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Abstract

We use machine learners trained on a combina-
tion of acoustic confidence and pragmatic plausi-
bility features computed from dialogue context to
predict the accuracy of incoming n-best recogni-
tion hypotheses to a spoken dialogue system. Our
best results show a 25% weighted f-score improve-
ment over a baseline system that implements a
“grammar-switching” approach to context-sensitive
speech recognition.

1 Introduction

A crucial problem in the design of spoken dialogue
systems is to decide for incoming recognition hy-
potheses whether a system shouldaccept(consider
correctly recognized),reject (assume misrecogni-
tion), or ignore (classify as noise or speech not di-
rected to the system) them. In addition, a more so-
phisticated dialogue system might decide whether
to clarify or confirmcertain hypotheses.

Obviously, incorrect decisions at this point can
have serious negative effects on system usability
and user satisfaction. On the one hand, accepting
misrecognized hypotheses leads to misunderstand-
ings and unintended system behaviors which are
usually difficult to recover from. On the other hand,
users might get frustrated with a system that be-
haves too cautiously and rejects or ignores too many
utterances. Thus an important feature in dialogue
system engineering is the tradeoff between avoiding
task failure (due to misrecognitions) and promoting
overall dialogue efficiency, flow, and naturalness.

In this paper, we investigate the use of machine
learners trained on a combination of acoustic confi-
dence and pragmatic plausibility features (i.e. com-
puted from dialogue context) to predict the qual-
ity of incoming n-best recognition hypotheses to
a spoken dialogue system. These predictions are
then used to select a “best” hypothesis and to de-
cide on appropriate system reactions. We evalu-
ate this approach in comparison with a baseline
system that combines fixed recognition confidence

rejection thresholds with dialogue-state dependent
recognition grammars (Lemon, 2004).

The paper is organized as follows. After a short
relation to previous work, Section 3 introduces the
WITAS multimodal dialogue system, which we use
to collect data (Section 4) and to derive baseline re-
sults (Section 5). Section 6 describes our learning
experiments for classifying and selecting from n-
best recognition hypotheses and Section 7 reports
our results.

2 Relation to Previous Work
(Litman et al., 2000) use acoustic-prosodic infor-
mation extracted from speech waveforms, together
with information derived from their speech recog-
nizer, to automatically predict misrecognized turns
in a corpus of train-timetable information dialogues.
In our experiments, we also use recognizer con-
fidence scores and a limited number of acoustic-
prosodic features (e.g. amplitude in the speech sig-
nal) for hypothesis classification. (Walker et al.,
2000) use a combination of features from the speech
recognizer, natural language understanding, and di-
alogue manager/discourse history to classify hy-
potheses as correct, partially correct, or misrecog-
nized. Our work is related to these experiments in
that we also combine confidence scores and higher-
level features for classification. However, both (Lit-
man et al., 2000) and (Walker et al., 2000) con-
sider only single-best recognition results and thus
use their classifiers as “filters” to decide whether the
best recognition hypothesis for a user utterance is
correct or not. We go a step further in that we clas-
sify n-best hypotheses and then select among the al-
ternatives. We also explore the use of more dialogue
and task-oriented features (e.g. the dialogue move
type of a recognition hypothesis) for classification.

The main difference between our approach and
work on hypothesis reordering (e.g. (Chotimongkol
and Rudnicky, 2001)) is that we make a decision re-
garding whether a dialogue system should accept,
clarify, reject, or ignore a user utterance. Fur-
thermore, our approach is more generally applica-



ble than preceding research, since we frame our
methodology in theInformation State Update(ISU)
approach to dialogue management (Traum et al.,
1999) and therefore expect it to be applicable to a
range of related multimodal dialogue systems.

