
Probabilistic Parsing Strategies

Mark-Jan Nederhof
Faculty of Arts

University of Groningen
P.O. Box 716

NL-9700 AS Groningen
The Netherlands

markjan@let.rug.nl

Giorgio Satta
Dept. of Information Engineering

University of Padua
via Gradenigo, 6/A

I-35131 Padova
Italy

satta@dei.unipd.it

Abstract

We present new results on the relation between
context-free parsing strategies and their probabilis-
tic counter-parts. We provide a necessary condition
and a sufficient condition for the probabilistic exten-
sion of parsing strategies. These results generalize
existing results in the literature that were obtained
by considering parsing strategies in isolation.

1 Introduction

Context-free grammars (CFGs) are standardly used
in computational linguistics as formal models of the
syntax of natural language, associating sentences
with all their possible derivations. Other computa-
tional models with the same generative capacity as
CFGs are also adopted, as for instance push-down
automata (PDAs). One of the advantages of the use
of PDAs is that these devices provide an operational
specification that determines which steps must be
performed when parsing an input string, something
that is not offered by CFGs. In other words, PDAs
can be associated toparsing strategiesfor context-
free languages. More precisely, parsing strategies
are traditionally specified as constructions that map
CFGs to language-equivalent PDAs. Popular ex-
amples of parsing strategies are the standard con-
structions of top-down PDAs (Harrison, 1978), left-
corner PDAs (Rosenkrantz and Lewis II, 1970),
shift-reduce PDAs (Aho and Ullman, 1972) and LR
PDAs (Sippu and Soisalon-Soininen, 1990).

CFGs and PDAs have probabilistic counterparts,
called probabilistic CFGs (PCFGs) and probabilis-
tic PDAs (PPDAs). These models are very popular
in natural language processing applications, where
they are used to define a probability distribution
function on the domain of all derivations for sen-
tences in the language of interest. In PCFGs and
PPDAs, probabilities are assigned to rules or tran-
sitions, respectively. However, these probabilities
cannot be chosen entirely arbitrarily. For example,
for a given nonterminalA in a PCFG, the sum of the
probabilities of all rules rewritingAmust be1. This

means that, out of a total of saym rules rewritingA,
onlym− 1 rules represent “free” parameters.

Depending on the choice of the parsing strategy,
the constructed PDA may allow different probabil-
ity distributions than the underlying CFG, since the
set of free parameters may differ between the CFG
and the PDA, both quantitatively and qualitatively.
For example, (Sornlertlamvanich et al., 1999) and
(Roark and Johnson, 1999) have shown that a prob-
ability distribution that can be obtained by training
the probabilities of a CFG on the basis of a corpus
can be less accurate than the probability distribution
obtained by training the probabilities of a PDA con-
structed by a particular parsing strategy, on the basis
of the same corpus. Also the results from (Chitrao
and Grishman, 1990), (Charniak and Carroll, 1994)
and (Manning and Carpenter, 2000) could be seen
in this light.

The question arises of whether parsing strate-
gies can be extended probabilistically, i.e., whether
a given construction of PDAs from CFGs can be
“augmented” with a function defining the probabili-
ties for the target PDA, given the probabilities asso-
ciated with the input CFG, in such a way that the ob-
tained probabilistic distributions on the CFG deriva-
tions and the corresponding PDA computations are
equivalent. Some first results on this issue have been
presented by (Tendeau, 1995), who shows that the
already mentioned left-corner parsing strategy can
be extended probabilistically, and later by (Abney et
al., 1999) who show that the pure top-down parsing
strategy and a specific type of shift-reduce parsing
strategy can be probabilistically extended.

