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Abstract are crafted to pay attention to a range of domain-
specific linguistic cued.og-linearmodels can be so

Conditional random fields (Lafferty et al., 2001) arecrafted and have already achieved excellent perfor-
quite effective at sequence labeling tasks like shaffance when trained cannotateddata, where they
low parsing (Sha and Pereira, 2003) and named'® known as “maximum entropy” models (Ratna-
entity extraction (McCallum and Li, 2003). CRFsParkhi etal., 1994; Rosenfeld, 1994).
are log-linear, allowing the incorporation of arbi- Our goal is to learn log-linear models from
trary features into the model. To train onlabeled Uunannotateddata. Since the forward-backward
data, we requirainsupervisecestimation methods and inside-outside algorithms are instances of
for log-linear models; few exist. We describe a noveExpectation-Maximization (EM) (Dempster et al.,
approachgcontrastive estimatianWe show that the 1977), a natural approach is to construct EM algo-
new technique can be intuitively understood as exithms that handle log-linear models. Riezler (1999)
ploiting implicit negative evidencand is computa- did so, then resorted to an approximation because
tionally efficient. Applied to a sequence labelingthe true objective function was hard to normalize.
problem—POS tagging given a tagging dictionary Stepping back from EM, we may generally en-
and unlabeled text—contrastive estimation outpemision parameter estimation for probabilistic mod-
forms EM (with the same feature set), is more robustling as pushing probability mass toward the train-
to degradations of the dictionary, and can largely réng examples. We must consider not only where
cover by modeling additional features. the learner pushes the mass, but &lem wherethe
mass igaken In this paper, we describe an alterna-
tive to EM: contrastive estimatio(CE), which (un-
1 Introduction like EM) explicitly states the source of the probabil-
S _ . ity mass that is to be given to an example.
Finding linguistic structure in raw text is not easy. ~ one reason is to make normalizatiefficient In-
The classical forward-backward and inside-outsidgeeqy CE generalizes EM and other practical tech-
algorithms try to guide probabilistic models to dis+jques used to train log-linear models, including
cover structure in text, but they tend to get stuck i gitional estimation (for the supervised case) and
local maxima (Charniak, 1993). Even when theysie;|ers approximation (for the unsupervised case).
a_tv0|d local maxima (e.g., through clever |_n|t|aI|za- The other reason to use CE is to impraecu-
tion) the): j[yplf’:ally dewqte from human ideas Ofracy. CE offers an additional way to inject domain
what the “right §truc'Fure is (Merialdo, ?994)' knowledge into unsupervised learning (Smith and
~ One strategy is to incorporate domain knowledggisner, 2005). CE hypothesizes that each positive
into the model’s structure. Instead of blind HMMSexampIe in training implies a domain-specific set
or PCFGs, one could use models whose featurgs examples which are (for the most part) degraded
" “This work was supported by a Fannie and John Hertk$2). This class ofmplicit negative evidencpro-
Foundation fellowship to the first author and NSF ITR grant lISvides the source of probability mass for the observed

0313193 to the second author. The views expressed are not ngg; ; ot _
essarily endorsed by the sponsors. The authors also thankth%e%ample' We .dISCUSS the application of CE to log
anonymous ACL reviewers for helpful comments, colleaguen€ar models irg3.

at JHU CLSP (especially David Smith and Roy Tromble) and
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We are particularly interested in log-linear models
over sequenceslike the conditional random fields
(CRFs) of Lafferty et al. (2001) and weighted CFGg
(Miyao and Tsuijii, 2002). For a given sequence, im
plicit negative evidence can be represented lat-a
tice derived by finite-state operationg4{). Effec-
tiveness of the approach on POS tagging using ut

joint likelihood (JL)

Hp <$i:yf \ 5)

conditional
likelihood (CL)

Hp<yf | xiﬁ)

classification
accuracy (Juang

L and Katagiri, 1992)

3 80w i)

labeled data is demonstratd). We discuss future
work (§6) and concludes().

expected
classification
accuracy (Klein and

ZP <y7 | %79_)

Manning, 2002)

2 Implicit Negative Evidence negated boosting

loss (Collins, 2000)

Sop(vi1208)