3 The WITAS Dialogue System
The WITAS dialogue system (Lemon et al., 2002)
is a multimodal command and control dialogue sys-
tem that allows a human operator to interact with
a simulated “unmanned aerial vehicle” (UAV): a
small robotic helicopter. The human operator is pro-
vided with a GUI – an interactive (i.e. mouse click-
able) map – and specifies mission goals using nat-
ural language commands spoken into a headset, or
by using combinations of GUI actions and spoken
commands. The simulated UAV can carry out dif-
ferent activities such as flying to locations, follow-
ing vehicles, and delivering objects. The dialogue
system uses the Nuance 8.0 speech recognizer with
language models compiled from a grammar (written
using the Gemini system (Dowding et al., 1993)),
which is also used for parsing and generation.

3.1 WITAS Information States
The WITAS dialogue system is part of a larger
family of systems that implement theInformation
State Update(ISU) approach to dialogue manage-
ment (Traum et al., 1999). The ISU approach has
been used to formalize different theories of dia-
logue and forms the basis of several dialogue sys-
tem implementations in domains such as route plan-
ning, home automation, and tutorial dialogue. The
ISU approach is a particularly useful testbed for
our technique because it collects information rele-
vant to dialogue context in a central data structure
from which it can be easily extracted. (Lemon et al.,
2002) describe in detail the components of Informa-
tion States (IS) and the update procedures for pro-
cessing user input and generating system responses.
Here, we briefly introduce parts of the IS which are
needed to understand the system’s basic workings,
and from which we will extract dialogue-level and
task-level information for our learning experiments:

• Dialogue Move Tree(DMT): a tree-structure,
in which each subtree of the root node repre-
sents a “thread” in the conversation, and where
each node in a subtree represents an utterance
made either by the system or the user.1

• Active Node List(ANL): a list that records all
“active” nodes in the DMT; active nodes indi-

1A tree is used in order to overcome the limitations of stack-
based processing, see (Lemon and Gruenstein, 2004).

cate conversational contributions that are still
in some sense open, and to which new utter-
ances can attach.

• Activity Tree(AT): a tree-structure represent-
ing the current, past, and planned activities that
the back-end system (in this case a UAV) per-
forms.

• Salience List(SL): a list of NPs introduced in
the current dialogue ordered by recency.

• Modality Buffer(MB): a temporary store that
registers click events on the GUI.

The DMT and AT are the core components of In-
formation States. The SL and MB are subsidiary
data-structures needed for interpreting and generat-
ing anaphoric expressions and definite NPs. Finally,
the ANL plays a crucial role in integrating new user
utterances into the DMT.

4 Data Collection

For our experiments, we use data collected in a
small user study with the grammar-switching ver-
sion of the WITAS dialogue system (Lemon, 2004).
In this study, six subjects from Edinburgh Univer-
sity (4 male, 2 female) had to solve five simple tasks
with the system, resulting in 30 complete dialogues.

The subjects’ utterances were recorded as 8kHz
16bit waveform files and all aspects of the Informa-
tion State transitions during the interactions were
logged as html files. Altogether, 303 utterances
were recorded in the user study (≈ 10 user utter-
ances/dialogue).

4.1 Labeling

We transcribed all user utterances and parsed the
transcriptions offline using WITAS’ natural lan-
guage understanding component in order to get a
gold-standard labeling of the data. Each utter-
ance was labeled as eitherin-grammar or out-of-
grammar (oog), depending on whether its transcrip-
tion could be parsed or not, or ascrosstalk: a spe-
cial marker that indicated that the input was not di-
rected to the system (e.g. noise, laughter, self-talk,
the system accidentally recording itself). For all
in-grammar utterances we stored their interpreta-
tions (quasi-logical forms) as computed by WITAS’
parser. Since the parser uses a domain-specific se-
mantic grammar designed for this particular appli-
cation, each in-grammar utterance had an interpre-
tation that is “correct” with respect to the WITAS
application.



