
Dependency Tree Kernels for Relation Extraction

Aron Culotta
University of Massachusetts

Amherst, MA 01002
USA

culotta@cs.umass.edu

Jeffrey Sorensen
IBM T.J. Watson Research Center

Yorktown Heights, NY 10598
USA

sorenj@us.ibm.com

Abstract

We extend previous work on tree kernels to estimate
the similarity between the dependency trees of sen-
tences. Using this kernel within a Support Vector
Machine, we detect and classify relations between
entities in the Automatic Content Extraction (ACE)
corpus of news articles. We examine the utility of
different features such as Wordnet hypernyms, parts
of speech, and entity types, and find that the depen-
dency tree kernel achieves a 20% F1 improvement
over a “bag-of-words” kernel.

1 Introduction

The ability to detect complex patterns in data is lim-
ited by the complexity of the data’s representation.
In the case of text, a more structured data source
(e.g. a relational database) allows richer queries
than does an unstructured data source (e.g. a col-
lection of news articles). For example, current web
search engines would not perform well on the query,
“list all California-based CEOs who have social ties
with a United States Senator.” Only a structured
representation of the data can effectively provide
such a list.

The goal of Information Extraction (IE) is to dis-
cover relevant segments of information in a data
stream that will be useful for structuring the data.
In the case of text, this usually amounts to finding
mentions of interesting entities and the relations that
join them, transforming a large corpus of unstruc-
tured text into a relational database with entries such
as those in Table 1.

IE is commonly viewed as a three stage process:
first, anentity taggerdetects all mentions of interest;
second,coreference resolutionresolves disparate
mentions of the same entity; third, arelation extrac-
tor finds relations between these entities. Entity tag-
ging has been thoroughly addressed by many statis-
tical machine learning techniques, obtaining greater
than 90% F1 on many datasets (Tjong Kim Sang
and De Meulder, 2003). Coreference resolution is
an active area of research not investigated here (Pa-

Entity Type Location
Apple Organization Cupertino, CA

Microsoft Organization Redmond, WA

Table 1: An example of extracted fields

sula et al., 2002; McCallum and Wellner, 2003).
We describe a relation extraction technique based

on kernel methods. Kernel methods are non-
parametric density estimation techniques that com-
pute a kernel function between data instances,
where a kernel function can be thought of as a sim-
ilarity measure. Given a set of labeled instances,
kernel methods determine the label of a novel in-
stance by comparing it to the labeled training in-
stances using this kernel function. Nearest neighbor
classification and support-vector machines (SVMs)
are two popular examples of kernel methods (Fuku-
naga, 1990; Cortes and Vapnik, 1995).

An advantage of kernel methods is that they can
search a feature space much larger than could be
represented by a feature extraction-based approach.
This is possible because the kernel function can ex-
plore animplicit feature space when calculating the
similarity between two instances, as described in the
Section 3.

Working in such a large feature space can lead to
over-fitting in many machine learning algorithms.
To address this problem, we apply SVMs to the task
of relation extraction. SVMs find a boundary be-
tween instances of different classes such that the
distance between the boundary and the nearest in-
stances is maximized. This characteristic, in addi-
tion to empirical validation, indicates that SVMs are
particularly robust to over-fitting.

Here we are interested in detecting and classify-
ing instances of relations, where a relation is some
meaningful connection between two entities (Table
2). We represent each relation instance as anaug-
mented dependency tree. A dependency tree repre-
sents the grammatical dependencies in a sentence;
we augment this tree with features for each node



AT NEAR PART ROLE SOCIAL
Based-In Relative-location Part-of Affiliate, Founder Associate, Grandparent
Located Subsidiary Citizen-of, Management Parent, Sibling

Residence Other Client, Member Spouse, Other-professional
Owner, Other, Staff Other-relative, Other-personal

Table 2: Relation types and subtypes.

(e.g. part of speech) We choose this representation
because we hypothesize that instances containing
similar relations will share similar substructures in
their dependency trees. The task of the kernel func-
tion is to find these similarities.

We define atree kernelover dependency trees and
incorporate this kernel within an SVM to extract
relations from newswire documents. The tree ker-
nel approach consistently outperforms the bag-of-
words kernel, suggesting that this highly-structured
representation of sentences is more informative for
detecting and distinguishing relations.