- P \Yi | Zi,

Natural language is a delicate thing. For any plaus i

ble sentence, there are many slight perturbations 3fmargir_1 (Crammer st |0l < 150, Yy # o,

it that will make it implausible. Consider, for ex- | and Singer, 2001) L B

ample, the first sentence of this section. Suppose 0 (f@iyi) = f@i,y)) 2 7

we choose one of its six words at random and re- &xPected local s .
111> (@(Y) =4 (yi) | IEia@)
iJ

) . " accuracy (Altun et
move it; on this example, odds are two to one that al., 2003)

the resulting sentence will be ungrammatical. Or,
we could randomly choose two adjacent words an‘&a_ble 1: Various super\_/is_ed training criteria. AII_fur]ctions are

. written so as to be maximized. None of these criteria are avail-
transpose them; none of the results are valid convefpie forunsupervisegstimation because they all depend on the
sational English. The learner we describe here takegrrect labely™.

into account not only _th_e observed positive exams 5 A pew approach: contrastive estimation
ple, but also a set of similar but deprecated negative

examples. Our approach instead maximizes

2.1 Learning setting )

Let# = (x1, 22, ...), be our observed example senWhere the “neighborhoodN(z;) € X is a set of
tences, where eacly € X, and lety” € Y be the implicit negative examplqs plus the examplgit-
unobserved correct hidden structure for(e.g., a Self. Asin EM,p(z; | ...,0) is found by marginal-
POS sequence). We seek a model, parameterized/B{d over hidden variables (Eq. 1). Note that the
0, such that the (unknown) correct analygisis the « € N(x;) are not treated as hard negative exam-
best analysis far; (under the model). If* were ob- ples; we merely seek to move probability mass from
served, a variety of training criteria would be availthem to the observed

able (see Tab. 1), byf is unknown, so none apply.  The neighborhood of, N(z), contains examples

Typically one turns to the EM algorithm (Dempsterthat are perturbations af. We refer to the mapping
et al., 1977), which locally maximizes N : X — 2% as the neighborhood function, and the

optimization of Eq. 2 asontrastive estimatio(CE).
CE seeks to move probability mass from the
[Ip(X==18) =T[> »(X=2,Y=y18) @O neighborhood of an observeg to =; itself. The
‘ ey learner hypothesizes that good models are those
where X is a random variable over sentences andhich discriminate an observed example from its
Y a random variable over analyses (notation is ofaeighborhood. Put another way, the learner assumes
ten abbreviated, eliminating the random variableshot only thatz; is good, but that:; is locally op-
An often-used alternative to EM is a class of sotimal in example spaceX{), and that alternative,
called Viterbi approximations, which iteratively find similar examples (from the neighborhood) are infe-
the probabilistically-bes§ and then, on each itera- rior. Rather than explain all of the data, the model
tion, solve a supervised problem (see Tab. 1). must only explain (using hidden variables) why the

Hp (X'L =x; | X; € N(mz)7§>
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likelihood criterion A B

observed sentence is better than its neighbors. Of joint {(zs, yD)} XxY
course, the validity of this hypothesis will depend CO”d'_t'Ofl‘a'r - {(ze,yi)} {ﬂgg} x4
on the form of the neighborhood function. girt?';;iv% AEW) g{ i 3 N(ac:)< E y

Consider, as a concrete example, learning nat-

: : yable 2: Supervised (upper box) and unsupervised (lower box)
ural language syntax. In Smith and Eisner (ZOOSLstimation with log-linear models in terms of Eq. 5.

we define a sentence’s neighborhood to be a set of
slightly-altered sentences that use the same 'exemﬁ?hereﬂi c B, (for eachi). For log-linear models
as suggested at the start of this section. While thejgis is simply
syntax is degraded, the inferred meaning of any of > " (m yl 5)
these altered sentences is typically close to the in- 1T () ’ -
tended meaning, yet the spealadroser and not i Dayen; U (ﬂ%y | 9)

one of the other’ € N(z). Why? Deletions g here is no need to computéd), but wedoneed

are likely to violate subcategorization requirements, compute sums ovet andB. Tab. 2 summarizes
and transpositions are likely to violate word ordegyma concrete examples; see &3d—3.2.