4.2 Simplifying Assumptions
The evaluations in the following sections make two
simplifying assumptions. First, we consider a user
utterance correctly recognized only if the logical
form of the transcription is the same as the logical
form of the recognition hypothesis. This assump-
tion can be too strong because the system might re-
act appropriately even if the logical forms are not
literally the same. Second, if a transcribed utter-
ance is out-of-grammar, we assume that the system
cannot react appropriately. Again, this assumption
might be too strong because the recognizer can ac-
cidentally map an utterance to a logical form that is
equivalent to the one intended by the user.

5 The Baseline System
The baseline for our experiments is the behavior of
the WITAS dialogue system that was used to col-
lect the experimental data (using dialogue context
as a predictor of language models for speech recog-
nition, see below). We chose this baseline because it
has been shown to perform significantly better than
an earlier version of the system that always used the
same (i.e. full) grammar for recognition (Lemon,
2004).

We evaluate the performance of the baseline by
analyzing the dialogue logs from the user study.
With this information, it is possible to decide how
the system reacted to each user utterance. We dis-
tinguish between the following three cases:

1. accept: the system accepted the recognition
hypothesis of a user utterance as correct.

2. reject: the system rejected the recognition hy-
pothesis of a user utterance given a fixed con-
fidence rejection threshold.

3. ignore: the system did not react to a user utter-
ance at all.

These three classes map naturally to the gold-
standard labels of the transcribed user utterances:
the system shouldacceptin-grammar utterances,re-
jectout-of-grammar input, andignorecrosstalk.

5.1 Context-sensitive Speech Recognition
In the the WITAS dialogue system, the “grammar-
switching” approach to context-sensitive speech
recognition (Lemon, 2004) is implemented using
the ANL. At any point in the dialogue, there is a
“most active node” at the top of the ANL. The dia-
logue move type of this node defines the name of a
language model that is used for recognizing the next
user utterance. For instance, if the most active node
is a systemyes-no-questionthen the appropriate

language model is defined by a small context-free
grammar covering phrases such as “yes”, “that’s
right”, “okay”, “negative”, “maybe”, and so on.

The WITAS dialogue system with context-
sensitive speech recognition showed significantly
better recognition rates than a previous version of
the system that used the full grammar for recogni-
tion at all times ((Lemon, 2004) reports a 11.5%
reduction in overall utterance recognition error
rate). Note however that an inherent danger with
grammar-switching is that the system may have
wrong expectations and thus might activate a lan-
guage model which is not appropriate for the user’s
next utterance, leading to misrecognitions or incor-
rect rejections.

5.2 Results

Table 1 summarizes the evaluation of the baseline
system.

System behavior
User utterance accept reject ignore
in-grammar 154/22 8 4
out-of-grammar 45 43 4
crosstalk 12 9 2

Accuracy: 65.68%
Weighted f-score: 61.81%

Table 1: WITAS dialogue system baseline results

Table 1 should be read as follows: looking at the
first row, in 154 cases the system understood and
accepted the correct logical form of an in-grammar
utterance by the user. In 22 cases, the system ac-
cepted a logical form that differed from the one for
the transcribed utterance.2 In 8 cases, the system re-
jected an in-grammar utterance and in 4 cases it did
not react to an in-grammar utterance at all. The sec-
ond row of Table 1 shows that the system accepted
45, rejected 43, and ignored 4 user utterances whose
transcriptions were out-of-grammar and could not
be parsed. Finally, the third row of the table shows
that the baseline system accepted 12 utterances that
were not addressed to it, rejected 9, and ignored 2.

Table 1 shows that a major problem with the base-
line system is that it accepts too many user utter-
ances. In particular, the baseline system accepts the
wrong interpretation for 22 in-grammar utterances,
45 utterances which it should have rejected as out-
of-grammar, and 12 utterances which it should have

2For the computation of accuracy and weighted f-scores,
these were counted as wrongly accepted out-of-grammar ut-
terances.



ignored. All of these cases will generally lead to
unintended actions by the system.