One might think that any “practical” parsing
strategy can be probabilistically extended, but this
turns out not to be the case. We briefly discuss
here a counter-example, in order to motivate the ap-
proach we have taken in this paper. Probabilistic
LR parsing has been investigated in the literature
(Wright and Wrigley, 1991; Briscoe and Carroll,
1993; Inui et al., 2000) under the assumption that
it would allow more fine-grained probability distri-
butions than the underlying PCFGs. However, this



is not the case in general. Consider a PCFG with
rule/probability pairs:

S → AB , 1 B → bC , 2
3

A→ aC , 1
3 B → bD , 1

3

A→ aD , 2
3 C → xc, 1

D → xd , 1

There are two key transitions in the associated LR
automaton, which represent shift actions overc and
d (we denote LR states by their sets of kernel items
and encode these states into stack symbols):

τc : {C → x • c,D → x • d} c7→
{C → x • c,D → x • d} {C → xc •}

τd : {C → x • c,D → x • d} d7→
{C → x • c,D → x • d} {D → xd •}

Assume a proper assignment of probabilities to the
transitions of the LR automaton, i.e., the sum of
transition probabilities for a given LR state is1. It
can be easily seen that we must assign probabil-
ity 1 to all transitions exceptτc and τd, since this
is the only pair of distinct transitions that can be ap-
plied for one and the same top-of-stack symbol, viz.
{C → x • c,D → x • d}. However, in the PCFG
model we have

Pr(axcbxd)
Pr(axdbxc) = Pr(A→aC )·Pr(B→bD)

Pr(A→aD)·Pr(B→bC ) =
1
3
· 1
3

2
3
· 2
3

= 1
4

whereas in the LR PPDA model we have

Pr(axcbxd)
Pr(axdbxc) = Pr(τc)·Pr(τd)

Pr(τd)·Pr(τc)
= 1 6= 1

4 .

Thus we conclude that there is no proper assignment
of probabilities to the transitions of the LR automa-
ton that would result in a distribution on the gener-
ated language that is equivalent to the one induced
by the source PCFG. Therefore the LR strategy does
not allow probabilistic extension.

One may seemingly solve this problem by drop-
ping the constraint of properness, letting each tran-
sition that outputs a rule have the same probability
as that rule in the PCFG, and letting other transitions
have probability 1. However, the properness condi-
tion for PDAs has been heavily exploited in pars-
ing applications, in doing incremental left-to-right
probability computation for beam search (Roark
and Johnson, 1999; Manning and Carpenter, 2000),
and more generally in integration with other lin-
ear probabilistic models. Furthermore, commonly
used training algorithms for PCFGS/PPDAs always
produce proper probability assignments, and many
desired mathematical properties of these methods
are based on such an assumption (Chi and Geman,

1998; Śanchez and Benedı́, 1997). We may there-
fore discard non-proper probability assignments in
the current study.

However, such probability assignments are out-
side the reach of the usual training algorithms for
PDAs, which always produce proper PDAs. There-
fore, we may discard such assignments in the cur-
rent study, which investigates aspects of the poten-
tial of training algorithms for CFGs and PDAs.

What has been lacking in the literature is a theo-
retical framework to relate the parameter space of a
CFG to that of a PDA constructed from the CFG by
a particular parsing strategy, in terms of the set of
allowable probability distributions over derivations.
Note that the number of free parameters alone is
not a satisfactory characterization of the parameter
space. In fact, if the “nature” of the parameters is
ill-chosen, then an increase in the number of param-
eters may lead to a deterioration of the accuracy of
the model, due to sparseness of data.

In this paper we extend previous results, where
only a few specific parsing strategies were consid-
ered in isolation, and provide some general char-
acterization of parsing strategies that can be prob-
abilistically extended. Our main contribution can
be stated as follows.

• We define a theoretical framework to relate the
parameter space defined by a CFG and that de-
fined by a PDA constructed from the CFG by a
particular parsing strategy.

• We provide a necessary condition and a suffi-
cient condition for the probabilistic extension
of parsing strategies.

We use the above findings to establish new results
about probabilistic extensions of parsing strategies
that are used in standard practice in computational
linguistics, as well as to provide simpler proofs of
already known results.

