
Proceedings of the 21st International Conference on Computational Linguistics and 44th Annual Meeting of the ACL, pages 121–128,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Modeling Commonality among Related Classes in Relation Extraction

Zhou GuoDong Su Jian Zhang Min
Institute for Infocomm Research

21 Heng Mui Keng Terrace, Singapore 119613
Email: {zhougd, sujian, mzhang}@i2r.a-star.edu.sg

Abstract
This paper proposes a novel hierarchical learn-
ing strategy to deal with the data sparseness
problem in relation extraction by modeling the
commonality among related classes. For each
class in the hierarchy either manually prede-
fined or automatically clustered, a linear dis-
criminative function is determined in a top-
down way using a perceptron algorithm with
the lower-level weight vector derived from the
upper-level weight vector. As the upper-level
class normally has much more positive train-
ing examples than the lower-level class, the
corresponding linear discriminative function
can be determined more reliably. The upper-
level discriminative function then can effec-
tively guide the discriminative function learn-
ing in the lower-level, which otherwise might
suffer from limited training data. Evaluation
on the ACE RDC 2003 corpus shows that the
hierarchical strategy much improves the per-
formance by 5.6 and 5.1 in F-measure on
least- and medium- frequent relations respec-
tively. It also shows that our system outper-
forms the previous best-reported system by 2.7
in F-measure on the 24 subtypes using the
same feature set.

1 Introduction
With the dramatic increase in the amount of tex-
tual information available in digital archives and
the WWW, there has been growing interest in
techniques for automatically extracting informa-
tion from text. Information Extraction (IE) is
such a technology that IE systems are expected
to identify relevant information (usually of pre-
defined types) from text documents in a certain
domain and put them in a structured format.

According to the scope of the ACE program
(ACE 2000-2005), current research in IE has
three main objectives: Entity Detection and
Tracking (EDT), Relation Detection and
Characterization (RDC), and Event Detection
and Characterization (EDC). This paper will
focus on the ACE RDC task, which detects and
classifies various semantic relations between two

entities. For example, we want to determine
whether a person is at a location, based on the
evidence in the context. Extraction of semantic
relationships between entities can be very useful
for applications such as question answering, e.g.
to answer the query “Who is the president of the
United States?”.

One major challenge in relation extraction is
due to the data sparseness problem (Zhou et al
2005). As the largest annotated corpus in relation
extraction, the ACE RDC 2003 corpus shows
that different subtypes/types of relations are
much unevenly distributed and a few relation
subtypes, such as the subtype “Founder” under
the type “ROLE”, suffers from a small amount of
annotated data. Further experimentation in this
paper (please see Figure 2) shows that most rela-
tion subtypes suffer from the lack of the training
data and fail to achieve steady performance given
the current corpus size. Given the relative large
size of this corpus, it will be time-consuming and
very expensive to further expand the corpus with
a reasonable gain in performance. Even if we can
somehow expend the corpus and achieve steady
performance on major relation subtypes, it will
be still far beyond practice for those minor sub-
types given the much unevenly distribution
among different relation subtypes. While various
machine learning approaches, such as generative
modeling (Miller et al 2000), maximum entropy
(Kambhatla 2004) and support vector machines
(Zhao and Grisman 2005; Zhou et al 2005), have
been applied in the relation extraction task, no
explicit learning strategy is proposed to deal with
the inherent data sparseness problem caused by
the much uneven distribution among different
relations.

This paper proposes a novel hierarchical
learning strategy to deal with the data sparseness
problem by modeling the commonality among
related classes. Through organizing various
classes hierarchically, a linear discriminative
function is determined for each class in a top-
down way using a perceptron algorithm with the
lower-level weight vector derived from the up-
per-level weight vector. Evaluation on the ACE
RDC 2003 corpus shows that the hierarchical

121

strategy achieves much better performance than
the flat strategy on least- and medium-frequent
relations. It also shows that our system based on
the hierarchical strategy outperforms the previ-
ous best-reported system.

The rest of this paper is organized as follows.
Section 2 presents related work. Section 3
describes the hierarchical learning strategy using
the perceptron algorithm. Finally, we present
experimentation in Section 4 and conclude this
paper in Section 5.

