
not only important for assessing inter-annotator 
agreement, but is also crucial for later evaluation 
of machine learning experiments. For example, 
for a given event with a known gold standard 
duration range from 1 hour to 4 hours, if a ma-
chine learning program outputs a duration of 3 
hours to 5 hours, how should we evaluate this 
result? 

In the literature on the kappa statistic, most au-
thors address only category data; some can han-
dle more general data, such as data in interval 
scales or ratio scales. However, none of the tech-
niques directly apply to our data, which are 
ranges of durations from a lower bound to an 
upper bound. 
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Figure 1: Overlap of Judgments of [10 minutes, 
30 minutes] and [10 minutes, 2 hours]. 
 

In fact, what coders were instructed to anno-
tate for a given event is not just a range, but a 
duration distribution for the event, where the 
area between the lower bound and the upper 
bound covers about 80% of the entire distribution 
area. Since it’s natural to assume the most likely 
duration for such distribution is its mean (aver-
age) duration, and the distribution flattens out 
toward the upper and lower bounds, we use the 
normal or Gaussian distribution to model our 
duration distributions. If the area between lower 
and upper bounds covers 80% of the entire dis-
tribution area, the bounds are each 1.28 standard 
deviations from the mean.  

Figure 1 shows the overlap in distributions for 
judgments of [10 minutes, 30 minutes] and [10 
minutes, 2 hours], and the overlap or agreement 
is 0.508706. 

2.2 Expected Agreement 

What is the probability that the annotators agree 
by chance for our task? The first quick response 
to this question may be 0, if we consider all the 
possible durations from 1 second to 1000 years 
or even positive infinity. 

However, not all the durations are equally pos-
sible. As in (Krippendorff, 1980), we assume 
there exists one global distribution for our task 
(i.e., the duration ranges for all the events), and 
“chance” annotations would be consistent with 
this distribution. Thus, the baseline will be an 
annotator who knows the global distribution and 
annotates in accordance with it, but does not read 
the specific article being annotated. Therefore, 
we must compute the global distribution of the 
durations, in particular, of their means and their 
widths. This will be of interest not only in deter-
mining expected agreement, but also in terms of  
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Figure 2: Distribution of Means of Annotated 
Durations. 

 
what it says about the genre of news articles and 
about fuzzy judgments in general. 

We first compute the distribution of the means 
of all the annotated durations. Its histogram is 
shown in Figure 2, where the horizontal axis 
represents the mean values in the natural loga-
rithmic scale and the vertical axis represents the 
number of annotated durations with that mean. 

There are two peaks in this distribution. One is 
from 5 to 7 in the natural logarithmic scale, 
which corresponds to about 1.5 minutes to 30 
minutes. The other is from 14 to 17 in the natural 
logarithmic scale, which corresponds to about 8 
days to 6 months. One could speculate that this 
bimodal distribution is because daily newspapers 
report short events that happened the day before 
and place them in the context of larger trends.  

We also compute the distribution of the widths 
(i.e., Xupper – Xlower) of all the annotated durations, 
and its histogram is shown in Figure 3, where the 
horizontal axis represents the width in the natural 
logarithmic scale and the vertical axis represents 
the number of annotated durations with that 
width. Note that it peaks at about a half order of 
magnitude (Hobbs and Kreinovich, 2001).  

Since the global distribution is determined by 
the above mean and width distributions, we can 
then compute the expected agreement, i.e., the 
probability that the annotators agree by chance, 
where the chance is actually based on this global 
distribution. 

Two different methods were used to compute 
the expected agreement (baseline), both yielding 
nearly equal results. These are described in detail 
in (Pan et al., 2006). For both, P(E) is about 0.15. 
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Figure 3: Distribution of Widths of Annotated 
Durations. 

3 Features 

In this section, we describe the lexical, syntactic, 
and semantic features that we considered in 
learning event durations. 

3.1 Local Context 

For a given event, the local context features in-
clude a window of n tokens to its left and n to-
kens to its right, as well as the event itself, for n 
= {0, 1, 2, 3}. The best n determined via cross 
validation turned out to be 0, i.e., the event itself 
with no local context. But we also present results 
for n = 2 in Section 4.3 to evaluate the utility of 
local context. 