requirements—both of which have something to do \va would prefer to choose an objective function

with syntax.z was the most grammatical option thalg o, that these sums are easy. CE focuses on choos-

conveyed the speaker's meaning, hence (we NopRl appropriate small contrast séfts, both for effi-

roughly the most grammatical option in the neigh'ciency and to guide the learner. The natural choice

borhoodN(x), and the syntactic model should make, 4 " which is usually easier to sum over) is the set
It so. of (z,y) that are consistent with what was observed
(partially or completely) about théh training ex-

3 Log-Linear Models ample, i.e., the numeratQr , . c 4, P(z,y | 0) is

We have not yet specified the form of our probabilisgesigned to fing(observationt | §). The idea is to
tic model, only that it is parameterized Bye R".  focus the probability mass withi3; on the subset
LOg-Iinear mOdeIS, which we will show are a natura!AZ. where the the training example is known to be.
fit for CE, assign probability to an (example, label) |t js possible to build log-linear models where

(6)

pair (z,y) according to eachz; is a sequenc®. In this paper, each model
p (:cy | 5) e 1, <x,y | 5) (3) is a weighted finite-state automaton (WFSA) where
z (9) states correspond to POS tags. The parameter vector
where the “unnormalized scorel(z, y | §) is § ¢ R" specifies a weight for each of thetransi-
tions in the automatony is a hidden path through
u <x,y \ 5) = exp (§~ f(%y)) (4)  the automaton (determining a POS sequence)zand

is the string it emits.u(z,y | 0) is defined by ap-
. : : lying exp to the total weight of all transitions in.
RZ, is a nonnegative vector feature functionPY'" .

9 = R g This is an example of Egs. 4 and 6 wheér, y) is

andd € R™ are the corresponding feature weight§he number of times the pahtakes thejth transi-
(the model's parameters). Because the features c

take any form and need not be orthogonal, log-linear The partition functior? (§) of the WFSA is found

models can capture arbitrary dependencies in tfbei, adding up thes-scores of all paths through the

data and cleanly incorporate them into a model.  \yrga For a:-state WFSA, this equates to solving

Z(0) (the partition functlog) is chosen so thatalinear system of equations irk variables (Tarjan,

;(w,y)p(w’y [0) =11e.2(0) = Yoy ul@y | 1981). But if the WFSA contains cycles this infi-

0). u is typically easy to compute for a givém, y), nite sum may diverge. Alternatives to exact com-
but Z may be much harder to compute. All the ob

jective functions in this paper take the form

The notation above is defined as followg.: X x

2These are exemplified by CRFs (Lafferty et al., 2001),
which can be viewed alternately as undirected dynamic graph-

Z@ nea; P (x,y | 67) ical models with a chain topology, as log-linear models over
H ' ’ = (5) entire sequences with local features, or as WFSAs. Because
i D(ey)en, P <x7 y | 0) “CRF” implies CL estimation, we use the term “WFSA.”
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putation, like random sampling (see, e.g., Abney, Another variant isconditional EM. Let z; be a
1997), will not help to avoid this difficulty; in addi- pair (x;1,x;2) and define the neighborhood to be
tion, convergence rates are in general unknown ad(z;) = {Z = (Z1,x;2)}. This approach has
bounds difficult to prove. We would prefer to sumbeen applied to conditional densities (Jebara and
over finitely many paths if;. Pentland, 1998) and conditional training of acoustic
models with hidden variables (Valtchev et al., 1997).
Generally speaking, CE is equivalent to some
For log-linear models, both CL and JL estimatiorkind of EM whenN(-) is an equivalence relation
(Tab. 1) are available. In terms of Eqg. 5, bothon examples, so that the neighborhoods partition
setA; = {(x;,y;)}. The difference is irB: for Then if ¢ is any fixed (untrained) distribution over
JL, B; = X x Y, so summing ovefB; is equiva- neighborhoods, CE equates to running EM on the
lent to computing the partition functio(¢). Be- model defined by
cause that sum is typically difficult, CL is preferred;
B; = {x;} x Y for z;, which is often tractable. P (2y10) L aN@)-p (o I NE@),E) O
For sequence models like WFSAs it is computed us-

ing a dynamic programming algorithm (the forwardp”ng approximation to EM, where the sample space
algorithm for WFSAs). Klein and Manning (2002)36 is replaced byN(z;). We will demonstrate ex-

argue for CL on grounds of accuracy, but see aISOerimentall that CE is not just an approximation to
Johnson (2001). See Tab. 2; other contrast 8ets P L y J app )

: EM; it makes sense from a modeling perspective.
are also possible.