2 Related Work
The relation extraction task was formulated at
MUC-7(1998). With the increasing popularity of
ACE, this task is starting to attract more and
more researchers within the natural language
processing and machine learning communities.
Typical works include Miller et al (2000), Ze-
lenko et al (2003), Culotta and Sorensen (2004),
Bunescu and Mooney (2005a), Bunescu and
Mooney (2005b), Zhang et al (2005), Roth and
Yih (2002), Kambhatla (2004), Zhao and Grisman
(2005) and Zhou et al (2005).

Miller et al (2000) augmented syntactic full
parse trees with semantic information of entities
and relations, and built generative models to in-
tegrate various tasks such as POS tagging, named
entity recognition, template element extraction
and relation extraction. The problem is that such
integration may impose big challenges, e.g. the
need of a large annotated corpus. To overcome
the data sparseness problem, generative models
typically applied some smoothing techniques to
integrate different scales of contexts in parameter
estimation, e.g. the back-off approach in Miller
et al (2000).

Zelenko et al (2003) proposed extracting re-
lations by computing kernel functions between
parse trees. Culotta and Sorensen (2004) extended
this work to estimate kernel functions between
augmented dependency trees and achieved F-
measure of 45.8 on the 5 relation types in the
ACE RDC 2003 corpus1. Bunescu and Mooney
(2005a) proposed a shortest path dependency
kernel. They argued that the information to
model a relationship between two entities can be
typically captured by the shortest path between
them in the dependency graph. It achieved the F-
measure of 52.5 on the 5 relation types in the
ACE RDC 2003 corpus. Bunescu and Mooney
(2005b) proposed a subsequence kernel and ap-

1 The ACE RDC 2003 corpus defines 5/24 relation

types/subtypes between 4 entity types.

plied it in protein interaction and ACE relation
extraction tasks. Zhang et al (2005) adopted clus-
tering algorithms in unsupervised relation extrac-
tion using tree kernels. To overcome the data
sparseness problem, various scales of sub-trees
are applied in the tree kernel computation. Al-
though tree kernel-based approaches are able to
explore the huge implicit feature space without
much feature engineering, further research work
is necessary to make them effective and efficient.

Comparably, feature-based approaches
achieved much success recently. Roth and Yih
(2002) used the SNoW classifier to incorporate
various features such as word, part-of-speech and
semantic information from WordNet, and pro-
posed a probabilistic reasoning approach to inte-
grate named entity recognition and relation
extraction. Kambhatla (2004) employed maxi-
mum entropy models with features derived from
word, entity type, mention level, overlap, de-
pendency tree, parse tree and achieved F-
measure of 52.8 on the 24 relation subtypes in
the ACE RDC 2003 corpus. Zhao and Grisman
(2005) 2 combined various kinds of knowledge
from tokenization, sentence parsing and deep
dependency analysis through support vector ma-
chines and achieved F-measure of 70.1 on the 7
relation types of the ACE RDC 2004 corpus3.
Zhou et al (2005) further systematically explored
diverse lexical, syntactic and semantic features
through support vector machines and achieved F-
measure of 68.1 and 55.5 on the 5 relation types
and the 24 relation subtypes in the ACE RDC
2003 corpus respectively. To overcome the data
sparseness problem, feature-based approaches
normally incorporate various scales of contexts
into the feature vector extensively. These ap-
proaches then depend on adopted learning algo-
rithms to weight and combine each feature
effectively. For example, an exponential model
and a linear model are applied in the maximum
entropy models and support vector machines re-
spectively to combine each feature via the
learned weight vector.

In summary, although various approaches
have been employed in relation extraction, they
implicitly attack the data sparseness problem by
using features of different contexts in feature-
based approaches or including different sub-

2 Here, we classify this paper into feature-based ap-

proaches since the feature space in the kernels of
Zhao and Grisman (2005) can be easily represented
by an explicit feature vector.

