
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 137–144,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Polarized Unification Grammars

Sylvain Kahane
Modyco, Université Paris 10
sk@ccr.jussieu.fr

Abstract

This paper proposes a generic mathemati-
cal formalism for the combination of
various structures: strings, trees, dags,
graphs and products of them. The polari-
zation of the objects of the elementary
structures controls the saturation of the
final structure. This formalism is both
elementary and powerful enough to
strongly simulate many grammar formal-
isms, such as rewriting systems, depend-
ency grammars, TAG, HPSG and LFG.

1 Introduction

Our aim is to propose a generic formalism as
simple as possible but powerful enough to write
real grammars for natural language and to handle
complex linguistic structures. The formalism we
propose can strongly simulate most rule-based
formalisms used in linguistics.1

Language utterances are both strongly struc-
tured and compositional and the structure of a
complex utterance can be obtained by combining
elementary structures associated to the elemen-
tary units of language.2 The most simple way to

1 A formalism A strongly simulates a formalism B if A has a
better strong generative capacity than B, that is, if A can
generate the languages generated by B with the same struc-
tures associated to the utterances of these languages.
2 Whether a natural language utterance contains one or
several structures depends on our point of view. On the one
hand it is clear that a sentence can receive various structures
according to the semantic, syntactic, morphological or
phonological point of view. On the other hand these differ-
ent structures are not independent from each other and even
if they are not structures on the same objects (for instance
the semantic units do not correspond one to one to the syn-
tactic units, that is the words) there are links between the
different objects of these structures. In other words, consid-
ering separately the different simple structures of the sen-
tence does not take into account the whole structure of the
sentence, because we lost the interrelation between struc-
tures of different levels.

combine two structures A and B is unification,
that is, to build a new structure C by partially
superimposing A and B and identifying a part of
the objects of A with those of B. This idea recalls
an old idea, used by Jespersen (1924), Tesnière
(1934) or Ajduckiewicz (1935): the sentence is
like a molecule whose words are atoms, each
word bearing a valence (a linguistic term explic-
itly borrowed from chemistry) that forces or al-
lows it to meet some other words. Nevertheless,
unification grammars cannot directly take into
account the fact that some linguistic units are
unsaturated in a sense that they must absolutely
combine with other structures to form a stable
unit. Saturation is ensured by additional mecha-
nisms, such as the distinction of terminal and
non-terminal symbols in rewriting systems or by
requiring some features to have an empty list as a
value in HPSG.

This paper presents a new family of formal-
isms, Polarized Unification Grammars (PUGs).
PUGs extend Unification Grammars with an
explicit control of the saturation of structures by
attributing a polarity to each object. Using polari-
ties allows integrating the treatment of saturation
in the formalism of the rules. Thus the processing
of saturation will pilot the combination of struc-
tures during the generation processing. Some
polarities are neutral, others are not, but a final
structure must be completely neutral. Two non-
neutral objects can unify (that is, identify) and
form a neutral object (that is, neutralizing each
other). Proper unification holds no equivalent.

Polarization takes its source in categorial
grammar and subsequent works on resource-
sensitive logic (see Lambek’s, Girard’s or van
Benthem’s works). Nasr (1995) is among the first
to introduce a rule-based formalism using an
explicit polarization of structures. Duchier &
Thater (1999) propose a formalism for tree de-
scription where they put forward the notion of
polarity (and they uses the terms of polarity and
neutralization). Perrier (2000) is probably the

137

first to develop a linguistic formalism entirely
based on these ideas, the Interaction Grammar.

PUG is both an elementary formalism (struc-
tures simply combine by identifying objects) and
a powerful formalism, equivalent to Turing ma-
chines and capable of handling strings, trees,
dags, n-graphs and products of such structures
(such as ordered trees).3 But, above all, PUG is a
well-adapted formalism for writing grammars
and it is capable of strongly simulating many
classic formalisms.