2 Related Work

Kernel methods (Vapnik, 1998; Cristianini and
Shawe-Taylor, 2000) have become increasingly
popular because of their ability to map arbitrary ob-
jects to a Euclidian feature space. Haussler (1999)
describes a framework for calculating kernels over
discrete structures such as strings and trees. String
kernels for text classification are explored in Lodhi
et al. (2000), and tree kernel variants are described
in (Zelenko et al., 2003; Collins and Duffy, 2002;
Cumby and Roth, 2003). Our algorithm is similar
to that described by Zelenko et al. (2003). Our
contributions are a richer sentence representation, a
more general framework to allow feature weighting,
as well as the use of composite kernels to reduce
kernel sparsity.

Brin (1998) and Agichtein and Gravano (2000)
apply pattern matching and wrapper techniques for
relation extraction, but these approaches do not
scale well to fastly evolving corpora. Miller et al.
(2000) propose an integrated statistical parsing tech-
nique that augments parse trees with semantic la-
bels denoting entity and relation types. Whereas
Miller et al. (2000) use a generative model to pro-
duce parse information as well as relation informa-
tion, we hypothesize that a technique discrimina-
tively trained to classify relations will achieve bet-
ter performance. Also, Roth and Yih (2002) learn a
Bayesian network to tag entities and their relations
simultaneously. We experiment with a more chal-
lenging set of relation types and a larger corpus.

3 Kernel Methods

In traditional machine learning, we are provided
a set of training instancesS = {x1 . . . xN},
where each instancexi is represented by somed-
dimensional feature vector. Much time is spent on
the task offeature engineering– searching for the
optimal feature set either manually by consulting
domain experts or automatically through feature in-
duction and selection (Scott and Matwin, 1999).
For example, in entity detection the original in-
stance representation is generally a word vector cor-
responding to a sentence. Feature extraction and
induction may result in features such as part-of-
speech, word n-grams, character n-grams, capital-
ization, and conjunctions of these features. In the
case of more structured objects, such as parse trees,
features may include some description of the ob-
ject’s structure, such as “has an NP-VP subtree.”
Kernel methods can be particularly effective at re-
ducing the feature engineering burden for structured
objects. By calculating the similarity between two
objects, kernel methods can employ dynamic pro-
gramming solutions to efficiently enumerate over
substructures that would be too costly to explicitly
include as features.

Formally, a kernel functionK is a mapping
K : X × X → [0,∞] from instance spaceX
to a similarity scoreK(x, y) =

∑
i φi(x)φi(y) =

φ(x) · φ(y). Here, φi(x) is some feature func-
tion over the instancex. The kernel function must
be symmetric[K(x, y) = K(y, x)] and positive-
semidefinite. By positive-semidefinite, we require
that the ifx1, . . . , xn ∈ X, then then × n matrix
G defined byGij = K(xi, xj) is positive semi-
definite. It has been shown that any function that
takes the dot product of feature vectors is a kernel
function (Haussler, 1999).

A simple kernel function takes the dot product of
the vector representation of instances being com-
pared. For example, in document classification,
each document can be represented by a binary vec-
tor, where each element corresponds to the presence
or absence of a particular word in that document.
Here,φi(x) = 1 if word i occurs in documentx.
Thus, the kernel functionK(x, y) returns the num-



ber of words in common betweenx andy. We refer
to this kernel as the “bag-of-words” kernel, since it
ignores word order.

When instances are more structured, as in the
case of dependency trees, more complex kernels
become necessary. Haussler (1999) describescon-
volution kernels, which find the similarity between
two structures by summing the similarity of their
substructures. As an example, consider a kernel
over strings. To determine the similarity between
two strings, string kernels (Lodhi et al., 2000) count
the number of common subsequences in the two
strings, and weight these matches by their length.
Thus,φi(x) is the number of times stringx contains
the subsequence referenced byi. These matches can
be found efficiently through a dynamic program,
allowing string kernels to examine long-range fea-
tures that would be computationally infeasible in a
feature-based method.

Given a training setS = {x1 . . . xN}, kernel
methods compute theGram matrix G such that
Gij = K(xi, xj). Given G, the classifier finds a
hyperplane which separates instances of different
classes. To classify an unseen instancex, the classi-
fier first projectsx into the feature space defined by
the kernel function. Classification then consists of
determining on which side of the separating hyper-
planex lies.

A support vector machine(SVM) is a type of
classifier that formulates the task of finding the sep-
arating hyperplane as the solution to a quadratic pro-
gramming problem (Cristianini and Shawe-Taylor,
2000). Support vector machines attempt to find a
hyperplane that not only separates the classes but
also maximizes the margin between them. The hope
is that this will lead to better generalization perfor-
mance on unseen instances.