3 The ACE RDC 2004 corpus defines 7/27 relation
types/subtypes between 7 entity types.

122

structures in kernel-based approaches. Until now,
there are no explicit ways to capture the hierar-
chical topology in relation extraction. Currently,
all the current approaches apply the flat learning
strategy which equally treats training examples
in different relations independently and ignore
the commonality among different relations. This
paper proposes a novel hierarchical learning
strategy to resolve this problem by considering
the relatedness among different relations and
capturing the commonality among related rela-
tions. By doing so, the data sparseness problem
can be well dealt with and much better perform-
ance can be achieved, especially for those rela-
tions with small amounts of annotated examples.

3 Hierarchical Learning Strategy
Traditional classifier learning approaches apply
the flat learning strategy. That is, they equally
treat training examples in different classes
independently and ignore the commonality
among related classes. The flat strategy will not
cause any problem when there are a large amount
of training examples for each class, since, in this
case, a classifier learning approach can always
learn a nearly optimal discriminative function for
each class against the remaining classes. How-
ever, such flat strategy may cause big problems
when there is only a small amount of training
examples for some of the classes. In this case, a
classifier learning approach may fail to learn a
reliable (or nearly optimal) discriminative func-
tion for a class with a small amount of training
examples, and, as a result, may significantly af-
fect the performance of the class or even the
overall performance.

To overcome the inherent problems in the
flat strategy, this paper proposes a hierarchical
learning strategy which explores the inherent
commonality among related classes through a
class hierarchy. In this way, the training exam-
ples of related classes can help in learning a reli-
able discriminative function for a class with only
a small amount of training examples. To reduce
computation time and memory requirements, we
will only consider linear classifiers and apply the
simple and widely-used perceptron algorithm for
this purpose with more options open for future
research. In the following, we will first introduce
the perceptron algorithm in linear classifier
learning, followed by the hierarchical learning
strategy using the perceptron algorithm. Finally,
we will consider several ways in building the
class hierarchy.

3.1 Perceptron Algorithm

Input: the initial weight vector w , the training

example sequence
TtYXyx tt ...,2,1,),(=×∈ and the number of

the maximal iterations N (e.g. 10 in this
paper) of the training sequence4

Output: the weight vector w for the linear
discriminative function xwf ⋅=

BEGIN
 ww =1
 REPEAT for t=1,2,…,T*N

1. Receive the instance n
t Rx ∈

2. Compute the output ttt xwo ⋅=

3. Give the prediction)(tt osigny =
∧

4. Receive the desired label }1,1{ +−∈ty
5. Update the hypothesis according to

 ttttt xyww δ+=+1 (1)
 where 0=tδ if the margin of tw at the

given example),(tt yx 0>⋅ ttt xwy
and 1=tδ otherwise

 END REPEAT

 Return 5/
4

1*∑
−=

+=
N

Ni
iTww

END BEGIN

Figure 1: the perceptron algorithm
This section first deals with binary classification
using linear classifiers. Assume an instance space

nRX = and a binary label space }1,1{ +−=Y .
With any weight vector nRw∈ and a given
instance nRx∈ , we associate a linear classifier

wh with a linear discriminative function 5
xwxf ⋅=)(by)()(xwsignxhw ⋅= , where

1)(−=⋅ xwsign if 0<⋅ xw and 1)(+=⋅ xwsign
otherwise. Here, the margin of w at),(tt yx is
defined as tt xwy ⋅ . Then if the margin is positive,
we have a correct prediction with tw yxh =)(, and
if the margin is negative, we have an error with

tw yxh ≠)(. Therefore, given a sequence of
training examples TtYXyx tt ...,2,1,),(=×∈ ,
linear classifier learning attemps to find a weight
vector w that achieves a positive margin on as
many examples as possible.

4 The training example sequence is feed N times for

better performance. Moreover, this number can con-
trol the maximal affect a training example can pose.
This is similar to the regulation parameter C in
SVM, which affects the trade-off between complex-
ity and proportion of non-separable examples. As a
result, it can be used to control over-fitting and
robustness.

5)(xw ⋅ denotes the dot product of the weight vector
nRw∈ and a given instance nRx∈ .