We introduce our framework in Section 3 and re-
port our main results in Sections 4 and 5. We discuss
applications of our results in Section 6.

2 Preliminaries
In this paper we assume some familiarity with def-
initions of (P)CFGs and (P)PDAs. We refer the
reader to standard textbooks and publications as for
instance (Harrison, 1978; Booth and Thompson,
1973; Santos, 1972).

A CFGG is a tuple(Σ, N, S, R), withΣ andN
the sets of terminals and nonterminals, respectively,
S the start symbol andR the set of rules. In this
paper we only consider left-most derivations, repre-
sented as stringsd ∈ R∗ and simply called deriva-



tions. Forα, β ∈ (Σ ∪N)∗, we writeα⇒d β with
the usual meaning. Ifα = S andβ = w ∈ Σ∗, we
call d a completederivation ofw. We say a CFG is
reduced if each rule inR occurs in some complete
derivation.

A PCFG is a pair(G, p) consisting of a CFGG
and a probability functionp from R to real num-
bers in the interval[0, 1]. A PCFG is proper
if
∑
π=(A→α)∈R p(π) = 1 for eachA ∈ N .

The probability of a (left-most) derivationd =
π1 · · ·πm, πi ∈ R for 1 ≤ i ≤ m, is p(d) =∏m
i=1 p(πi). The probability of a stringw ∈ Σ∗

is p(w) =
∑
S⇒dw p(d). A PCFG isconsistentif

Σw∈Σ∗ p(w) = 1. A PCFG(G, p) is reduced ifG is
reduced.

In this paper we will mainly consider push-down
transducers rather than push-down automata. Push-
down transducers not only compute derivations of
the grammar while processing an input string, but
they also explicitly produce output strings from
which these derivations can be obtained. We use
transducers for two reasons. First, constraints on
the output strings allow us to restrict our attention
to “reasonable” parsing strategies. Those strategies
that cannot be formalized within these constraints
are unlikely to be of practical interest. Secondly,
mappings from input strings to derivations, such as
those realized by push-down transducers, turn out
to be a very powerful abstraction and allow direct
proofs of several general results.

Contrary to many textbooks, our push-down de-
vices do not possess states next to stack symbols.
This is without loss of generality, since states can
be encoded into the stack symbols, given the types
of transitions that we allow. Thus, a PDTA is a
6-tuple (Σ, Σ, Q, Xin, Xfin, ∆), with Σ and
Σ the input and output alphabets, respectively,Q
the set of stack symbols, including the initial and fi-
nal stack symbolsXin andXfin, respectively, and
∆ the set of transitions. Each transition has one
of the following three forms:X 7→ XY , called a
push transition,YX 7→ Z, called a pop transition,
or X

x,y7→ Y , called a swap transition; hereX, Y ,
Z ∈ Q, x ∈ Σ ∪ {ε} is the input read by the tran-
sition andy ∈ Σ∗ is the written output. Note that
in our notation, stacks grow from left to right, i.e.,
the top-most stack symbol will be found at the right
end. Aconfiguration of a PDT is a triple(α,w, v),
whereα ∈ Q∗ is a stack,w ∈ Σ∗ is the remain-
ing input, andv ∈ Σ∗ is the output generated so
far. Computations are represented as stringsc ∈
∆∗. For configurations(α,w, v) and(β,w′, v′), we
write (α,w, v) `c (β,w′, v′) with the usual mean-
ing, and write(α,w, v) `∗ (β,w′, v′) whenc is of

no importance. If(Xin, w, ε) `c (Xfin, ε, v), then
c is a completecomputation ofw, and the output
string v is denotedout(c). A PDT is reduced if
each transition in∆ occurs in some complete com-
putation.