A token can be a word or a punctuation mark. 
Punctuation marks are not removed, because they 
can be indicative features for learning event du-
rations. For example, the quotation mark is a 
good indication of quoted reporting events, and 
the duration of such events most likely lasts for 
seconds or minutes, depending on the length of 
the quoted content. However, there are also cases 
where quotation marks are used for other pur-
poses, such as emphasis of quoted words and 
titles of artistic works. 

For each token in the local context, including 
the event itself, three features are included: the 
original form of the token, its lemma (or root 
form), and its part-of-speech (POS) tag. The 
lemma of the token is extracted from parse trees 
generated by the CONTEX parser (Hermjakob 
and Mooney, 1997) which includes rich context 
information in parse trees, and the Brill tagger 
(Brill, 1992) is used for POS tagging. 

The context window doesn’t cross the bounda-
ries of sentences. When there are not enough to-
kens on either side of the event within the win-
dow, “NULL” is used for the feature values. 

Features Original Lemma POS 
Event signed sign VBD 
1token-after the the DT 
2token-after plan plan NN 
1token-before Friday Friday NNP 
2token-before on on IN 

Table 1: Local context features for the “signed” 
event in sentence (1) with n = 2. 
 

The local context features extracted for the 
“signed” event in sentence (1) is shown in Table 
1 (with a window size n = 2). The feature vector 
is [signed, sign, VBD, the, the, DT, plan, plan, 
NN, Friday, Friday, NNP, on, on, IN]. 

 
(1) The two presidents on Friday signed the 

plan. 

3.2 Syntactic Relations 

The information in the event’s syntactic envi-
ronment is very important in deciding the dura-
tions of events. For example, there is a difference 
in the durations of the “watch” events in the 
phrases “watch a movie” and “watch a bird fly”. 

For a given event, both the head of its subject 
and the head of its object are extracted from the 
parse trees generated by the CONTEX parser. 
Similarly to the local context features, for both 
the subject head and the object head, their origi-
nal form, lemma, and POS tags are extracted as 
features. When there is no subject or object for 
an event, “NULL” is used for the feature values. 

For the “signed” event in sentence (1), the 
head of its subject is “presidents” and the head of 
its object is “plan”. The extracted syntactic rela-
tion features are shown in Table 2, and the fea-
ture vector is [presidents, president, NNS, plan, 
plan, NN]. 

3.3 WordNet Hypernyms 

Events with the same hypernyms may have simi-
lar durations. For example, events “ask” and 
“talk” both have a direct WordNet (Miller, 1990) 
hypernym of “communicate”, and most of the 
time they do have very similar durations in the 
corpus. 

However, closely related events don’t always 
have the same direct hypernyms. For example, 
“see” has a direct hypernym of “perceive”, 
whereas “observe” needs two steps up through 
the hypernym hierarchy before reaching “per-
ceive”. Such correlation between events may be 
lost if only the direct hypernyms of the words are 
extracted. 
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Features Original Lemma POS 
Subject presidents president NNS 
Object plan plan NN 

Table 2: Syntactic relation features for the 
“signed” event in sentence (1). 
 
Feature 1-hyper 2-hyper 3-hyper 
Event write communicate interact 

Subject corporate 
executive executive adminis-

trator 
Object idea content cognition 
Table 3: WordNet hypernym features for the 
event (“signed”), its subject (“presidents”), and 
its object (“plan”) in sentence (1). 
 

It is useful to extract the hypernyms not only 
for the event itself, but also for the subject and 
object of the event. For example, events related 
to a group of people or an organization usually 
last longer than those involving individuals, and 
the hypernyms can help distinguish such con-
cepts. For example, “society” has a “group” hy-
pernym (2 steps up in the hierarchy), and 
“school” has an “organization” hypernym (3 
steps up). The direct hypernyms of nouns are 
always not general enough for such purpose, but 
a hypernym at too high a level can be too general 
to be useful. For our learning experiments, we 
extract the first 3 levels of hypernyms from 
WordNet. 