123

The well-known perceptron algorithm, as
shown in Figure 1, belongs to online learning of
linear classifiers, where the learning algorithm
represents its t -th hyposthesis by a weight vector

n
t Rw ∈ . At trial t , an online algorithm receives

an instance n
t Rx ∈ , makes its prediction

)(ttt
xwsigny ⋅=

∧

 and receives the desired label

}1,1{ +−∈ty . What distinguishes different online
algorithms is how they update tw into 1+tw based
on the example),(tt yx received at trial t . In
particular, the perceptron algorithm updates the
hypothesis by adding a scalar multiple of the
instance, as shown in Equation 1 of Figure 1,
when there is an error. Normally, the tradictional
perceptron algorithm initializes the hypothesis as
the zero vector 01 =w . This is usually the most
natural choice, lacking any other preference.
Smoothing
In order to further improve the performance, we
iteratively feed the training examples for a possi-
ble better discriminative function. In this paper,
we have set the maximal iteration number to 10
for both efficiency and stable performance and
the final weight vector in the discriminative func-
tion is averaged over those of the discriminative
functions in the last few iterations (e.g. 5 in this
paper).

Bagging
One more problem with any online classifier
learning algorithm, including the perceptron al-
gorithm, is that the learned discriminative func-
tion somewhat depends on the feeding order of
the training examples. In order to eliminate such
dependence and further improve the perform-
ance, an ensemble technique, called bagging
(Breiman 1996), is applied in this paper. In bag-
ging, the bootstrap technique is first used to build
M (e.g. 10 in this paper) replicate sample sets by
randomly re-sampling with replacement from the
given training set repeatedly. Then, each training
sample set is used to train a certain discrimina-
tive function. Finally, the final weight vector in
the discriminative function is averaged over
those of the M discriminative functions in the
ensemble.

Multi-Class Classification
Basically, the perceptron algorithm is only for
binary classification. Therefore, we must extend
the perceptron algorithms to multi-class
classification, such as the ACE RDC task. For
efficiency, we apply the one vs. others strategy,

which builds K classifiers so as to separate one
class from all others. However, the outputs for
the perceptron algorithms of different classes
may be not directly comparable since any
positive scalar multiple of the weight vector will
not affect the actual prediction of a perceptron
algorithm. For comparability, we map the
perceptron algorithm output into the probability
by using an additional sigmoid model:

)exp(1
1)|1(

BAf
fyp

++
== (2)

where xwf ⋅= is the output of a perceptron
algorithm and the coefficients A & B are to be
trained using the model trust alorithm as
described in Platt (1999). The final decision of an
instance in multi-class classification is
determined by the class which has the maximal
probability from the corresponding perceptron
algorithm.

3.2 Hierarchical Learning Strategy using the
Perceptron Algorithm
Assume we have a class hierarchy for a task, e.g.
the one in the ACE RDC 2003 corpus as shown
in Table 1 of Section 4.1. The hierarchical learn-
ing strategy explores the inherent commonality
among related classes in a top-down way. For
each class in the hierarchy, a linear discrimina-
tive function is determined in a top-down way
with the lower-level weight vector derived from
the upper-level weight vector iteratively. This is
done by initializing the weight vector in training
the linear discriminative function for the lower-
level class as that of the upper-level class. That
is, the lower-level discriminative function has the
preference toward the discriminative function of
its upper-level class. For an example, let’s look
at the training of the “Located” relation subtype
in the class hierarchy as shown in Table 1:
1) Train the weight vector of the linear

discriminative function for the “YES”
relation vs. the “NON” relation with the
weight vector initialized as the zero vector.

2) Train the weight vector of the linear
discriminative function for the “AT” relation
type vs. all the remaining relation types
(including the “NON” relation) with the
weight vector initialized as the weight vector
of the linear discriminative function for the
“YES” relation vs. the “NON” relation.

3) Train the weight vector of the linear
discriminative function for the “Located”
relation subtype vs. all the remaining relation
subtypes under all the relation types
(including the “NON” relation) with the

124

weight vector initialized as the weight vector
of the linear discriminative function for the
“AT” relation type vs. all the remaining
relation types.