Part 2 presents the general framework of PUG
and its system of polarities. Part 3 proposes sev-
eral examples of PUG and the translation in PUG
of rewriting grammars, TAG, HPSG and LFG.
We hope that these translations shed light on
some common features of these formalisms.

2 Polarities and unification
2.1 Polarized Unification Grammars

Polarized Unification Grammars generate sets of
finite structures. A structure is based on objects.
For instance, for a (directed) graph, objects are
nodes and edges. These two types of objects are
linked, giving us the proper structure: if X is the
set of nodes and U, the set of edges, the graph is
defined by two maps π1 and π2 from U into X
which associate an edge with its source and its
target.

Our structures are polarized, that is, objects
are associated to polarities. The set P of polarities
is provided with an operation noted “.” and called
product. The product is commutative and gener-
ally associative; (P, .) is called the system of
polarities. A non-empty strict subset N of P con-
tains the neutral polarities. A polarized structure
is neutral if all its polarities are neutral.

Structures are defined on a collection of ob-
jects of various types (syntactic nodes, semantic
nodes, syntactic edges …) and a collection of
maps: structural maps linking objects to objects
(such as source and target for edges), label maps
linking objects to labels and polarity maps link-
ing objects to polarities.

Structures combine by unification. The unifi-
cation of two structures A and B gives a new
structure A⊕B obtained by “pasting” together
these structures and identifying a part of the ob-
jects of the first structure with objects of the sec-
ond structure. When two polarized structures A

3 A dag is a directed acyclic graph. An n-graph is a graph
whose nodes are edges of a (n-1)-graph and a 1-graph is a
standard graph.

and B are unified, the polarity of an object of
A⊕B obtained by identifying two objects of A
and B is the product of their polarities; if the two
objects bear the same map, these maps must be
identified and their values, unified. (For instance
identifying two edges forces us to identify their
sources and targets.)

A Polarized Unification Grammar (PUG) is
defined by a finite family T of types of objects, a
set of maps attached to the objects of each type, a
system (P,.) of polarities, a subset N of P of neu-
tral polarities, and a finite subset of elementary
polarized structures, whose objects are described
by T; one elementary structure is marked as the
initial one and must be used exactly once. The
structures generated by the grammar are the neu-
tral structures obtained by combining the initial
structure and a finite number of elementary struc-
tures. In the derivation process, elementary struc-
tures combine successively, each new elementary
structure combining with at least one object of
the previous result; this ensures that the derived
structure is continuous. Polarities are only neces-
sary to control the saturation and are not consid-
ered when the strong generative capacity of the
grammar is estimated. Polarities belong to the
declarative part of the grammar, but they rather
play a role in the processing of the grammar.

2.2 The system of polarities

In this paper we will use the system of polarities
P = {■,□,–,+,■} (which are called like this: ■ =
black = saturated, + = positive, – = negative, □ =
white = obligatory context and ■ = grey
= absolutely neutral), with N = {■,■}, and a
product defined by the following array (where ⊥
represents the impossibility to combine). Note
that ■ is the neutral element of the product. The
symbol – can be interpreted as a need and + as
the corresponding resource.

 . ■ □ – + ■
■ ■ □ – + ■
□ □ □ – + ■
– – – ⊥ ■ ⊥
+ + + ■ ⊥ ⊥
■ ■ ■ ⊥ ⊥ ⊥

The system {□,■} is used by Nasr (1995),
while the system {■,■,–,+}, noted {=,↔,←,→},
is considered by Bonfante et al. (2004), who
show advantages of negative and positive polari-
ties for prefiltration in parsing (a set of structures
bearing negative and positive polarities can only

138

be reduced into a neutral structure if the sum of
negative polarities of each object type is equal
the sum of positive polarities).