Hypernyms are only extracted for the events 
and their subjects and objects, not for the local 
context words. For each level of hypernyms in 
the hierarchy, it’s possible to have more than one 
hypernym, for example, “see” has two direct hy-
pernyms, “perceive” and “comprehend”. For a 
given word, it may also have more than one 
sense in WordNet. In such cases, as in (Gildea 
and Jurafsky, 2002), we only take the first sense 
of the word and the first hypernym listed for each 
level of the hierarchy. A word disambiguation 
module might improve the learning performance. 
But since the features we need are the hypernyms, 
not the word sense itself, even if the first word 
sense is not the correct one, its hypernyms can 
still be good enough in many cases. For example, 
in one news article, the word “controller” refers 
to an air traffic controller, which corresponds to 
the second sense in WordNet, but its first sense 
(business controller) has the same hypernym of 
“person” (3 levels up) as the second sense (direct 
hypernym). Since we take the first 3 levels of 
hypernyms, the correct hypernym is still ex-
tracted. 

 

P(A) P(E) Kappa 
0.528 0.740 0.877 0.500 0.755 

Table 4: Inter-Annotator Agreement for Binary 
Event Durations. 

 
When there are less than 3 levels of hy-

pernyms for a given word, its hypernym on the 
previous level is used. When there is no hy-
pernym for a given word (e.g., “go”), the word 
itself will be used as its hypernyms. Since 
WordNet only provides hypernyms for nouns 
and verbs, “NULL” is used for the feature values 
for a word that is not a noun or a verb.  

For the “signed” event in sentence (1), the ex-
tracted WordNet hypernym features for the event 
(“signed”), its subject (“presidents”), and its ob-
ject (“plan”) are shown in Table 3, and the fea-
ture vector is [write, communicate, interact, cor-
porate_executive, executive, administrator, idea, 
content, cognition]. 

4 Experiments 

The distribution of the means of the annotated 
durations in Figure 2 is bimodal, dividing the 
events into those that take less than a day and 
those that take more than a day. Thus, in our first 
machine learning experiment, we have tried to 
learn this coarse-grained event duration informa-
tion as a binary classification task. 

4.1 Inter-Annotator Agreement, Baseline, 
and Upper Bound 

Before evaluating the performance of different 
learning algorithms, the inter-annotator agree-
ment, the baseline and the upper bound for the 
learning task are assessed first.  

Table 4 shows the inter-annotator agreement 
results among 3 annotators for binary event dura-
tions. The experiments were conducted on the 
same data sets as in (Pan et al., 2006). Two 
kappa values are reported with different ways of 
measuring expected agreement (P(E)), i.e., 
whether or not the annotators have prior knowl-
edge of the global distribution of the task. 

The human agreement before reading the 
guidelines (0.877) is a good estimate of the upper 
bound performance for this binary classification 
task. The baseline for the learning task is always 
taking the most probable class. Since 59.0% of 
the total data is “long” events, the baseline per-
formance is 59.0%. 
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Class Algor. Prec. Recall F-Score
SVM 0.707 0.606 0.653 
NB 0.567 0.768 0.652 Short 
C4.5 0.571 0.600 0.585 
SVM 0.793 0.857 0.823 
NB 0.834 0.665 0.740 Long 

 C4.5 0.765 0.743 0.754 
Table 5: Test Performance of Three Algorithms. 

4.2 Data 

The original annotated data can be straightfor-
wardly transformed for this binary classification 
task. For each event annotation, the most likely 
(mean) duration is calculated first by averaging 
(the logs of) its lower and upper bound durations. 
If its most likely (mean) duration is less than a 
day (about 11.4 in the natural logarithmic scale), 
it is assigned to the “short” event class, otherwise 
it is assigned to the “long” event class. (Note that 
these labels are strictly a convenience and not an 
analysis of the meanings of “short” and “long”.) 

We divide the total annotated non-WSJ data 
(2132 event instances) into two data sets: a train-
ing data set with 1705 event instances (about 
80% of the total non-WSJ data) and a held-out 
test data set with 427 event instances (about 20% 
of the total non-WSJ data). The WSJ data (156 
event instances) is kept for further test purposes 
(see Section 4.4). 