6 Classifying and Selecting N-best
Recognition Hypotheses

We aim at improving over the baseline results by
considering the n-best recognition hypotheses for
each user utterance. Our methodology consists of
two steps: i) we automatically classify the n-best
recognition hypotheses for an utterance as either
correctly or incorrectly recognized and ii) we use a
simple selection procedure to choose the “best” hy-
pothesis based on this classification. In order to get
multiple recognition hypotheses for all utterances
in the experimental data, we re-ran the speech rec-
ognizer with the full recognition grammar and 10-
best output and processed the results offline with
WITAS’ parser, obtaining a logical form for each
recognition hypothesis (every hypothesis has a log-
ical form since language models are compiled from
the parsing grammar).

6.1 Hypothesis Labeling

We labeled all hypotheses with one of the follow-
ing four classes, based on the manual transcriptions
of the experimental data:in-grammar, oog (WER≤
50), oog (WER> 50), orcrosstalk. Thein-grammar
andcrosstalkclasses correspond to those described
for the baseline. However, we decided to divide up
the out-of-grammarclass into the two classesoog
(WER≤ 50)andoog (WER> 50) to get a more fine-
grained classification. In order to assign hypotheses
to the twooog classes, we compute the word er-
ror rate (WER) between recognition hypotheses and
the transcription of corresponding user utterances.
If the WER is≤ 50%, we label the hypothesis as
oog (WER≤ 50), otherwise asoog (WER> 50).
We also annotate all misrecognized hypotheses of
in-grammarutterances with their respective WER
scores.

The motivation behind splitting theout-of-
grammar class into two subclasses and for anno-
tating misrecognizedin-grammarhypotheses with
their WER scores is that we want to distinguish be-
tween different “degrees” of misrecognition that can
be used by the dialogue system to decide whether
it should initiate clarification instead of rejection.3

We use a threshold (50%) on a hypothesis’ WER
as an indicator for whether hypotheses should be

3The WITAS dialogue system currently does not support
this type of clarification dialogue; the WER annotations are
therefore only of theoretical interest. However, an extended
system could easily use this information to decide when clari-
fication should be initiated.

clarified or rejected. This is adopted from (Gabs-
dil, 2003), based on the fact that WER correlates
with concept accuracy (CA, (Boros et al., 1996)).
The WER threshold can be set differently according
to the needs of an application. However, one would
ideally set a threshold directly on CA scores for this
labeling, but these are currently not available for our
data.

We also introduce the distinction betweenout-of-
grammar (WER≤ 50) andout-of-grammar (WER
> 50) in the gold standard for the classification
of (whole) user utterances. We split theout-of-
grammarclass into two sub-classes depending on
whether the 10-best recognition results include at
least one hypothesis with a WER≤ 50 compared
to the corresponding transcription. Thus, if there is
a recognition hypothesis which is close to the tran-
scription, an utterance is labeled asoog (WER≤
50). In order to relate these classes to different sys-
tem behaviors, we define that utterances labeled as
oog (WER≤ 50) should beclarified and utterances
labeled asoog (WER> 50) should berejectedby
the system. The same is done for allin-grammar
utterances for which only misrecognized hypothe-
ses are available.

6.2 Classification: Feature Groups
We represent recognition hypotheses as 20-
dimensional feature vectors for automatic classifica-
tion. The feature vectors combine recognizer con-
fidence scores, low-level acoustic information, in-
formation from WITAS system Information States,
and domain knowledge about the different tasks in
the scenario. The following list gives an overview
of all features (described in more detail below).

1. Recognition (6): nbestRank, hypothe-
sisLength, confidence, confidenceZScore,
confidence-StandardDeviation, minWordCon-
fidence

2. Utterance (3): minAmp, meanAmp, RMS-amp

3. Dialogue (9): currentDM, currentCommand,
mostActiveNode, DMBigramFrequency, qa-
Match, aqMatch, #unresolvedNPs, #unre-
solvedPronouns, #uniqueIndefinites