; . . In §4, we will describe neighborhoods of se-
WhenB; contains onlyz; paired with the current uences that can be represented as acjafices
best competitory) to v, we have a technique thatq P

. . . Huilt directly from an observed sequence. The sum
resembles maximum margin training (Crammer an

Singer, 2001). Note tha} will then change across overB_,» 's then .the totau-score_ln our model of aII'
e ! . . paths in the neighborhood lattice. To compute this,
training iterations, makin@®; dynamic.

intersect the WFSA and the lattice, obtaining a new

3.2 Parameter estimation (unsupervised) acyclicWFSA, and sum the-scores of all its paths

The difference between supervised and unsupe(fl::isn?r’ 2002_) using a simple dynamic programming

vised learning is that in the latter casg, is forced algorithm akin to the forwa_rd _algorlthm. The sum
overA; may be computed similarly.

CE with lattice neighborhoods is not confined to

3.1 Parameter estimation (supervised)

CE may also be viewed as an importance sam-

to sum over label sequencgdbecause they weren't
observed. In the unsupervised case, CE maximizes

S <x | 5) the WFSAs of this paper; when estimating weighted
R = vy CFGs, the key algorithm is the inside algorithm for
Lo <9> - logH S (m’y | 5) (") lattice parsing (Smith and Eisner, 2005).

(z,y)EN(x;)xY

Interms of Eq. 5A = {z;} xY andB = N(z;) x Y.
EM's objective function (Eq. 1) is a special caselo maximize the neighborhood likelihood (Eq. 7),
whereN(z;) = X, for all 7, and the denomina- we apply a standard numerical optimization method
tor becomesZ(6). An alternative is to restrict the (L-BFGS) that iteratively climbs the function using
neighborhood to the set of observed training exanknowledge of its value and gradient (Liu and No-
ples rather than all possible examples (Riezler, 1999edal, 1989). The partial derivative Gfy with re-
Johnson et al., 1999; Riezler et al., 2000): spect to thejth feature weight; is

®) O S Blfy | - Byl NG (10)

1:[ u<119>/;u(‘r]|9> o =

Viewed as a CE method, this approach (though efFhis looks similar to the gradient of log-linear like-
fective when there are few hypotheses) seems milaood functions on complete data, though the ex-
guided; the objective says to move mass to each egectation on the left is in those cases replaced by an
ample at the expense of all other training examplesbserved feature valug (z;,y;). In this paper, the

3.3 Numerical optimization
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natural language is a delicate thing @

a. DEL1WORD:

natural language is a delicate thing
. % ObnsO)
I%fe
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Zs
8 @ 11360
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b. TRANSI:
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c. DEL1SUBSEQ @ e Q
natural language i delicate C thing @ :

language

e

Figure 1: A sentence and three lattices representing some of its neighborhoods. The transducer used to generate each neighborhood
lattice (via composition with the sentence, followed by determinization and minimization) is shown to its right.

expectations in Eq. 10 are computed by the forwardieighborhood involves transposing any pair of adja-
backward algorithm generalized to lattices. cent words:

We emphasize that the _functio"jw is not glob- TRANSL(2]") = {lee_lmﬂxwzn” l1<e< m} U {27}
ally concave; our search will lead only to a local op-
timum2 Therefore, as with all unsupervised statisti-This set can also be compactly represented as a lat-
cal learning, the bias in the initialization éfwill af-  tice (Fig. 1b). We can combine €2 1WoRD and
fect the quality of the estimate and the performanc€RANSL by taking their union; this gives a larger
of the method. In future we might wish to applyneighborhood, BLORTRANSL.*
technigues for avoiding local optima, such as deter- The DEL1SuUBSEQneighborhood allows the dele-

ministic annealing (Smith and Eisner, 2004). tion of any contiguous subsequence of words that is
. . strictly smaller than the whole sequence. This lattice
4 Lattice Neighborhoods is similar to that of EL1WORD, but adds some arcs

ig. 1c); the size of this neighborhood&m?).