4) Return the above trained weight vector as the
discriminatie function for the “Located”
relation subtype.
In this way, the training examples in differ-

ent classes are not treated independently any
more, and the commonality among related
classes can be captured via the hierarchical learn-
ing strategy. The intuition behind this strategy is
that the upper-level class normally has more
positive training examples than the lower-level
class so that the corresponding linear discrimina-
tive function can be determined more reliably. In
this way, the training examples of related classes
can help in learning a reliable discriminative
function for a class with only a small amount of
training examples in a top-down way and thus
alleviate its data sparseness problem.

3.3 Building the Class Hierarchy
We have just described the hierarchical learning
strategy using a given class hierarchy. Normally,
a rough class hierarchy can be given manually
according to human intuition, such as the one in
the ACE RDC 2003 corpus. In order to explore
more commonality among sibling classes, we
make use of binary hierarchical clustering for
sibling classes at both lowest and all levels. This
can be done by first using the flat learning strat-
egy to learn the discriminative functions for indi-
vidual classes and then iteratively combining the
two most related classes using the cosine similar-
ity function between their weight vectors in a
bottom-up way. The intuition is that related
classes should have similar hyper-planes to sepa-
rate from other classes and thus have similar
weight vectors.
• Lowest-level hybrid: Binary hierarchical

clustering is only done at the lowest level
while keeping the upper-level class hierar-
chy. That is, only sibling classes at the low-
est level are hierarchically clustered.

• All-level hybrid: Binary hierarchical cluster-
ing is done at all levels in a bottom-up way.
That is, sibling classes at the lowest level are
hierarchically clustered first and then sibling
classes at the upper-level. In this way, the bi-
nary class hierarchy can be built iteratively
in a bottom-up way.

4 Experimentation
This paper uses the ACE RDC 2003 corpus pro-
vided by LDC to train and evaluate the hierarchi-
cal learning strategy. Same as Zhou et al (2005),
we only model explicit relations and explicitly
model the argument order of the two mentions
involved.

4.1 Experimental Setting
Type Subtype Freq Bin Type
AT Based-In 347 Medium
 Located 2126 Large
 Residence 308 Medium
NEAR Relative-Location 201 Medium
PART Part-Of 947 Large
 Subsidiary 355 Medium
 Other 6 Small
ROLE Affiliate-Partner 204 Medium
 Citizen-Of 328 Medium
 Client 144 Small
 Founder 26 Small
 General-Staff 1331 Large
 Management 1242 Large
 Member 1091 Large
 Owner 232 Medium
 Other 158 Small
SOCIAL Associate 91 Small
 Grandparent 12 Small
 Other-Personal 85 Small
 Other-Professional 339 Medium
 Other-Relative 78 Small
 Parent 127 Small
 Sibling 18 Small
 Spouse 77 Small
Table 1: Statistics of relation types and subtypes
in the training data of the ACE RDC 2003 corpus
(Note: According to frequency, all the subtypes
are divided into three bins: large/ middle/ small,
with 400 as the lower threshold for the large bin
and 200 as the upper threshold for the small bin).

The training data consists of 674 documents
(~300k words) with 9683 relation examples
while the held-out testing data consists of 97
documents (~50k words) with 1386 relation ex-
amples. All the experiments are done five times
on the 24 relation subtypes in the ACE corpus,
except otherwise specified, with the final per-
formance averaged using the same re-sampling
with replacement strategy as the one in the bag-
ging technique. Table 1 lists various types and
subtypes of relations for the ACE RDC 2003
corpus, along with their occurrence frequency in
the training data. It shows that this corpus suffers
from a small amount of annotated data for a few
subtypes such as the subtype “Founder” under
the type “ROLE”.

For comparison, we also adopt the same fea-
ture set as Zhou et al (2005): word, entity type,

125

mention level, overlap, base phrase chunking,
dependency tree, parse tree and semantic infor-
mation.