4 Augmented Dependency Trees

Our task is to detect and classify relations between
entities in text. We assume that entity tagging has
been performed; so to generate potential relation
instances, we iterate over all pairs of entities oc-
curring in the same sentence. For each entity pair,
we create anaugmented dependency tree(described
below) representing this instance. Given a labeled
training set of potential relations, we define atree
kernelover dependency trees which we then use in
an SVM to classify test instances.

A dependency tree is a representation that de-
notes grammatical relations between words in a sen-
tence (Figure 1). A set of rules maps a parse tree to
a dependency tree. For example, subjects are de-
pendent on their verbs and adjectives are dependent

Troops

Tikrit

advanced

near
t

t

t

t
0

1 2

3

Figure 1: A dependency tree for the sentence
Troops advanced near Tikrit.

Feature Example
word troops, Tikrit

part-of-speech (24 values) NN, NNP
general-pos (5 values) noun, verb, adj

chunk-tag NP, VP, ADJP
entity-type person, geo-political-entity
entity-level name, nominal, pronoun

Wordnet hypernyms social group, city
relation-argument ARG A, ARG B

Table 3: List of features assigned to each node in
the dependency tree.

on the nouns they modify. Note that for the pur-
poses of this paper, we do not consider the link la-
bels (e.g. “object”, “subject”); instead we use only
the dependency structure. To generate the parse tree
of each sentence, we use MXPOST, a maximum en-
tropy statistical parser1; we then convert this parse
tree to a dependency tree. Note that the left-to-right
ordering of the sentence is maintained in the depen-
dency tree only among siblings (i.e. the dependency
tree does not specify an order to traverse the tree to
recover the original sentence).

For each pair of entities in a sentence, we find
the smallest common subtree in the dependency tree
that includes both entities. We choose to use this
subtree instead of the entire tree to reduce noise
and emphasize the local characteristics of relations.
We then augment each node of the tree with a fea-
ture vector (Table 3). The relation-argument feature
specifies whether an entity is the first or second ar-
gument in a relation. This is required to learn asym-
metric relations (e.g. XOWNS Y).

Formally, a relation instance is a dependency tree

1http://www.cis.upenn.edu/˜adwait/statnlp.html



T with nodes{t0 . . . tn}. The features of nodeti
are given byφ(ti) = {v1 . . . vd}. We refer to the
jth child of nodeti asti[j], and we denote the set
of all children of nodeti as ti[c]. We reference a
subsetj of children ofti by ti[j] ⊆ ti[c]. Finally, we
refer to the parent of nodeti asti.p.

From the example in Figure 1,t0[1] = t2,
t0[{0, 1}] = {t1, t2}, andt1.p = t0.

5 Tree kernels for dependency trees

We now define a kernel function for dependency
trees. The tree kernel is a functionK(T1, T2) that
returns a normalized, symmetric similarity score in
the range(0, 1) for two treesT1 and T2. We de-
fine a slightly more general version of the kernel
described by Zelenko et al. (2003).

We first define two functions over the features of
tree nodes: a matching functionm(ti, tj) ∈ {0, 1}
and a similarity functions(ti, tj) ∈ (0,∞]. Let the
feature vectorφ(ti) = {v1 . . . vd} consist of two
possibly overlapping subsetsφm(ti) ⊆ φ(ti) and
φs(ti) ⊆ φ(ti). We useφm(ti) in the matching
function andφs(ti) in the similarity function. We
define

m(ti, tj) =

{
1 if φm(ti) = φm(tj)
0 otherwise

and

s(ti, tj) =
∑

vq∈φs(ti)

∑
vr∈φs(tj)

C(vq, vr)

whereC(vq, vr) is some compatibility function
between two feature values. For example, in the
simplest case where

C(vq, vr) =

{
1 if vq = vr

0 otherwise

s(ti, tj) returns the number of feature values in
common between feature vectorsφs(ti) andφs(tj).

We can think of the distinction between functions
m(ti, tj) ands(ti, tj) as a way to discretize the sim-
ilarity between two nodes. Ifφm(ti) 6= φm(tj),
then we declare the two nodes completely dissimi-
lar. However, ifφm(ti) = φm(tj), then we proceed
to compute the similaritys(ti, tj). Thus, restrict-
ing nodes bym(ti, tj) is a way to prune the search
space of matching subtrees, as shown below.