A final neighborhood we will consider is
LENGTH, which consists of¥™. CE with the
LENGTH neighborhood is very similar to EM; it is
equivalent to using EM to estimate the parameters

the substring;, i41, ..., z;) anda’" for the whole ©f @ model defined by Eq. 9 whergis any fixed

string. Consider first the neighborhood consisting dintrained) distribution over lengths.

all sequences generated by deleting a single symbolWhen the vocabular is the set of words in a
from them-length sequencey’: natural language, it is never fully known; approx-

o imations for defining ENGTH = Y™ include us-
DELIWORD(21") = {”1 vy [ 1S e m} U{z1'}  ing observed from the training set (as we do) or
adding a speciabov symbol.

We next consider some non-classical neighborhodg
functions for sequences. Whéh= X for some
symbol alphabek, certain kinds of neighborhoods
have natural, compact representations. Given an i
put stringz = (z1,z2,...,xm), We write z for

This set consists afi + 1 strings and can be com-

pactly represented as a lattice (see Fig. 1a). Another “In general, the lattices are obtained by composing the ob-
- served sequence with a small FST and determinizing and mini-
Swithout any hidden variables; is globally concave. mizing the result; the relevant transducers are shown in Fig. 1.
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100 T A 12K 24K 48K 96K

+ + ™ X fa sel. oracle  sel oracle sel. oracle sel. oracle

90 r 1 -+ CRF (supervised) 100.0 99.8 998 99.5

L 80 | 1 - HMM (supervised) 99.3 98.5 97.9 97.2

£ —4— LENGTH 749 77.4|78.7 81.5| 78.3 81.3 | 78.9 79.3

g 70 | { —=— DELORTR1 | 70.8 70.8 | 78.6 78.6 | 78.3 79.1 | 75.2 78.8

2 —=— TRANS1 727 727 | 77.2 77.2 | 78.1 79.4 | 74.7 79.0

g 601 1 ——EM 49.5 52.9 | 55.5 58.0 | 59.4 60.9 | 60.9 62.1

R g0l | —v— DEL1IWORD | 55.4 55.6 | 58.6 60.3 | 59.9 60.2 | 59.9 60.4

—o— DEL1SSQ 53.0 53.3 | 55.0 56.7 | 55.3 55.4 | 57.3 58.7

40 + 4 77 random expected 35.2 35.1 35.1 35.1
30 ambiguous words 6,244 12,923 25,879 51,521

0 0.1 1 10
smoothing parameter

Figure 2: Percent ambiguous words tagged correctly in the 96K dataset, as the smoothing pakdmtiter@se of EMg? in the

CE cases) varies. The model selected from each criterion using unlabeled development data is circled in the plot. Dataset size is
varied in the table at right, which shows models selected using unlabeled development data (“sel.”) and using aom@melefe (*

the highest point on a curve). Across conditions, some neighborhood roughly splits the difference between supervised models and

5 Experiments rion, dataset) pair, we selected the smoothing trial
that gave the highest estimation criterion score on a
5K-word development set (also unlabeled).

Results. The plot in Fig. 2 shows the Viterbi ac-
5.1 Comparison with EM curacy of each criterion trained on the 96K-word
. dataset as smoothing was varied; the table shows,

Our ~ experiments are inspired by those "Mor each (criterion, dataset) pair the performance of

Merialdo (1994); we train a trigram tagger USingthe selected or o2 and the one chosen by an oracle.
only unlabeled data, assuming complete knowlequeENGTH TrRANSL. and DELORTRANSL are con-

of the tagging dictionary. In our experiments, _. i .

we varied the amount of data available (12K—96I€|Stently the best, far out-stripping EM. These gains
ds of WSJ). the heavi ; thi dt dwarf the performance of EM on over 1.1M words

words of WSJ), the heaviness of smoothing, and theg eo, 5 veported by Smith and Eisner (2004)),

estimation cr|t_er|on. In aII_ cases, _tra!nlng stoppe even when the latter uses improved search (70.0%).
when the relative change in the criterion fell below,