Without loss of generality, we assume that com-
binations of different types of transitions are not al-
lowed for a given stack symbol. More precisely,
for each stack symbolX 6= Xfin, the PDA can
only take transitions of a single type (push, pop or
swap). A PDT can easily be brought in this form
by introducing for eachX three new stack symbols
Xpush , Xpop andXswap and new swap transitions

X
ε,ε7→ Xpush , X

ε,ε7→ Xpop andX
ε,ε7→ Xswap . In

each existing transition that operates on top-of-stack
X, we then replaceX by one fromXpush , Xpop or
Xswap , depending on the type of that transition. We
also assume thatXfin does not occur in the left-
hand side of a transition, again without loss of gen-
erality.

A PPDT is a pair(A, p) consisting of a PDTA
and a probability functionp from∆ to real numbers
in the interval[0, 1]. A PPDT isproper if

• Στ=(X 7→XY )∈∆ p(τ) = 1 for eachX ∈ Q
such that there is at least one transitionX 7→
XY , Y ∈ Q;

• Σ
τ=(X

x,y7→Y )∈∆ p(τ) = 1 for eachX ∈ Q such

that there is at least one transitionX
x,y7→ Y ,

x ∈ Σ ∪ {ε}, y ∈ Σ∗ , Y ∈ Q; and

• Στ=(Y X 7→Z)∈∆ p(τ) = 1, for eachX,Y ∈ Q
such that there is at least one transitionY X 7→
Z, Z ∈ Q.

The probability of a computationc = τ1 · · · τm,
τi ∈ ∆ for 1 ≤ i ≤ m, is p(c) =∏m
i=1 p(τi). The probability of a stringw is p(w) =∑
(Xin,w,ε)`c(Xfin,ε,v) p(c). A PPDT isconsistent

if Σw∈Σ∗ p(w) = 1. A PPDT(A, p) is reduced if
A is reduced.

3 Parsing Strategies
The term “parsing strategy” is often used informally
to refer to a class of parsing algorithms that behave
similarly in some way. In this paper, we assign a
formal meaning to this term, relying on the obser-
vation by (Lang, 1974) and (Billot and Lang, 1989)
that many parsing algorithms for CFGs can be de-
scribed in two steps. The first is a construction of
push-down devices from CFGs, and the second is
a method for handling nondeterminism (e.g. back-
tracking or dynamic programming). Parsing algo-
rithms that handle nondeterminism in different ways



but apply the same construction of push-down de-
vices from CFGs are seen as realizations of the same
parsing strategy.

Thus, we define aparsing strategy to be a func-
tion S that maps a reduced CFGG = (Σ, N, S,
R) to a pairS(G) = (A, f) consisting of a reduced
PDTA = (Σ, Σ, Q, Xin, Xfin, ∆), and a func-
tion f that maps a subset ofΣ∗ to a subset ofR∗,
with the following properties:

• R ⊆ Σ.

• For each stringw ∈ Σ∗ and each complete
computationc onw, f(out(c)) = d is a (left-
most) derivation ofw. Furthermore, each sym-
bol fromR occurs as often inout(c) as it oc-
curs ind.

• Conversely, for each stringw ∈ Σ∗ and
each derivationd of w, there is precisely
one complete computationc on w such that
f(out(c)) = d.

If c is a complete computation, we will writef(c)
to denotef(out(c)). The conditions above then im-
ply thatf is a bijection from complete computations
to complete derivations. Note that output strings of
(complete) computations may contain symbols that
are not inR, and the symbols that are inR may
occur in a different order inv than in f(v) = d.
The purpose of the symbols inΣ − R is to help
this process of reordering of symbols fromR in v,
as needed for instance in the case of the left-corner
parsing strategy (see (Nijholt, 1980, pp. 22–23) for
discussion).

A probabilistic parsing strategy is defined to
be a functionS that maps a reduced, proper and
consistent PCFG(G, pG) to a triple S(G, pG) =
(A, pA, f), where(A, pA) is a reduced, proper and
consistent PPDT, with the same properties as a
(non-probabilistic) parsing strategy, and in addition:

• For each complete derivationd and each com-
plete computationc such thatf(c) = d, pG(d)
equalspA(c).