4.2 Experimental Results
Table 2 shows the performance of the hierarchi-
cal learning strategy using the existing class hier-
archy in the given ACE corpus and its
comparison with the flat learning strategy, using
the perceptron algorithm. It shows that the pure
hierarchical strategy outperforms the pure flat
strategy by 1.5 (56.9 vs. 55.4) in F-measure. It
also shows that further smoothing and bagging
improve the performance of the hierarchical and
flat strategies by 0.6 and 0.9 in F-measure re-
spectively. As a result, the final hierarchical
strategy achieves F-measure of 57.8 and outper-
forms the final flat strategy by 1.8 in F-measure.
Strategies P R F
Flat 58.2 52.8 55.4
Flat+Smoothing 58.9 53.1 55.9
Flat+Bagging 59.0 53.1 55.9
Flat+Both 59.1 53.2 56.0
Hierarchical 61.9 52.6 56.9
Hierarchical+Smoothing 62.7 53.1 57.5
Hierarchical+Bagging 62.9 53.1 57.6
Hierarchical+Both 63.0 53.4 57.8
Table 2: Performance of the hierarchical learning
strategy using the existing class hierarchy and its

comparison with the flat learning strategy

Class Hierarchies P R F
Existing 63.0 53.4 57.8
Entirely Automatic 63.4 53.1 57.8
Lowest-level Hybrid 63.6 53.5 58.1
All-level Hybrid 63.6 53.6 58.2
Table 3: Performance of the hierarchical learning

strategy using different class hierarchies

Table 3 compares the performance of the hi-
erarchical learning strategy using different class
hierarchies. It shows that, the lowest-level hybrid
approach, which only automatically updates the
existing class hierarchy at the lowest level, im-
proves the performance by 0.3 in F-measure
while further updating the class hierarchy at up-
per levels in the all-level hybrid approach only
has very slight effect. This is largely due to the
fact that the major data sparseness problem oc-
curs at the lowest level, i.e. the relation subtype
level in the ACE corpus. As a result, the final
hierarchical learning strategy using the class hi-
erarchy built with the all-level hybrid approach
achieves F-measure of 58.2 in F-measure, which
outperforms the final flat strategy by 2.2 in F-
measure. In order to justify the usefulness of our

hierarchical learning strategy when a rough class
hierarchy is not available and difficult to deter-
mine manually, we also experiment using en-
tirely automatically built class hierarchy (using
the traditional binary hierarchical clustering algo-
rithm and the cosine similarity measurement)
without considering the existing class hierarchy.
Table 3 shows that using automatically built
class hierarchy performs comparably with using
only the existing one.

With the major goal of resolving the data
sparseness problem for the classes with a small
amount of training examples, Table 4 compares
the best-performed hierarchical and flat learning
strategies on the relation subtypes of different
training data sizes. Here, we divide various rela-
tion subtypes into three bins: large/middle/small,
according to their available training data sizes.
For the ACE RDC 2003 corpus, we use 400 as
the lower threshold for the large bin6 and 200 as
the upper threshold for the small bin7. As a re-
sult, the large/medium/small bin includes 5/8/11
relation subtypes, respectively. Please see Table
1 for details. Table 4 shows that the hierarchical
strategy outperforms the flat strategy by
1.0/5.1/5.6 in F-measure on the
large/middle/small bin respectively. This indi-
cates that the hierarchical strategy performs
much better than the flat strategy for those
classes with a small or medium amount of anno-
tated examples although the hierarchical strategy
only performs slightly better by 1.0 and 2.2 in F-
measure than the flat strategy on those classes
with a large size of annotated corpus and on all
classes as a whole respectively. This suggests
that the proposed hierarchical strategy can well
deal with the data sparseness problem in the
ACE RDC 2003 corpus.

An interesting question is about the similar-
ity between the linear discriminative functions
learned using the hierarchical and flat learning
strategies. Table 4 compares the cosine similari-
ties between the weight vectors of the linear dis-
criminative functions using the two strategies for
different bins, weighted by the training data sizes

6 The reason to choose this threshold is that no rela-

tion subtype in the ACE RC 2003 corpus has train-
ing examples in between 400 and 900.

7 A few minor relation subtypes only have very few
examples in the testing set. The reason to choose
this threshold is to guarantee a reasonable number of
testing examples in the small bin. For the ACE RC
2003 corpus, using 200 as the upper threshold will
fill the small bin with about 100 testing examples
while using 100 will include too few testing exam-
ples for reasonable performance evaluation.