4.3 Experimental Results (non-WSJ) 

Learning Algorithms. Three supervised learn-
ing algorithms were evaluated for our binary 
classification task, namely, Support Vector Ma-
chines (SVM) (Vapnik, 1995), Naïve Bayes 
(NB) (Duda and Hart, 1973), and Decision Trees 
C4.5 (Quinlan, 1993). The Weka (Witten and 
Frank, 2005) machine learning package was used 
for the implementation of these learning algo-
rithms. Linear kernel is used for SVM in our ex-
periments. 

Each event instance has a total of 18 feature 
values, as described in Section 3, for the event 
only condition, and 30 feature values for the lo-
cal context condition when n = 2. For SVM and 
C4.5, all features are converted into binary fea-
tures (6665 and 12502 features). 

Results. 10-fold cross validation was used to 
train the learning models, which were then tested 
on the unseen held-out test set, and the perform-
ance (including the precision, recall, and F-score1  

                                                 
1 F-score is computed as the harmonic mean of the preci-
sion and recall: F = (2*Prec*Rec)/(Prec+Rec). 

Algorithm Precision  
Baseline 59.0% 
C4.5 69.1% 
NB 70.3% 
SVM 76.6% 
Human Agreement 87.7% 

Table 6: Overall Test Precision on non-WSJ 
Data. 

 
for each class) of the three learning algorithms is 
shown in Table 5. The significant measure is 
overall precision, and this is shown for the three 
algorithms in Table 6, together with human a-
greement (the upper bound of the learning task) 
and the baseline. 

We can see that among all three learning algo-
rithms, SVM achieves the best F-score for each 
class and also the best overall precision (76.6%). 
Compared with the baseline (59.0%) and human 
agreement (87.7%), this level of performance is 
very encouraging, especially as the learning is 
from such limited training data. 

Feature Evaluation. The best performing 
learning algorithm, SVM, was then used to ex-
amine the utility of combinations of four differ-
ent feature sets (i.e., event, local context, syntac-
tic, and WordNet hypernym features). The de-
tailed comparison is shown in Table 7.  

We can see that most of the performance 
comes from event word or phrase itself. A sig-
nificant improvement above that is due to the 
addition of information about the subject and 
object. Local context does not help and in fact 
may hurt, and hypernym information also does 
not seem to help2. It is of interest that the most 
important information is that from the predicate 
and arguments describing the event, as our lin-
guistic intuitions would lead us to expect. 

4.4 Test on WSJ Data 

Section 4.3 shows the experimental results with 
the learned model trained and tested on the data 
with the same genre, i.e., non-WSJ articles. 
In order to evaluate whether the learned model 
can perform well on data from different news 
genres, we tested it on the unseen WSJ data (156 
event instances). The performance (including the 
precision, recall, and F-score for each class) is 
shown in Table 8. The precision (75.0%) is very 
close to the test performance on the non-WSJ  

                                                 
2 In the “Syn+Hyper” cases, the learning algorithm with and 
without local context gives identical results, probably be-
cause the other features dominate. 
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Event Only (n = 0) Event Only + Syntactic Event + Syn + Hyper Class Prec. Rec. F Prec. Rec. F Prec. Rec. F 
Short 0.742 0.465  0.571 0.758 0.587 0.662 0.707    0.606 0.653 
Long 0.748 0.908 0.821 0.792 0.893 0.839 0.793 0.857 0.823 
Overall Prec. 74.7% 78.2% 76.6% 
 Local Context (n = 2) Context + Syntactic Context + Syn + Hyper 
Short 0.672 0.568 0.615 0.710 0.600    0.650 0.707    0.606 0.653 
Long 0.774 0.842 0.806 0.791 0.860 0.824 0.793 0.857 0.823 
Overall Prec. 74.2% 76.6% 76.6% 

Table 7: Feature Evaluation with Different Feature Sets using SVM. 
 

Class Prec. Rec. F 
Short 0.692   0.610 0.649
Long 0.779   0.835 0.806
Overall Prec. 75.0% 
Table 8: Test Performance on WSJ data. 