In other words, a complete computation has the
same probability as the complete derivation that it
is mapped to by functionf . An implication of
this property is that for each stringw ∈ Σ∗ , the
probabilities assigned to that string by(G, pG) and
(A, pA) are equal.

We say that probabilistic parsing strategyS ′ is an
extensionof parsing strategyS if for each reduced
CFGG and probability functionpG we haveS(G) =
(A, f) if and only if S ′(G, pG) = (A, pA, f) for
somepA.

4 Correct-Prefix Property
In this section we present a necessary condition for
the probabilistic extension of a parsing strategy. For
a given PDT, we say a computationc is dead if
(Xin, w1, ε) `c (α, ε, v1), for someα ∈ Q∗, w1 ∈
Σ∗ andv1 ∈ Σ∗ , and there are now2 ∈ Σ∗ and
v2 ∈ Σ∗ such that(α,w2, ε) `∗ (Xfin, ε, v2). In-
formally, a dead computation is a computation that
cannot be continued to become a complete compu-
tation. We say that a PDT has thecorrect-prefix
property (CPP) if it does not allow any dead com-
putations. We also say that a parsing strategy has
the CPP if it maps each reduced CFG to a PDT that
has the CPP.

Lemma 1 For each reduced CFGG, there is a
probability functionpG such that PCFG(G, pG) is
proper and consistent, andpG(d) > 0 for all com-
plete derivationsd.

Proof. SinceG is reduced, there is a finite setD
consisting of complete derivationsd, such that for
each ruleπ in G there is at least oned ∈ D in
which π occurs. Letnπ,d be the number of occur-
rences of ruleπ in derivationd ∈ D, and letnπ be
Σd∈D nπ,d, the total number of occurrences ofπ in
D. LetnA be the sum ofnπ for all rulesπ withA in
the left-hand side. A probability functionpG can be
defined through “maximum-likelihood estimation”
such thatpG(π) = nπ

nA
for each ruleπ = A→ α.

For all nonterminalsA, Σπ=A→α pG(π) =
Σπ=A→α

nπ
nA

= nA
nA

= 1, which means that the
PCFG(G, pG) is proper. Furthermore, it has been
shown in (Chi and Geman, 1998; Sánchez and
Bened́ı, 1997) that a PCFG(G, pG) is consistent if
pG was obtained by maximum-likelihood estimation
using a set of derivations. Finally, sincenπ > 0 for
eachπ, alsopG(π) > 0 for eachπ, andpG(d) > 0
for all complete derivationsd.

We say a computation is a shortest dead compu-
tation if it is dead and none of its proper prefixes is
dead. Note that each dead computation has a unique
prefix that is a shortest dead computation. For a
PDTA, let TA be the union of the set of all com-
plete computations and the set of all shortest dead
computations.

Lemma 2 For each proper PPDT (A, pA),
Σc∈TA pA(c) ≤ 1.

Proof. The proof is a trivial variant of the proof
that for a proper PCFG(G, pG), the sum ofpG(d) for
all derivationsd cannot exceed 1, which is shown by
(Booth and Thompson, 1973).

From this, the main result of this section follows.



Theorem 3 A parsing strategy that lacks the CPP
cannot be extended to become a probabilistic pars-
ing strategy.

Proof. Take a parsing strategyS that does not have
the CPP. Then there is a reduced CFGG = (Σ, N,
S, R), with S(G) = (A, f) for someA andf , and
a shortest dead computationc allowed byA.

It follows from Lemma 1 that there is a proba-
bility function pG such that(G, pG) is a proper and
consistent PCFG andpG(d) > 0 for all complete
derivationsd. Assume we also have a probability
functionpA such that(A, pA) is a proper and con-
sistent PPDT andpA(c′) = pG(f(c′)) for each com-
plete computationc′. SinceA is reduced, each tran-
sition τ must occur in some complete computation
c′. Furthermore, for each complete computationc′

there is a complete derivationd such thatf(c′) = d,
andpA(c′) = pG(d) > 0. Therefore,pA(τ) > 0
for each transitionτ , andpA(c) > 0, wherec is the
above-mentioned dead computation.