The system (P, .) we have presented is
commutative and associative. Commutativity
implies that the combination of two structures is
not procedurally oriented (and we can begin a
derivation by any elementary structure, provided
we use only once the initial structure).
Associativity implies that the combination of
structures is unordered: if an object B must
combine with A and C, there is no precedence
order between the combination of A and B and
the one of B and C, that is, A⊕(B⊕C) =
(A⊕B)⊕C. If we leave polarities aside, our formalism is
trivially monotonic: the combination of two
structures A and B by a PUG gives us a structure
A⊕B that contains A and B as substructures. We
can add a (partial) order on P in order to make
the formalism monotonic.4 Let ≤ be this order. In
order to give us a monotonic formalism, ≤ must
verify the following monotonicity property:
∀x,y∈P x.y ≥ x. This provides us with the follow-
ing order: ■ < □ < +/– < ■. A PUG built with an
ordered system of polarities (P, . ,≤) verifying the
monotonicity property is monotonic. Monotonic-
ity implies good computational properties; for
instance it allows translating the parsing with
PUG into a problem of constraint resolution
(Duchier & Thater, 1999).

3 Examples of PUGs
3.1 Tree grammars

The first tree grammars belonging to the para-
digm of PUGs was proposed by Nasr 1995. The
following grammar G1 allows generating all fi-
nite trees (a tree is a connected directed graph
such that every node except one is the target of at
most one edge); objects are nodes and edges; the
initial structure (the box on the left) is reduced to
a black node; the grammar has only one other
elementary structure, which is composed of a
black edge linking a white node to a black node.
Each white node must unify with a black node in
order to be neutralized and each black node can
unify with whatever number of white nodes. It
can easily be verified that the structures gener-
ated by the grammar are trees, because every
node has one and only one governor, except the
node introduced by the initial structure, which is
the root of the tree.

4 I was suggested this idea by Guy Perrier.

G1 G2

The grammar G1 does not control the number
of dependents of nodes. A grammar like G2 al-
lows controlling the valence of each node, but it
does not ensure that generated structures are
trees, because two white nodes can unify and a
node can have more than one governor.5 The
grammar G3 solves the problem. In fact, G3 can
be viewed as the superimposition of G1 and G2.
Indeed, if P0 = {□,■}, P1 = P0×P0 =
{(□,□),(□,■),(■,□),(■,■)} is equivalent to {□,+,–
,■}. The first polarity controls the tree structure
as G1 does, while the second polarity controls the
valence as G2 does.

 G3

With the same principles, one can build a de-
pendency grammar generating the syntactic de-
pendency trees of a fragment of natural language.
Grammar G4, directly inspired from Nasr 1995,
proposes a fragment of grammar for English
generating the syntactic tree of Peter eats red
beans. Nodes of this grammar are labeled by two
label maps, /cat/ and /lex/. Note that the root of

G4 (Dependency grammar for English)

5 Nasr 1995 proposes such a grammar in order to generate
trees. He uses an external requirement, which forces, when
two structures are combined, the root of one to combine
with a node of the other one.

subj dobj

cat: V
lex: eat

cat: V

cat: N

cat: Adj
lex: red cat: N cat: N

cat: N
lex: Peter

mod

cat: N
lex: beans

139

a b c

the elementary structure of an adjective is a white
node, allowing an unlimited number of such
structures to adjoin to a noun.

3.2 Rewriting systems and ordered trees

PUG can simulate any rewriting system and have
the weak generative capacity of Turing machines.
We follow ideas developed by Burroni 1993 or
Dymetman 1999, themselves following van
Kampen 1933’s ideas.

A sequence abc is represented by a string of
labeled edges a, b and c:

Intuitively, edges are intervals and nodes model
their extremities. This is the simplest way to
model linear order and precedence rules: X pre-
cedes Y iff the end of X is the beginning of Y.