 
P(A) P(E) Kappa 

0.151 0.762 0.798 0.143 0.764 
Table 9: Inter-Annotator Agreement for Most 
Likely Temporal Unit. 
 
data, and indicates the significant generalization 
capacity of the learned model. 

5 Learning the Most Likely Temporal 
Unit 

These encouraging results have prompted us to 
try to learn more fine-grained event duration in-
formation, viz., the most likely temporal units of 
event durations (cf. (Rieger 1974)’s ORDER-
HOURS, ORDERDAYS). 

For each original event annotation, we can ob-
tain the most likely (mean) duration by averaging 
its lower and upper bound durations, and assign-
ing it to one of seven classes (i.e., second, min-
ute, hour, day, week, month, and year) based on 
the temporal unit of its most likely duration.  

However, human agreement on this more fine-
grained task is low (44.4%). Based on this obser-
vation, instead of evaluating the exact agreement 
between annotators, an “approximate agreement” 
is computed for the most likely temporal unit of 
events. In “approximate agreement”, temporal 
units are considered to match if they are the same 
temporal unit or an adjacent one. For example, 
“second” and “minute” match, but “minute” and 
“day” do not. 

Some preliminary experiments have been con-
ducted for learning this multi-classification task. 
The same data sets as in the binary classification 
task were used. The only difference is that the 
class for each instance is now labeled with one 

Algorithm Precision  
Baseline 51.5% 
C4.5 56.4% 
NB 65.8% 
SVM 67.9% 
Human Agreement 79.8% 
Table 10: Overall Test Precisions. 

 
of the seven temporal unit classes. 

The baseline for this multi-classification task 
is always taking the temporal unit which with its 
two neighbors spans the greatest amount of data. 
Since the “week”, “month”, and “year” classes 
together take up largest portion (51.5%) of the 
data, the baseline is always taking the “month” 
class, where both “week” and “year” are also 
considered a match. Table 9 shows the inter-
annotator agreement results for most likely tem-
poral unit when using “approximate agreement”. 
Human agreement (the upper bound) for this 
learning task increases from 44.4% to 79.8%. 

10-fold cross validation was also used to train 
the learning models, which were then tested on 
the unseen held-out test set. The performance of 
the three algorithms is shown in Table 10. The 
best performing learning algorithm is again SVM 
with 67.9% test precision. Compared with the 
baseline (51.5%) and human agreement (79.8%), 
this again is a very promising result, especially 
for a multi-classification task with such limited 
training data. It is reasonable to expect that when 
more annotated data becomes available, the 
learning algorithm will achieve higher perform-
ance when learning this and more fine-grained 
event duration information. 

Although the coarse-grained duration informa-
tion may look too coarse to be useful, computers 
have no idea at all whether a meeting event takes 
seconds or centuries, so even coarse-grained es-
timates would give it a useful rough sense of how 
long each event may take. More fine-grained du-
ration information is definitely more desirable 
for temporal reasoning tasks. But coarse-grained 

399



durations to a level of temporal units can already 
be very useful. 

6 Conclusion 

In the research described in this paper, we have 
addressed a problem -- extracting information 
about event durations encoded in event descrip-
tions -- that has heretofore received very little 
attention in the field.  It is information that can 
have a substantial impact on applications where 
the temporal placement of events is important.  
Moreover, it is representative of a set of prob-
lems – making use of the vague information in 
text – that has largely eluded empirical ap-
proaches in the past.  In (Pan et al., 2006), we 
explicate the linguistic categories of the phenom-
ena that give rise to grossly discrepant judgments 
among annotators, and give guidelines on resolv-
ing these discrepancies.  In the present paper, we 
describe a method for measuring inter-annotator 
agreement when the judgments are intervals on a 
scale; this should extend from time to other sca-
lar judgments.  Inter-annotator agreement is too 
low on fine-grained judgments.  However, for the 
coarse-grained judgments of more than or less 
than a day, and of approximate agreement on 
temporal unit, human agreement is acceptably 
high.  For these cases, we have shown that ma-
chine-learning techniques achieve impressive 
results.   
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