126

of different relation subtypes. It shows that the
linear discriminative functions learned using the
two strategies are very similar (with the cosine
similarity 0.98) for the relation subtypes belong-
ing to the large bin while the linear discrimina-
tive functions learned using the two strategies are
not for the relation subtypes belonging to the
medium/small bin with the cosine similarity
0.92/0.81 respectively. This means that the use of
the hierarchical strategy over the flat strategy
only has very slight change on the linear dis-
criminative functions for those classes with a
large amount of annotated examples while its
effect on those with a small amount of annotated
examples is obvious. This contributes to and ex-
plains (the degree of) the performance difference
between the two strategies on the different train-
ing data sizes as shown in Table 4.

Due to the difficulty of building a large an-
notated corpus, another interesting question is
about the learning curve of the hierarchical learn-
ing strategy and its comparison with the flat
learning strategy. Figure 2 shows the effect of
different training data sizes for some major rela-
tion subtypes while keeping all the training ex-
amples of remaining relation subtypes. It shows

that the hierarchical strategy performs much bet-
ter than the flat strategy when only a small
amount of training examples is available. It also
shows that the hierarchical strategy can achieve
stable performance much faster than the flat
strategy. Finally, it shows that the ACE RDC
2003 task suffers from the lack of training exam-
ples. Among the three major relation subtypes,
only the subtype “Located” achieves steady per-
formance.

Finally, we also compare our system with the
previous best-reported systems, such as Kamb-
hatla (2004) and Zhou et al (2005). Table 5
shows that our system outperforms the previous
best-reported system by 2.7 (58.2 vs. 55.5) in F-
measure, largely due to the gain in recall. It indi-
cates that, although support vector machines and
maximum entropy models always perform better
than the simple perceptron algorithm in most (if
not all) applications, the hierarchical learning
strategy using the perceptron algorithm can eas-
ily overcome the difference and outperforms the
flat learning strategy using the overwhelming
support vector machines and maximum entropy
models in relation extraction, at least on the ACE
RDC 2003 corpus.

Large Bin (0.98) Middle Bin (0.92) Small Bin (0.81) Bin Type(cosine similarity)
P R F P R F P R F

Flat Strategy 62.3 61.9 62.1 60.8 38.7 47.3 33.0 21.7 26.2
Hierarchical Strategy 66.4 60.2 63.1 67.6 42.7 52.4 40.2 26.3 31.8
Table 4: Comparison of the hierarchical and flat learning strategies on the relation subtypes of differ-
ent training data sizes. Notes: the figures in the parentheses indicate the cosine similarities between

the weight vectors of the linear discriminative functions learned using the two strategies.

10

20

30

40

50

60

70

20
0

40
0

60
0

80
0

10
00

12
00

14
00

16
00

18
00

20
00

Training Data Size

F-
m

ea
su

re HS: General-Staff
FS: General-Staff
HS: Part-Of
FS: Part-Of
HS: Located
FS: Located

Figure 2: Learning curve of the hierarchical strategy and its comparison with the flat strategy for some
major relation subtypes (Note: FS for the flat strategy and HS for the hierarchical strategy)

Performance System
P R F

Our: Perceptron Algorithm + Hierarchical Strategy 63.6 53.6 58.2
Zhou et al (2005): SVM + Flat Strategy 63.1 49.5 55.5
Kambhatla (2004): Maximum Entropy + Flat Strategy 63.5 45.2 52.8

Table 5: Comparison of our system with other best-reported systems

127

5 Conclusion
This paper proposes a novel hierarchical learning
strategy to deal with the data sparseness problem
in relation extraction by modeling the common-
ality among related classes. For each class in a
class hierarchy, a linear discriminative function
is determined in a top-down way using the per-
ceptron algorithm with the lower-level weight
vector derived from the upper-level weight vec-
tor. In this way, the upper-level discriminative
function can effectively guide the lower-level
discriminative function learning. Evaluation on
the ACE RDC 2003 corpus shows that the hier-
archical strategy performs much better than the
flat strategy in resolving the critical data sparse-
ness problem in relation extraction.