Due to Lemma 2,1 ≥ Σc′∈TA pA(c′) ≥
Σw∈Σ∗ pA(w) + pA(c) > Σw∈Σ∗ pA(w) =
Σw∈Σ∗ pG(w). This is in contradiction with the con-
sistency of(G, pG). Hence, a probability function
pA with the properties we required above cannot ex-
ist, and thereforeS cannot be extended to become a
probabilistic parsing strategy.

5 Strong Predictiveness
In this section we present our main result, which is a
sufficient condition allowing the probabilistic exten-
sion of a parsing strategy. We start with a technical
result that was proven in (Abney et al., 1999; Chi,
1999; Nederhof and Satta, 2003).

Lemma 4 Given a non-proper PCFG(G, pG), G =
(Σ,N, S,R), there is a probability functionp′G such
that PCFG(G, p′G) is proper and, for every com-
plete derivationd, p′G(d) = 1

C · pG(d), whereC =∑
S⇒d′w,w∈Σ∗ pG(d′).

Note that if PCFG(G, pG) in the above lemma is
consistent, thenC = 1 and(G, p′G) and(G, pG) de-
fine the same distribution on derivations. The nor-
malization procedure underlying Lemma 4 makes
use of quantities

∑
A⇒dw,w∈Σ∗ pG(d) for eachA ∈

N . These quantities can be computed to any degree
of precision, as discussed for instance in (Booth and
Thompson, 1973) and (Stolcke, 1995). Thus nor-
malization of a PCFG can be effectively computed.

For a fixed PDT, we define the binary relation;

on stack symbols by:Y ; Y ′ if and only if
(Y,w, ε) `∗ (Y ′, ε, v) for somew ∈ Σ∗ and

v ∈ Σ∗ . In words, some subcomputation of the
PDT may start with stackY and end with stackY ′.
Note that all stacks that occur in such a subcompu-
tation must have height of 1 or more. We say that a
(P)PDA or a (P)PDT has thestrong predictiveness
property (SPP) if the existence of three transitions
X 7→ XY , XY1 7→ Z1 andXY2 7→ Z2 such that
Y ; Y1 andY ; Y2 impliesZ1 = Z2. Infor-
mally, this means that when a subcomputation starts
with some stackα and some push transitionτ , then
solely on the basis ofτ we can uniquely determine
what stack symbolZ1 = Z2 will be on top of the
stack in the firstly reached configuration with stack
height equal to|α|. Another way of looking at it is
that no information may flow from higher stack el-
ements to lower stack elements that was not already
predicted before these higher stack elements came
into being, hence the term “strong predictiveness”.
We say that a parsing strategy has the SPP if it maps
each reduced CFG to a PDT with the SPP.

Theorem 5 Any parsing strategy that has the CPP
and the SPP can be extended to become a proba-
bilistic parsing strategy.

Proof. Consider a parsing strategyS that has the
CPP and the SPP, and a proper, consistent and re-
duced PCFG(G, pG), G = (Σ, N, S, R). Let
S(G) = (A, f), A = (Σ, Σ, Q, Xin, Xfin, ∆).
We will show that there is a probability functionpA
such that(A, pA) is a proper and consistent PPDT,
andpA(c) = pG(f(c)) for all complete computa-
tionsc.