4. Task (2): taskConflict, #taskConstraintCon-
flict

All features are extracted automatically from the
output of the speech recognizer, utterance wave-
forms, IS logs, and a small library of plan operators
describing the actions the UAV can perform. The
recognition (REC) feature group includes the posi-
tion of a hypothesis in the n-best list (nbestRank),



its length in words (hypothesisLength), and five fea-
tures representing the recognizer’s confidence as-
sessment. Similar features have been used in the
literature (e.g. (Litman et al., 2000)). TheminWord-
Confidenceand standard deviation/zScore features
are computed from individual word confidences in
the recognition output. We expect them to help the
machine learners decide between the different WER
classes (e.g. a high overall confidence score can
sometimes be misleading). The utterance (UTT)
feature group reflects information about the ampli-
tude in the speech signal (all features are extracted
with the UNIX sox utility). The motivation for
including the amplitude features is that they might
be useful for detecting crosstalk utterances which
are not directly spoken into the headset microphone
(e.g. the system accidentally recognizing itself).

The dialogue features (DIAL) represent informa-
tion derived from Information States and can be
coarsely divided into two sub-groups. The first
group includes features representing general co-
herence constraints on the dialogue: the dialogue
move types of the current utterance (currentDM)
and of the most active node in the ANL (mostAc-
tiveNode), the command type of the current utter-
ance (currentCommand, if it is a command,null
otherwise), statistics on which move types typi-
cally follow each other (DMBigramFrequency), and
two features (qaMatch and aqMatch) that explic-
itly encode whether the current and the previous
utterance form a valid question answer pair (e.g.
yn-questionfollowed by yn-answer). The second
group includes features that indicate how many def-
inite NPs and pronouns cannot be resolved in the
current Information State (#unresolvedNP, #unre-
solvedPronouns, e.g. “the car” if no car was men-
tioned before) and a feature indicating the number
of indefinite NPs that can be uniquely resolved in
the Information State (#uniqueIndefinites, e.g. “a
tower” where there is only one tower in the do-
main). We include these features because (short)
determiners are often confused by speech recogniz-
ers. In the WITAS scenario, a misrecognized deter-
miner/demonstrative pronoun can lead to confusing
system behavior (e.g. a wrongly recognized “there”
will cause the system to ask “Where is that?”).

Finally, the task features (TASK) reflect conflict-
ing instructions in the domain. The featuretaskCon-
flict indicates a conflict if the current dialogue move
type is a command and that command already ap-
pears as an active task in the AT.#taskConstraint-
Conflict counts the number of conflicts that arise
between the currently active tasks in the AT and the
hypothesis. For example, if the UAV is already fly-

ing somewhere the preconditions of the action op-
erator fortake off (altitude = 0) conflict with
those forfly (altitude 6= 0), so that “take off”
would be an unlikely command in this context.

6.3 Learners and Selection Procedure

We use the memory based learner TiMBL (Daele-
mans et al., 2002) and the rule induction learner
RIPPER (Cohen, 1995) to predict the class of each
of the 10-best recognition hypotheses for a given ut-
terance. We chose these two learners because they
implement different learning strategies, are well es-
tablished, fast, freely available, and easy to use. In a
second step, we decide which (if any) of the classi-
fied hypotheses we actually want to pick as the best
result and how the user utterance should be classi-
fied as a whole. This task is decided by the follow-
ing selection procedure (see Figure 1) which imple-
ments a preference orderingaccept> clarify > re-
ject > ignore.4

1. Scan the list of classified n-best recognition
hypotheses top-down. Return the first result
that is classified asacceptand classify the
utterance asaccept.

2. If 1. fails, scan the list of classified n-best
recognition hypotheses top-down. Return
the first result that is classified asclarify and
classify the utterance asclarify.

3. If 2. fails, count the number of rejects and
ignores in the classified recognition hypothe-
ses. If the number of rejects is larger or equal
than the number of ignores classify the utter-
ance asreject.

4. Else classify the utterance asignore.

Figure 1: Selection procedure

This procedure is applied to choose from the clas-
sified n-best hypotheses for an utterance, indepen-
dent of the particular machine learner, in all of the
following experiments.