For two dependency treesT1, T2, with root nodes
r1 and r2, we define the tree kernelK(T1, T2) as

follows:

K(T1, T2) =


0 if m(r1, r2) = 0
s(r1, r2)+

Kc(r1[c], r2[c]) otherwise

whereKc is a kernel function over children. Let
a and b be sequences of indices such thata is a
sequencea1 ≤ a2 ≤ . . . ≤ an, and likewise forb.
Let d(a) = an− a1 + 1 andl(a) be the length ofa.
Then we haveKc(ti[c], tj [c]) =

∑
a,b,l(a)=l(b)

λd(a)λd(b)K(ti[a], tj [b])

The constant0 < λ < 1 is a decay factor that
penalizes matching subsequences that are spread
out within the child sequences. See Zelenko et al.
(2003) for a proof thatK is kernel function.

Intuitively, whenever we find a pair of matching
nodes, we search for allmatching subsequencesof
the children of each node. A matching subsequence
of children is a sequence of childrena andb such
that m(ai, bi) = 1 (∀i < n). For each matching
pair of nodes(ai, bi) in a matching subsequence,
we accumulate the result of the similarity function
s(ai, bj) and then recursively search for matching
subsequences oftheir childrenai[c], bj [c].

We implement two types of tree kernels. A
contiguouskernel only matches children subse-
quences that are uninterrupted by non-matching
nodes. Therefore,d(a) = l(a). A sparsetree ker-
nel, by contrast, allows non-matching nodes within
matching subsequences.

Figure 2 shows two relation instances, where
each node contains the original text plus the features
used for the matching function,φm(ti) = {general-
pos, entity-type, relation-argument}. (“NA” de-
notes the feature is not present for this node.) The
contiguous kernel matches the following substruc-
tures: {t0[0], u0[0]}, {t0[2], u0[1]}, {t3[0], u2[0]}.
Because the sparse kernel allows non-contiguous
matching sequences, it matches an additional sub-
structure {t0[0, ∗, 2], u0[0, ∗, 1]}, where (∗) indi-
cates an arbitrary number of non-matching nodes.

Zelenko et al. (2003) have shown the contiguous
kernel to be computable inO(mn) and the sparse
kernel inO(mn3), wherem andn are the number
of children in treesT1 andT2 respectively.

6 Experiments
We extract relations from the Automatic Content
Extraction (ACE) corpus provided by the National
Institute for Standards and Technology (NIST). The



person
noun

NA
NA
verb

ARG_B
geo−political

1

0

troops

advanced

noun
Tikrit

ARG_A

person
noun
forces

NA
NA
verb
moved

NA
NA
prep

toward

ARG_B

t

t

t t

t

1

0

2 3

4

geo−political
noun
Baghdad

quickly
adverb
NA
NA

ARG_A

near
prep
NA
NA

2

3

u

u

u

u

Figure 2: Two instances of the NEAR relation.

data consists of about 800 annotated text documents
gathered from various newspapers and broadcasts.
Five entities have been annotated (PERSON, ORGA-
NIZATION , GEO-POLITICAL ENTITY, LOCATION,
FACILITY ), along with 24 types of relations (Table
2). As noted from the distribution of relationship
types in the training data (Figure 3), data imbalance
and sparsity are potential problems.

In addition to the contiguous and sparse tree
kernels, we also implement a bag-of-words ker-
nel, which treats the tree as a vector of features
over nodes, disregarding any structural informa-
tion. We also createcomposite kernelsby combin-
ing the sparse and contiguous kernels with the bag-
of-words kernel. Joachims et al. (2001) have shown
that given two kernelsK1, K2, the composite ker-
nelK12(xi, xj) = K1(xi, xj)+K2(xi, xj) is also a
kernel. We find that this composite kernel improves
performance when the Gram matrixG is sparse (i.e.
our instances are far apart in the kernel space).

The features used to represent each node are
shown in Table 3. After initial experimentation,
the set of features we use in the matching func-
tion isφm(ti) = {general-pos, entity-type, relation-
argument}, and the similarity function examines the

Figure 3: Distribution over relation types in train-
ing data.

remaining features.
In our experiments we tested the following five

kernels:

K0 = sparse kernel

K1 = contiguous kernel

K2 = bag-of-words kernel

K3 = K0 + K2

K4 = K1 + K2

We also experimented with the functionC(vq, vr),
the compatibility function between two feature val-
ues. For example, we can increase the importance
of two nodes having the same Wordnet hypernym2.
If vq, vr are hypernym features, then we can define

C(vq, vr) =

{
α if vq = vr

0 otherwise

When α > 1, we increase the similarity of
nodes that share a hypernym. We tested a num-
ber of weighting schemes, but did not obtain a set
of weights that produced consistent significant im-
provements. See Section 8 for alternate approaches
to settingC.