We first construct a PPDT(A, p′A) as follows.
For each scan transitionτ = X

x,y7→ Y in ∆, let
p′A(τ) = pG(y) in casey ∈ R, andp′A(τ) = 1
otherwise. For all remaining transitionsτ ∈ ∆, let
p′A(τ) = 1. Note that(A, p′A) may be non-proper.
Still, from the definition off it follows that, for each
complete computationc, we have

p′A(c) = pG(f(c)), (1)

and so our PPDT is consistent.
We now map(A, p′A) to a language-equivalent

PCFG(G′, pG′), G′ = (Σ, Q,Xin, R
′), whereR′

contains the following rules with the specified asso-
ciated probabilities:

• X → YZ with pG′(X → YZ ) = p ′A(X 7→
XY ), for eachX 7→ XY ∈ ∆ with Z the
unique stack symbol such that there is at least
one transitionXY ′ 7→ Z with Y ; Y ′;

• X → xY with pG′(X → xY ) = p ′A(X x7→
Y ), for each transitionX x7→ Y ∈ ∆;



• Y → ε with pG′(X → ε) = 1, for each stack
symbolY such that there is at least one transi-
tionXY 7→ Z ∈ ∆ or such thatY = Xfin.

It is not difficult to see that there exists a bijection
f ′ from complete computations ofA to complete
derivations ofG′, and that we have

pG′(f ′(c)) = p′A(c), (2)

for each complete computationc. Thus (G′, pG′)
is consistent. However, note that(G′, pG′) is not
proper.

By Lemma 4, we can construct a new PCFG
(G′, p′G′) that is proper and consistent, and such that
pG′(d) = p′G′(d), for each complete derivationd of
G′. Thus, for each complete computationc ofA, we
have

p′G′(f
′(c)) = pG′(f ′(c)). (3)

We now transfer back the probabilities of rules of
(G′, p′G′) to the transitions ofA. Formally, we define
a new probability functionpA such that, for each
τ ∈ ∆, pA(τ) = p′G′(π), whereπ is the rule inR′

that has been constructed fromτ as specified above.
It is easy to see that PPDT(A, pA) is now proper.
Furthermore, for each complete computationc ofA
we have

pA(c) = p′G′(f
′(c)), (4)

and so(A, pA) is also consistent. By combining
equations (1) to (4) we conclude that, for each com-
plete computationc of A, pA(c) = p′G′(f

′(c)) =
pG′(f ′(c)) = p′A(c) = pG(f(c)). Thus our parsing
strategyS can be probabilistically extended.
Note that the construction in the proof above can
be effectively computed (see discussion in Section 4
for effective computation of normalized PCFGs).

The definition ofp′A in the proof of Theorem 5
relies on the strings output byA. This is the main
reason why we needed to consider PDTs rather
than PDAs. Now assume an appropriate probabil-
ity function pA has been computed, such that the
source PCFG and(A, pA) define equivalent dis-
tributions on derivations/computations. Then the
probabilities assigned to strings over the input al-
phabet are also equal. We may subsequently ignore
the output strings if the application at hand merely
requires probabilistic recognition rather than proba-
bilistic transduction, or in other words, we may sim-
plify PDTs to PDAs.

The proof of Theorem 5 also leads to the obser-
vation that parsing strategies with the CPP and the
SPP as well as their probabilistic extensions can be

described as grammar transformations, as follows.
A given (P)CFG is mapped to an equivalent (P)PDT
by a (probabilistic) parsing strategy. By ignoring
the output components of swap transitions we ob-
tain a (P)PDA, which can be mapped to an equiva-
lent (P)CFG as shown above. This observation gives
rise to an extension with probabilities of the work on
covers by (Nijholt, 1980; Leermakers, 1989).

6 Applications

Many well-known parsing strategies with the CPP
also have the SPP. This is for instance the case
for top-down parsing and left-corner parsing. As
discussed in the introduction, it has already been
shown that for any PCFGG, there are equiva-
lent PPDTs implementing these strategies, as re-
ported in (Abney et al., 1999) and (Tendeau, 1995),
respectively. Those results more simply follow
now from our general characterization. Further-
more, PLR parsing (Soisalon-Soininen and Ukko-
nen, 1979; Nederhof, 1994) can be expressed in our
framework as a parsing strategy with the CPP and
the SPP, and thus we obtain as a new result that this
strategy allows probabilistic extension.