. . DEL1WORD and DEL1SUBSEQ on the other hand,
10~ between steps (typicallg 100 steps). For this Q
are poor, even worse than EM on larger datasets.
corpus and tag set, on average, a tagger must decide " _ _
An important result is that neighborhoods do not

between 2.3 tags for a given token. _ at e _
The generative model trained by EM was identicapUcceed by virtue cépproximatinglog-linear EM;

to Merialdo's: a second-order HMM. We smoothed' that were so, we would expect larger neighbor-
using a flat Dirichlet prior with single parametar 100ds (like IEL1SUBSEQ to out-perform smaller

for all distributions @-values from 0 to 10 were ©Nes (like TRANS1)—this is not so. BL1SUBSEQ
testedf® The model was initialized uniformly. and DEL1IWORD are poor because they do not give
The log-linear models trained by CE used thgelpfulclasses of negative evidence: deleting a word

same feature set, though the feature weights are Rba short subsequence often does very I|tt|e_dam-
longer log-probabilities and there are no sum-to-on89¢: PUt another way, models that do a good job of
constraints. In addition to an unsmoothed trial, w&XPaining why no word or subsequence should be

tried diagonal Gaussian priors (quadratic penaltﬁeleted do not do so using the familiar POS cate-

with o2 ranging from 0.1 to 10. The models wered°"es:

initialized with all§; = 0. The LENGTH neighborhood is as close to log-
Unsupervised model selectionFor each (crite- linear EM as it is practical to get. The inconsis-
_— _ tencies in the ENGTH curve (Fig. 2) are notable
Without a tagging dictionary, tag names are interchangesnd also appeared at the other training set sizes.
able and cannot be evaluated on gold-standard accuracy. .. . . e . .
address the tagging dictionary assumptiofSre. elieving this might be indicative of brittleness in
®This is equivalent to add-smoothing within every M step. Viterbi label selection, we computed tlexpected

We compare CE (using neighborhoods frdi)
with EM on POS tagging using unlabeled data.

359



& g
§ ¢ ¢
a 3
DELORTRANS1 TRANSL LENGTH EM T 05’ g\,’
H . trigram . trigram . trigram . IS S &
WOII'dS II’.1 trigram + spelling trigram +spelling trigram + spelling trigram ,?Q §7 -
tagging dict. sel. oracle sel. oracle sel. oracle sel. oracle sel. oracle sel. oracle sel. oracle g T @

all train & dev. | 78.3 90.1 | 80.991.1 || 90.4 90.4 | 88.790.9 || 87.8 90.4 | 87.191.9 || 78.0 84.4 | 695 | 13150 23
15500 sents. 72.384.8|80.290.8 || 80.8 82.9|88.190.1 || 68.1 78.3| 76.983.2 || 77.2 80.5 | 605 | 13841 3.7
count> 2 69.581.3|79.590.3| 77.0 78.6 | 78.790.1 || 65.3 75.2 | 73.373.8 || 70.1 70.9 | 566 | 14780 4.4
count> 3 65.0 77.2 | 78.389.8 || 71.7 73.4 | 78.489.5 | 62.8 72.3 | 73.273.6 || 66.5 66.5 | 510 | 1599 55

Table 3: Percent ddll words correctly tagged in the 24K dataset, as the tagging dictionary is diluted. Unsupervised model selection
(“sel.”) and oracle model selectiondfacl€’) across smoothing parameters are shown. Note that we evaluatdidveords (unlike
Fig. 3) and used 17 coarse tags, giving higher scores than in Fig. 2.

accuracy of the ENGTH models; the same “dips” RBx —ADV).

were present. This could indicate that the learner To take better advantage of the power of log-
was trapped in a local maximum, suggesting thalinear models—specifically, their ability to incorpo-
since other criteria did not exhibit this behaviorrate novel features—we also ran trials augmenting
LENGTH might be a bumpier objective surface. Itthe model withspellingfeatures, allowing exploita-
would be interesting to measure the bumpiness (setion of correlations betweeparts of the word and a
sitivity to initial conditions) of different contrastive possible tag. Our spelling features included all ob-

objectives’ served 1-, 2-, and 3-character suffixes, initial capital-
) ) ization, containing a hyphen, and containing a digit.
5.2 Removing knowledge, adding features Results. Fig. 3 plots tagging accuracy (on am-

The assumption that the tagging dictionary is combiguous words) for each dictionary on the 24K
pletely known is difficult to justify. While a POS dataset. Ther-axis is the smoothing parametex (
lexicon might be available for a new language, cerfor EM, o2 for CE). Note that the different plots are
tainly it will not give exhaustive information about not comparable, because thgiaxes are based on
all word types in a corpus. We experimented wittdifferent sets of ambiguous words.
removing knowledge from the tagging dictionary, So that models under different dilution conditions
thereby increasing the difficulty of the task, to se@ould be compared, we computed accuracyatin
how well various objective functions could recoverwords: these are shown in Tab. 3. The reader will
One means to recovery is the addition of features tgotice that there is often a large gap between unsu-
the model—this is easy with log-linear models bupervised and oracle model selection; this draws at-
not with classical generative models. tention to a need for better unsupervised regulariza-