The initial category S of the grammar gives us
the initial structure:

A terminal symbol a corresponds to a positive
edge:

A rewriting rule ABC → DE gives us the ele-
mentary structure:

This elementary structure is a “cell” whose

upper frontier is a string of positive edges corre-
sponding to the left part of the rule, while the
lower frontier is a string of negative edges corre-
sponding to the right part of the rule. Each posi-
tive edge must unify with a negative edge and
vice versa, in order to give a black edge. Nodes
are grey (= absolutely neutral) and their unifica-
tion is entirely driven by the unification of edges.

Cells will unify with each other to give a final
structure representing the derivation structure of
a sequence, which is the lower edge of this struc-
ture. The next figure shows the derivation struc-
ture of the sequence Peter eats red beans with a
standard phrase structure grammar, which can be
reconstructed by the reader. In such a representa-
tion, edges represent phrases and correspond to
intervals in the cutting of the sequence, while
nodes are bounds of these intervals.

For a context-free rewriting system, the gram-
mar generates the derivation tree, which can be
represented in a more traditional way by adding
the branches of the tree (giving us a 2-graph).

Let us recall that a derivation tree for a context-
free grammar is an ordered tree. An ordered tree
combines two structures on the same set of
nodes: a structure of tree and a precedence rela-
tion on the node of the tree. Here the precedence
relation is explicitly represented (a “node” of the
tree precedes another “node” if the target of the
first one is the source of the second one). It is not
possible, with a PUG, to generate the derivation
tree, including the precedence relation, in a sim-
pler way.6 Note that the usual representation of
ordered trees (where the precedence relation is
not explicit, but only deductible from the planar-
ity of the representation) is very misleading from
the computational viewpoint. When they calcu-
late the precedence relation, parsers (of the CKY
type for instance) in fact calculate a data structure
like the one we present here, where beginnings
and ends of phrase are explicitly considered as
objects.

3.3 TAG (Tree Adjoining Grammar)

PUG has a clear kinship with TAG, which is the
first formalism based on combination of struc-
tures to be studied at length. TAGs are generally
presented as grammars combining (ordered)
trees. In fact, as a tree grammar, TAG is not

6 The most natural idea would be to encode a rewriting rule
with a tree of depth 1 and the precedence relation with edges
from a node to its successor. The difficulty is then to propa-
gate the order relation to the descendants of two sister nodes
when we apply a rewriting rule by substituting a tree of
depth 1. The simplest solution is undeniably the one pre-
sented here, consisting to introduce objects representing the
beginning and the end of phrases (our grey nodes) and to
indicate the relation between a phrase, its beginning and its
end by representing the phrase with an edge from the begin-
ning to the end.

S

A B C

D E

beans
Peter

S

NP
VP

N

eats red

Adj

NP

V

S

NP VP

a

140

monotonic and cannot be simulated with PUG.
As shown by Vijay-Shanker 1992, to obtain a
monotonic formalism, TAG must be viewed as a
grammar combining quasi-trees. Intuitively, a
quasi-tree is a tree whose nodes has been split in
two parts and have each one an upper part and a
lower part, between which another quasi-tree can
be inserted (this is the famous adjoining opera-
tion of TAG). Formally, a quasi-tree is a tree
whose branches have two types: dependency
relations and dominance relations (respectively
noted by plain lines and dotted lines). Two nodes
linked by a negative dominance relation are po-
tentially the two parts of a same node; only the
lower part can have dependents.

The next figures give an α-tree (= to be sub-
stituted) and a β-tree (= to be adjoined) with the
corresponding PUG structures.7 A substitution
node (like D↓) gives a negative node, which will
unify with the root of an α tree. A β-tree gives a
white root node and a black foot node, which will
unify with the upper and the lower part of a split
node. This is why the root and the foot node are
linked by a positive dominance link, which will
unify with a negative dominance link connecting
the two parts of a split node.

An α tree and its PUG translation

7 For sake of simplicity, we leave aside the precedence
relation on sister nodes. It might be encoded in the same
way as context-free rewriting systems, by modeling semi-
nodes of TAG trees by edges. It does not pose any problem
but would make the figures difficult to read.