The above strategies are in contrast to the LR
parsing strategy, which has the CPP but lacks the
SPP, and therefore falls outside our sufficient condi-
tion. As we have already seen in the introduction, it
turns out that LR parsing cannot be extended to be-
come a probabilistic parsing strategy. Related to LR
parsing is ELR parsing (Purdom and Brown, 1981;
Nederhof, 1994), which also lacks the SPP. By an
argument similar to the one provided for LR, we can
show that also ELR parsing cannot be extended to
become a probabilistic parsing strategy. (See (Ten-
deau, 1997) for earlier observations related to this.)
These two cases might suggest that the sufficient
condition in Theorem 5 is tight in practice.

Decidability of the CPP and the SPP obviously
depends on how a parsing strategy is specified. As
far as we know, in all practical cases of parsing
strategies these properties can be easily decided.
Also, observe that our results do not depend on the
general behaviour of a parsing strategyS, but just
on its “point-wise” behaviour on each input CFG.
Specifically, if S does not have the CPP and the
SPP, but for some fixed CFGG of interest we ob-
tain a PDTA that has the CPP and the SPP, then
we can still apply the construction in Theorem 5.
In this way, any probability functionpG associated
with G can be converted into a probability function
pA, such that the resulting PCFG and PPDT induce
equivalent distributions. We point out that decid-
ability of the CPP and the SPP for a fixed PDT can



be efficiently decided using dynamic programming.
One more consequence of our results is this. As

discussed in the introduction, the properness condi-
tion reduces the number of parameters of a PPDT.
However, our results show that if the PPDT has the
CPP and the SPP then the properness assumption is
not restrictive, i.e., by lifting properness we do not
gain new distributions with respect to those induced
by the underlying PCFG.

7 Conclusions

We have formalized the notion of CFG parsing strat-
egy as a mapping from CFGs to PDTs, and have in-
vestigated the extension to probabilities. We have
shown that the question of which parsing strategies
can be extended to become probabilistic heavily re-
lies on two properties, the correct-prefix property
and the strong predictiveness property. As far as we
know, this is the first general characterization that
has been provided in the literature for probabilistic
extension of CFG parsing strategies. We have also
shown that there is at least one strategy of practical
interest with the CPP but without the SPP, namely
LR parsing, that cannot be extended to become a
probabilistic parsing strategy.
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J.-A. Śanchez and J.-M. Benedı́. 1997. Consis-
tency of stochastic context-free grammars from
probabilistic estimation based on growth trans-
formations.IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 19(9):1052–1055,
September.

E.S. Santos. 1972. Probabilistic grammars and au-
tomata.Information and Control, 21:27–47.

S. Sippu and E. Soisalon-Soininen. 1990.Parsing
Theory, Vol. II: LR(k) and LL(k) Parsing, vol-
ume 20 ofEATCS Monographs on Theoretical
Computer Science. Springer-Verlag.

E. Soisalon-Soininen and E. Ukkonen. 1979. A
method for transforming grammars into LL(k)
form. Acta Informatica, 12:339–369.

V. Sornlertlamvanich, K. Inui, H. Tanaka, T. Toku-
naga, and T. Takezawa. 1999. Empirical sup-
port for new probabilistic generalized LR pars-
ing. Journal of Natural Language Processing,
6(3):3–22.

A. Stolcke. 1995. An efficient probabilistic
context-free parsing algorithm that computes
prefix probabilities.Computational Linguistics,
21(2):167–201.

F. Tendeau. 1995. Stochastic parse-tree recognition
by a pushdown automaton. InFourth Interna-
tional Workshop on Parsing Technologies, pages
234–249, Prague and Karlovy Vary, Czech Re-
public, September.

F. Tendeau. 1997. Analyse syntaxique et
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