2http://www.cogsci.princeton.edu/˜wn/



Avg. Prec. Avg. Rec. Avg. F1
K1 69.6 25.3 36.8
K2 47.0 10.0 14.2
K3 68.9 24.3 35.5
K4 70.3 26.3 38.0

Table 4: Kernel performance comparison.

Table 4 shows the results of each kernel within
an SVM. (We augment the LibSVM3 implementa-
tion to include our dependency tree kernel.) Note
that, although training was done over all 24 rela-
tion subtypes, we evaluate only over the 5 high-level
relation types. Thus, classifying a RESIDENCE re-
lation as a LOCATED relation is deemed correct4.
Note also thatK0 is not included in Table 4 because
of burdensome computational time. Table 4 shows
that precision is adequate, but recall is low. This
is a result of the aforementioned class imbalance –
very few of the training examples are relations, so
the classifier is less likely to identify a testing in-
stances as a relation. Because we treat every pair
of mentions in a sentence as a possible relation, our
training set contains fewer than 15% positive rela-
tion instances.

To remedy this, we retrain each SVMs for a bi-
nary classification task. Here, we detect, but do not
classify, relations. This allows us to combine all
positive relation instances into one class, which pro-
vides us more training samples to estimate the class
boundary. We then threshold our output to achieve
an optimal operating point. As seen in Table 5, this
method of relation detection outperforms that of the
multi-class classifier.

We then use these binary classifiers in a cascading
scheme as follows: First, we use the binary SVM
to detect possible relations. Then, we use the SVM
trained only on positive relation instances to classify
each predicted relation. These results are shown in
Table 6.

The first result of interest is that the sparse tree
kernel, K0, does not perform as well as the con-
tiguous tree kernel,K1. Suspecting that noise was
introduced by the non-matching nodes allowed in
the sparse tree kernel, we performed the experi-
ment with different values for the decay factorλ =
{.9, .5, .1}, but obtained no improvement.

The second result of interest is that all tree ker-
nels outperform the bag-of-words kernel,K2, most
noticeably in recall performance, implying that the

3http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
4This is to compensate for the small amount of training data

for many classes.

Prec. Rec. F1
K0 – – –

K0 (B) 83.4 45.5 58.8
K1 91.4 37.1 52.8

K1 (B) 84.7 49.3 62.3
K2 92.7 10.6 19.0

K2 (B) 72.5 40.2 51.7
K3 91.3 35.1 50.8

K3 (B) 80.1 49.9 61.5
K4 91.8 37.5 53.3

K4 (B) 81.2 51.8 63.2

Table 5: Relationdetectionperformance. (B) de-
notes binary classification.

D C Avg. Prec. Avg. Rec. Avg. F1
K0 K0 66.0 29.0 40.1
K1 K1 66.6 32.4 43.5
K2 K2 62.5 27.7 38.1
K3 K3 67.5 34.3 45.3
K4 K4 67.1 35.0 45.8
K1 K4 67.4 33.9 45.0
K4 K1 65.3 32.5 43.3

Table 6: Results on the cascading classification.D
andC denote the kernel used for relation detection
and classification, respectively.

structural information the tree kernel provides is ex-
tremely useful for relation detection.

Note that the average results reported here are
representative of the performance per relation, ex-
cept for the NEAR relation, which had slightly lower
results overall due to its infrequency in training.

7 Conclusions

We have shown that using a dependency tree ker-
nel for relation extraction provides a vast improve-
ment over a bag-of-words kernel. While the de-
pendency tree kernel appears to perform well at the
task of classifying relations, recall is still relatively
low. Detectingrelations is a difficult task for a ker-
nel method because the set of allnon-relation in-
stances is extremely heterogeneous, and is therefore
difficult to characterize with a similarity metric. An
improved system might use a different method to
detect candidate relations and then use this kernel
method to classify the relations.

8 Future Work

The most immediate extension is to automatically
learn the feature compatibility functionC(vq, vr).