A β tree and its PUG translation

At the end of the derivation, the structure

must be a tree and all nodes must be recon-
structed: this is why we introduce the next rule,
which presents a positive dominance link linking
a node to itself and which will force two semi-
nodes to unify by neutralizing the dominance link
between them.

This last rule again shows the advantage of

PUG: the reunification of nodes, which is proce-
durally ensured in Vijay-Shanker 1992 is given
here as a declarative rule.

3.4 HPSG (Head-driven Phrase Structure
Grammar)

There are two ways to translate feature structures
(FSs) into PUG. Clearly atomic values must be
labels and (embedded) feature structures must be
nodes, but features can be translated by maps or
by edges, that is, objects. Encoding features by
maps ensures to identify them in PUG. Encoding
them by edges allows us to polarize them and
control the number of identifications.8

For the sake of clarification of HSPG struc-
tures, we choose to translate structural features
such as HDTR and NHDTR, which give the
phrase structure and which never unify with other
“features”, by edges and other features by maps
(which will be represented by hashed arrows). In
any case, the result looks like a dag whose
“edges” (true edges and maps) represent features
and whose nodes represent values (e.g. Kesper &
Mönnich 2003). We exemplify the translation of
HPSG in PUG with the schema of combination

8 Perrier 2000 uses a feature-structure based formalism
where only features are polarized. Although more or less
equivalent we prefer to polarize the FS themselves, i.e. the
nodes.

A

A

A* C

D↓

A

C

C A

D

A

eat

V

Q

H

cat

Q elist

SC

HD
cat

N
H cat

N

A

B C

A

B

A

B C

D↓ C

D

141

SC

HD

H

Q
HD

SC
HD

elist

NHDTR

HDTR
SC

of head phrase with a subcategorized sister
phrase, namely the head-daughter-phrase:9

HEAD: 1
SUBCAT: 3
HDTR: HEAD: 1
 SUBCAT: 〈 2 〉 ⊕ 3
NHDTR: HEAD: 2
 SUBCAT : elist

This FS gives the following structure, where a
list is represented recursively in two pieces: its
head (value of H) and its queue (value of Q).

A negative node of this FS can be neutralized

by the combination with a similar FS represent-
ing a phrase or with a lexical entry. The next
figure proposes a lexical entry for eat, indicating
that eat is a V whose SUBCAT list contains two
phrases headed by an N (for sake of simplicity
we deal with the subject as a subcategorized
phrase).

The combination of two head-daughter-
phrases with the lexical entry of eat gives us the
previous lexicalized rule, equivalent to the rule
for eat of the dependency grammar G4 (/subj/ is
the NHDTR of the maximal projection and /obj/

9 Numbers in boxes are values shared by several features.
The value of SUBCAT (= SC) is a list (the list of subcatego-
rized phrases). The non-head daughter phrase (NHDTR) has
a saturated valence and so needs an empty SUBCAT list
(elist). The subcat list of the head daughter phrase (HDTR)
is the concatenation, noted ⊕, of two lists: a list with one
element that is the description of the non-head daughter
phrase and the SUBCAT list of the whole phrase. The rest
of the description of this phrase (value of HEAD) is equal to
the one of the head daughter phrase.

the NHDTR of the intermediate projection of
eat).

Polarization of objects shows exactly what is
constructed by each rule and what are the re-
quests filled by other rules. Moreover it allows us
to force SUBCAT lists to be instantiated (and
therefore allows us to control the saturation of the
valence), which is ensured in the usual formalism
of HPSG by a bottom-up procedural presentation.

3.5 LFG (Lexical Functional Grammar)
and synchronous grammars

We propose a translation of LFG into PUG that
makes LFG appear as a synchronous grammar
approach (see Shieber & Schabes 1990). LFG
synchronizes two structures (a phrase structure or
c-structure and a dependency/functional structure
or f-structure) and it can be viewed as the syn-
chronization of a phrase structure grammar and a
dependency grammar.