In the future work, we will explore the hier-
archical learning strategy using other machine
learning approaches besides online classifier
learning approaches such as the simple percep-
tron algorithm applied in this paper. Moreover,
just as indicated in Figure 2, most relation sub-
types in the ACE RDC 2003 corpus (arguably
the largest annotated corpus in relation extrac-
tion) suffer from the lack of training examples.
Therefore, a critical research in relation extrac-
tion is how to rely on semi-supervised learning
approaches (e.g. bootstrap) to alleviate its de-
pendency on a large amount of annotated training
examples and achieve better and steadier per-
formance. Finally, our current work is done when
NER has been perfectly done. Therefore, it
would be interesting to see how imperfect NER
affects the performance in relation extraction.
This will be done by integrating the relation ex-
traction system with our previously developed
NER system as described in Zhou and Su (2002).

References
ACE. (2000-2005). Automatic Content Extraction.

http://www.ldc.upenn.edu/Projects/ACE/
Bunescu R. & Mooney R.J. (2005a). A shortest

path dependency kernel for relation extraction.
HLT/EMNLP’2005: 724-731. 6-8 Oct 2005.
Vancover, B.C.

Bunescu R. & Mooney R.J. (2005b). Subsequence
Kernels for Relation Extraction NIPS’2005.
Vancouver, BC, December 2005

Breiman L. (1996) Bagging Predictors. Machine
Learning, 24(2): 123-140.

Collins M. (1999). Head-driven statistical models
for natural language parsing. Ph.D. Dissertation,
University of Pennsylvania.

Culotta A. and Sorensen J. (2004). Dependency
tree kernels for relation extraction. ACL’2004.
423-429. 21-26 July 2004. Barcelona, Spain.

Kambhatla N. (2004). Combining lexical, syntactic
and semantic features with Maximum Entropy
models for extracting relations.
ACL’2004(Poster). 178-181. 21-26 July 2004.
Barcelona, Spain.

Miller G.A. (1990). WordNet: An online lexical
database. International Journal of Lexicography.
3(4):235-312.

Miller S., Fox H., Ramshaw L. and Weischedel R.
(2000). A novel use of statistical parsing to ex-
tract information from text. ANLP’2000. 226-
233. 29 April - 4 May 2000, Seattle, USA

MUC-7. (1998). Proceedings of the 7th Message
Understanding Conference (MUC-7). Morgan
Kaufmann, San Mateo, CA.

Platt J. 1999. Probabilistic Outputs for Support
Vector Machines and Comparisions to regular-
ized Likelihood Methods. In Advances in Large
Margin Classifiers. Edited by Smola .J., Bartlett
P., Scholkopf B. and Schuurmans D. MIT Press.

Roth D. and Yih W.T. (2002). Probabilistic reason-
ing for entities and relation recognition. CoL-
ING’2002. 835-841.26-30 Aug 2002. Taiwan.

Zelenko D., Aone C. and Richardella. (2003). Ker-
nel methods for relation extraction. Journal of
Machine Learning Research. 3(Feb):1083-1106.

Zhang M., Su J., Wang D.M., Zhou G.D. and Tan
C.L. (2005). Discovering Relations from a Large
Raw Corpus Using Tree Similarity-based Clus-
tering, IJCNLP’2005, Lecture Notes in
Computer Science (LNCS 3651). 378-389. 11-16
Oct 2005. Jeju Island, South Korea.

Zhao S.B. and Grisman R. 2005. Extracting rela-
tions with integrated information using kernel
methods. ACL’2005: 419-426. Univ of Michi-
gan-Ann Arbor， USA， 25-30 June 2005.

Zhou G.D. and Su Jian. Named Entity Recogni-
tion Using a HMM-based Chunk Tagger,
ACL’2002. pp473-480. Philadelphia. July
2002.

Zhou G.D., Su J. Zhang J. and Zhang M. (2005).
Exploring various knowledge in relation extrac-
tion. ACL’2005. 427-434. 25-30 June, Ann Ar-
bor, Michgan, USA.

128