We compared the performance of the besion and model selection techniques.
neighborhoods (ENGTH, DELORTRANS1, and  Without spelling features, all models perform
TrANS1) from the first experiment, plus EM, us-worse as knowledge is removed. ButNGTH suf-
ing threediluted dictionaries and the original one, fers most substantially, relative to its initial perfor-
on the 24K dataset. A diluted dictionary adds (tagmance. Why is this? ENGTH (like EM) requires
word) entries so that rare words are allowed withhe model to explain why a given sentence was seen
anytag, simulating zero prior knowledge about thanstead of some other sentence of the same length.
word. “Rare” might be defined in different ways; One way to make this explanation is to manipulate
we used three definitions: words unseen in the firgimission weights (i.e., for (tag, word) features): the
500 sentences (about half of the 24K training cortearner can construct a good class-basaiyram
pus); singletons (words with count 1); and words model of the text (where classes are tags). This is
with count< 2. To allow more trials, we projected good for the LENGTH objective, but not for learning
the original 45 tags onto a coarser set of 17 (e.ggood POS tag sequences.

A reviewer suggested including a table comparing different In contrast, ELORTRANS] and TRANS1 do not

criterion values for each learned model (i.e., each neighborhodtllow the learner to manipulate emission weights for

evaluated on each other neighborhood). This table contained pgords not in the sentence. The sentence’s good-

big surprises; we note only that most models were the best on . .
their own criterion, and among unsupervised modetN&TH ness must be explained in a way other than by the

performed best on the CL criterion. words it contains: namely through the POS tags. To
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check this intuition, we built local normalized mod-
els p(word ’ tag) from the parameters learned b>ﬁlltraln&development words are in the tagging dictionary:

TRANS1 and LENGTH. For each tag, these were®
compared by KL divergence to the empirical lexical,; |
distributions (from labeled data). For the ten tags, |
accounting for 95.6% of the data,ENGTH more 65 |
closely matched the empirical lexical distributions60 I
LENGTH is learning a correct distribution, but that I
distribution is not helpful for the task. 45 :
The improvement from adding spelling featureso : : :
is striking: DELORTRANS1 and TRANS1 recover Tagging dictionary taken from the first 500 sentences:
nearly completely (modulo the model selectiorss
problem) from the diluted dictionaries. ENGTH 3|
sees far less recovery. Hence even our improved fe%-:
ture sets cannot compensate for the choice of neighy-|
borhood. This highlights our argument that a neigheo +
borhood is not an approximation to log-linear EM;55 |
LENGTH tries very hard to approximate log- Iinearig |

EM but requires a good dictionary to be on par with,,
the other criteria. Good neighborhoods, rather, petragging dlctlonary contains words with count2:
form well in their own right. 85
80

6 Future Work 750

70

Foremost for future work is the “minimally super- |
vised” paradigm in which a small amount of Ia—gg |
beled data is available (see, e.g., Clark et al. (2003)), |
Unlike well-known “bootstrapping” approachesas |
(Yarowsky, 1995), EM and CE have the possible ad®
vantage of maintaining posteriors over hidden IabeIE"j‘gg'”g d'Ct'O”ary contains words with counts:
(or structure) throughout learning; bootstrapping e|
ther chooses, for each example, a single label, gg:
remains completely agnostic. One can envision @ |
mixedobjective function that tries to fit the labeledss t
examples while discriminating unlabeled example@J i
from their neighborhood%. i
Regardless of how much (if any) data are Iabele(i I
the question of good smoothing techniques requires

more attention. Here we used a single zero-mean, ° 0! 1 10 e
- ] ) smoothing parameter ‘(\Q
constant-variance Gaussian prior for all parameters. DeLORTRANSL | Qe}\‘ L 4
Better performance might be achieved by allowing  Transl @é‘o O @"6 o
different variances for different feature types. This ~ LENGTH L G v
EM $ x &