Let us consider a first LFG rule and its trans-
lation in PUG:

[1] S → NP VP
 ↓ = ↑ SUBJ ↓ = ↑

Equations under phrases (in the right side of [1])
ensure the synchronization between the objects of
the c-structure and the f-structure: each phrase is
synchronized with a “functional” node. Symbols
↓ and ↑ respectively designate the functional
node synchronized with the current phrase and
the one synchronized with the mother phrase
(here S). Thus the equation ↓=↑ means that the
current phrase (VP) and its mother (S) are syn-
chronized with the same functional node. The

eat

V

Q

H

cat

lex

HD

HD

SC

HD

SC
SC

HDTR

HD

HD

NHDT
R

HDTR

NHDTR
Q

elist

cat
N

H cat
N

SC elist SC elist

eat

V

Q

H

cat

Q

elist

SC

HD
 cat

 N
 H

cat

 N

SUBJ

S
S

NP VP

142

expression ↑ SUBJ designates the functional node
depending on ↑ by the relation SUBJ.

In PUG we model the synchronization of the
phrases and the functional nodes by synchroniza-
tion links (represented by dotted lines with dia-
mond-shaped polarities) (see Bresnan 2000 for
non-formalized similar representations). The two
synchronizations ensured by the two constraints
↓=↑ SUBJ and ↓=↑ of [1], and therefore built by
this rule, are polarized in black.

A phrasal rule such as [1] introduces an f-
structure with a totally white polarization. It will
be neutralized by lexical rules such as [2]:

[2] V → wants
 ↑ PRED = ‘want 〈SUBJ,VCOMP〉’
 ↑ SUBJ = ↑ VCOMP SUBJ

The feature Pred is interpreted as the labeling of
the functional node, while the valence
〈SUBJ,VCOMP〉 gives us two black edges and two
white nodes. The functional equation ↑SUBJ =
↑ VCOMP SUBJ introduces a white edge SUBJ
between the nodes ↑ SUBJ and ↑VCOMP (and is
therefore to be interpreted very differently from
the constraints of [1], which introduce black syn-
chronization links.)

PUG allows to easily split up a rule into more
elementary rules. For instance, the rule [1] can be
split up into three rules: a phrase structure rules
linearizing the daughter phrases and two rules of
synchronization indicating the functional link
between a phrase and one of its daughter phrases.

Our decomposition shows that LFG articulated
two different grammars: a classical phrase struc-
ture generating the c-structure and an interface
grammar between c- and f-structures (and even a
third grammar because the f-structure is really

generated only by the lexical rules). With PUG it
is easy to join two (or more) grammars: it suf-
fices to add on the objects by both grammars a
white polarity that will be saturated in the other
grammar (and vice versa) (Kahane & Lareau
2005).

Let us consider another problem, illustrated
here by the rule for the topicalization of an ob-
ject. The unbounded dependency of the object
with its functional governor is an undetermined
path expressed by a regular expression (here
VCOMP* OBJ; functional uncertainty, Kaplan &
Zaenen 1989).

[3] S' → NP S
 ↓ = ↑ VCOMP* OBJ ↓ = ↑

 ↓ = ↑ TOP

The path VCOMP* (represented by a dashed ar-
row) is expanded by the following regular gram-
mar, with two rules, one for the propagation and
one for the ending.

Again the translation into PUG brings to the

fore some fundamental components of the for-
malism (like synchronization links) and some
non-explicit mechanisms such as the fact that the
lexical equation ↑ PRED = ‘want 〈SUBJ,VCOMP〉’
introduces both resources (a node ‘want’) and
needs (its valence).