A first approach might use tf-idf to weight each fea-
ture. Another approach might be to calculate the
information gain for each feature and use that as
its weight. A more complex system might learn a
weight for each pair of features; however this seems
computationally infeasible for large numbers of fea-
tures.

One could also perform latent semantic indexing
to collapse feature values into similar “categories”
— for example, the words “football” and “baseball”
might fall into the same category. Here,C(vq, vr)
might returnα1 if vq = vr, andα2 if vq andvr are
in the same category, whereα1 > α2 > 0. Any
method that provides a “soft” match between fea-
ture values will sharpen the granularity of the kernel
and enhance its modeling power.

Further investigation is also needed to understand
why the sparse kernel performs worse than the con-
tiguous kernel. These results contradict those given
in Zelenko et al. (2003), where the sparse kernel
achieves 2-3% better F1 performance than the con-
tiguous kernel. It is worthwhile to characterize rela-
tion types that are better captured by the sparse ker-
nel, and to determine when using the sparse kernel
is worth the increased computational burden.

References

Eugene Agichtein and Luis Gravano. 2000. Snow-
ball: Extracting relations from large plain-text
collections. InProceedings of the Fifth ACM In-
ternational Conference on Digital Libraries.

Sergey Brin. 1998. Extracting patterns and rela-
tions from the world wide web. InWebDB Work-
shop at 6th International Conference on Extend-
ing Database Technology, EDBT’98.

M. Collins and N. Duffy. 2002. Convolution ker-
nels for natural language. In T. G. Dietterich,
S. Becker, and Z. Ghahramani, editors,Advances
in Neural Information Processing Systems 14,
Cambridge, MA. MIT Press.

Corinna Cortes and Vladimir Vapnik. 1995.
Support-vector networks.Machine Learning,
20(3):273–297.

N. Cristianini and J. Shawe-Taylor. 2000.An intro-
duction to support vector machines. Cambridge
University Press.

Chad M. Cumby and Dan Roth. 2003. On kernel
methods for relational learning. In Tom Fawcett
and Nina Mishra, editors,Machine Learning,
Proceedings of the Twentieth International Con-
ference (ICML 2003), August 21-24, 2003, Wash-
ington, DC, USA. AAAI Press.

K. Fukunaga. 1990.Introduction to Statistical Pat-

tern Recognition. Academic Press, second edi-
tion.

D. Haussler. 1999. Convolution kernels on dis-
crete structures. Technical Report UCS-CRL-99-
10, University of California, Santa Cruz.

Thorsten Joachims, Nello Cristianini, and John
Shawe-Taylor. 2001. Composite kernels for hy-
pertext categorisation. In Carla Brodley and An-
drea Danyluk, editors,Proceedings of ICML-
01, 18th International Conference on Machine
Learning, pages 250–257, Williams College, US.
Morgan Kaufmann Publishers, San Francisco,
US.

Huma Lodhi, John Shawe-Taylor, Nello Cristian-
ini, and Christopher J. C. H. Watkins. 2000. Text
classification using string kernels. InNIPS, pages
563–569.

A. McCallum and B. Wellner. 2003. Toward con-
ditional models of identity uncertainty with ap-
plication to proper noun coreference. InIJCAI
Workshop on Information Integration on the Web.

S. Miller, H. Fox, L. Ramshaw, and R. Weischedel.
2000. A novel use of statistical parsing to ex-
tract information from text. In6th Applied Nat-
ural Language Processing Conference.

H. Pasula, B. Marthi, B. Milch, S. Russell, and
I. Shpitser. 2002. Identity uncertainty and cita-
tion matching.

Dan Roth and Wen-tau Yih. 2002. Probabilistic
reasoning for entity and relation recognition. In
19th International Conference on Computational
Linguistics.

Sam Scott and Stan Matwin. 1999. Feature engi-
neering for text classification. InProceedings of
ICML-99, 16th International Conference on Ma-
chine Learning.

Erik F. Tjong Kim Sang and Fien De Meulder.
2003. Introduction to the CoNLL-2003 shared
task: Language-independent named entity recog-
nition. In Walter Daelemans and Miles Osborne,
editors,Proceedings of CoNLL-2003, pages 142–
147. Edmonton, Canada.

Vladimir Vapnik. 1998. Statistical Learning The-
ory. Whiley, Chichester, GB.

D. Zelenko, C. Aone, and A. Richardella. 2003.
Kernel methods for relation extraction.Jour-
nal of Machine Learning Research, pages 1083–
1106.