8Zhu and Ghahramani (2002) explored the semi-supervisddgure 3: Percent ambiguous words tagged correctly (with
classification problem for spatially-distributed data, wherecoarse tags) on the 24K dataset, as the dictionary is diluted and
some data are labeled, using a Boltzmann machine to modalth spelling features. Each graph corresponds to a different
the dataset. For them, the Markov random field is over labelevel of dilution. Models selected using unlabeled development
ing configurations for all examples, not, as in our case, condata are circled. These plots (unlike Tab. 3) ot compara-
plex structured labels for a particular example. Hence tBeir ble to each other because each is measured on a different set of
(Eq. 5), though very large, was finite and could be sampled. ambiguous words.
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leads to a need for more efficient tuning of the priok. Crammer and Y. Singer. 2001. On the algorithmic imple-
arameters on development data. mentation of multiclass kernel-based vector machidesr-
P . P . . nal of Machine Learning Research(5):265-92.
The effectiveness of CE (and different neighbora pempster, N. Laird, and D. Rubin. 1977. Maximum likeli-
hoods) for dependency grammar induction is ex- hood estimation from incomplete data via the EM algorithm.

; : ; : ; Journal of the Royal Statistical Society 89:1-38.
plored in Smith and Eisner (2005) with consnderablg_ Eisner. 2002. Parameter estimation for probabilistic finite-

success. We introduce there the notion of design- state transducers. Froc. of ACL
ing neighborhoods to guide learning for particulal@- E. Hinton. 2003. Training products of experts by mini-

. . mizing contrastive divergence. Technical Report GCNU TR
tasks. Instead of guiding an unsupervised learner to 5500 004, University College London.

match linguists’ annotations, the choice of neighborf. Jebara and A. Pentland. 1998. Maximum conditional like-

hood might be made to direct the learner toward hid- lihood via bound maximization and the CEM algorithm. In
Proc. of NIPS

den structure that is helpful for error-correction task§. johnson, S. Geman, S. Canon, Z. Chi. and S. Riezler. 1999.
like spelling correction and punctuation restoration Estimators for stochastic “unification-based” grammars. In

. : Proc. of ACL
that may benefit from a grammatical model. M. Johnson. 2001. Joint and conditional estimation of tagging

Wang et al. (2002) discuss the latent maximum and parsing models. IRroc. of ACL

entropy principle. They advocate running EM man)B.-H: quang and S. Katz.i.giri.. 1992. Discrimina}tive learning for
minimum error classification|EEE Trans. Signal Process-

times and selecting the local maximum that maxi- g 40:3043-54.
mizes entropy. One might do the same for the local. Klein and C. D. Manning. 2002. Conditional structure vs.

; At ; conditional estimation in NLP models. Rroc. of EMNLP
maxma of any CE ObJeCtlve_’ t_hOUQh the_oretlcal anq. Lafferty, A. McCallum, and F. Pereira. 2001. Conditional
experimental support for this idea remain for future random fields: Probabilistic models for segmenting and la-
work. beling sequence data. Rroc. of ICML

D. C. Liuand J. Nocedal. 1989. On the limited memory method
. for large scale optimizatiorMathematical Programming B
7 Conclusion 45(3):503-28.
. . . A. McCallum and W. Li. 2003. Early results for named-
We have presentedontrastive estimatigna new entity extraction with conditional random fields. Rroc.
probabilistic estimation criterion that forces a mode| ©of CoNLL

. . . B. Merialdo. 1994. Tagging English text with a probabilistic
to explain why the given training data were better model. Computational Linguistic20(2):155-72.

than bad data implied by the positive examples. Wg Miyao and J. Tsujii. 2002. Maximum entropy estimation for

; _feature forests. IfProc. of HLT.
have shown that for unsupervised sequence mOd%l. Ratnaparkhi, S. Roukos, and R. T. Ward. 1994. A maximum

performs EM; for POS tagging, the gain in accusS. Riezler, D. Prescher, J. Kuhn, and M. Johnson. 2000. Lex-

. . icalized stochastic modeling of constraint-based grammars
racy over EM is twice what we would get from ten using log-linear measures and EM training.Proc. of ACL

times as much data and improved search, stickirg Riezler. 1999Probabilistic Constraint Logic Programming
with EM’s criterion (Smith and Eisner, 2004). On_ Ph.D. thesis, Universit Tubingen.
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