4 Conclusion
The PUG formalism is extremely simple: it only
imposes that combining two structures involves
at least the unification of two objects. Forcing or
forbidding more objects to combine is then en-
tirely controlled by polarization of objects. Po-
larization will thus guide the process of
combination of elementary structures. In spite of
its simplicity, the PUG formalism is powerful
enough to elegantly simulate most of the rule-
based formalisms used in formal linguistics and
NLP. This sheds new light on these formalisms
and allows us to bring to the fore the exact nature

SUBJ

S

NP VP

S

NP

⊕

S

VP

⊕

VCOMP*

VCOMP VCOMP*

V

wants

SUBJ
 VCOMP

SUBJ

‘want’

S'

S

VCOMP*
TOP

 NP
OBJ

VCOMP*

143

of the structures they handle and to extract some
procedural mechanisms hidden by the formalism.
But above all, the PUG formalism allows us to
write separately several modules of the grammar
handling various structures and to put them to-
gether in a same formalism by synchronization of
the grammars, as we show with our translation of
LFG. Thus PUGs extend unification grammars
based on feature structures by allowing a greatest
diversity of geometric structures and a best con-
trol of resources. Further investigations must
concern the computational properties of PUGs,
notably restrictions allowing polynomial time
parsing.

Acknowledgements
I thank Benoît Crabbé, Denys Duchier, Kim Gerdes,
François Lareau, François Métayer, Piet Mertens, Guy
Perrier, Alain Polguère and Benoît Sagot for their
numerous remarks and enlightening commentaries.

References
Ajdukiewicz K. 1935. Die syntaktische Konnexität.

Studia Philosophica, 1:1-27.

Bonfante G., Guillaume B., Perrier G. 2004. Polariza-
tion and abstraction of grammatical formalisms as
methods for lexical disambiguation. Proceedings
of CoLing, Genève, Switzerland, 303-309.

Bresnan J. 2001. Lexical-Functional Syntax. Black-
well.

Burroni A. 1993. Higher-dimensional word problems
with applications to equational logic. Theoretical
Computer Sciences, 115:43-62.

Duchier D., Thater S. 1999. Parsing with tree descrip-
tions: a constraint-based approach. NLULP 1999
(Natural Language Understanding and Logic Pro-
gramming), Las Cruces, NM.

Dymetman M. 1999. Some Remarks on the Geometry
of Grammar. Proceedings of MOL'6 (6th Meeting
on the Mathematics of Language), Orlando, FA.

Girard J.-Y. 1987. Linear logic. Theoretical Computer
Sciences, 50(1):1-102.

Kahane S., Lareau F. 2005. Meaning-Text Unification
Grammar: modularity and polarization, Second In-
ternational Conference on Meaning-Text Theory,
Moscow, 197-206.

Kaplan R.M., Zaenen A. 1989. Long-distance depend-
encies, constituent structure, and functional uncer-
tainty. In Alternative Conceptions of Phrase
Structure, M. Baltin & A. Kroch (eds), 17-42, Chi-
cago Univ. Press.

Kepser S., Mönnich U. 2003. Graph properties of
HPSG feature structures. Proceedings of Formal
Grammar, Vienna, Austria, 115-124.

Nasr A. 1995. A formalism and a parser for lexical-
ised dependency grammars. Proceedings of the 4th
Int. Workshop on Parsing Tecnologies, State Univ.
of NY Press.

Perrier G. 2000. Interaction Grammars. Proceedings
of CoLing, Sarrebrücken, 7 p.

Shieber S. M. & Schabes Y. 1990. Synchronous tree-
adjoining grammars, Proceedings of CoLing,
vol. 3, 253-258, Helsinki, Finland.

Tesnière L. 1934. Comment construire une syntaxe.
Bulletin de la Faculté des Lettres de Strasbourg, 7:
219-229.

van Kampen E. 1933. On some lemmas in the theory
of groups. American Journal of Mathematics,
55:268–73.

Vijay-Shanker K. 1992. Using description of trees in a
Tree Adjoining Grammar. Computational Linguis-
tics, 18(4):481-517.

144