Since we have a limited amount experimental
data in this study (10 hypotheses for each of the 303
user utterances), we use a “leave-one-out” crossval-
idation setup for classification. This means that we
classify the 10-best hypotheses for a particular ut-
terance based on the 10-best hypotheses of all 302
other utterances and repeat this 303 times.

4Note that in a dialogue application one would not always
need to classify all n-best hypotheses in order to select a result
but could stop as soon as a hypothesis is classified as correct,
which can save processing time.



7 Results and Evaluation

The middle part of Table 2 shows the classifica-
tion results for TiMBL and RIPPER when run with
default parameter settings (the other results are in-
cluded for comparison). The individual rows show
the performance when different combinations of
feature groups are used for training. The results for
the three-way classification are included for com-
parison with the baseline system and are obtained
by combining the two classesclarify and reject.
Note that we do not evaluate the performance of the
learners for classifying the individual recognition
hypotheses but the classification of (whole) user ut-
terances (i.e. including the selection procedure to
choose from the classified hypotheses).

The results show that both learners profit from
the addition of more features concerning dialogue
context and task context for classifying user speech
input appropriately. The only exception from this
trend is a slight performance decrease when task
features are added in the four-way classification for
RIPPER. Note that both learners already outperform
the baseline results even when only recognition fea-
tures are considered. The most striking result is the
performance gain for TiMBL (almost 10%) when
we include the dialogue features. As soon as dia-
logue features are included, TiMBL also performs
slightly better than RIPPER.

Note that the introduction of (limited) task fea-
tures, in addition to the DIAL and UTT features, did
not have dramatic impact in this study. One aim for
future work is to define and analyze the influence of
further task related features for classification.

7.1 Optimizing TiMBL Parameters

In all of the above experiments we ran the machine
learners with their default parameter settings.
However, recent research (Daelemans and Hoste,
2002; Marsi et al., 2003) has shown that machine
learners often profit from parameter optimization
(i.e. finding the best performing parameters on
some development data). We therefore selected
40 possible parameter combinations for TiMBL
(varying the number of nearest neighbors, feature
weighting, and class voting weights) and nested a
parameter optimization step into the “leave-one-
out” evaluation paradigm (cf. Figure 2).5

Note that our optimization method is not as so-
phisticated as the “Iterative Deepening” approach

5We only optimized parameters for TiMBL because it per-
formed better with default settings than RIPPER and because
the findings in (Daelemans and Hoste, 2002) indicate that
TiMBL profits more from parameter optimization.

1. Set aside the recognition hypotheses for one
of the user utterances.

2. Randomly split the remaining data into an
80% training and 20% test set.

3. Run TiMBL with all possible parameter set-
tings on the generated training and test sets
and store the best performing settings.

4. Classify the left-out hypotheses with the
recorded parameter settings.

5. Iterate.

Figure 2: Parameter optimization

described by (Marsi et al., 2003) but is similar in the
sense that it computes a best-performing parameter
setting for each data fold.

Table 3 shows the classification results when we
run TiMBL with optimized parameter settings and
using all feature groups for training.

System Behavior
User Utterance accept clarify reject ignore
in-grammar 159/2 11 16 0
out-of-grammar 0 25 5 0(WER≤ 50)
out-of-grammar 6 6 50 0(WER> 50)
crosstalk 2 5 0 16

Acc/wf-score (3 classes): 86.14/86.39%
Acc/wf-score (4 classes): 82.51/83.29%

Table 3: TiMBL classification results with opti-
mized parameters

Table 3 shows a remarkable 9% improvement for
the 3-way and 4-way classification in both accuracy
and weighted f-score, compared to using TiMBL
with default parameter settings. In terms of WER,
the baseline system (cf. Table 1) accepted 233 user
utterances with a WER of 21.51%, and in contrast,
TiMBL with optimized parameters (TiOP) only ac-
cepted 169 user utterances with a WER of 4.05%.
This low WER reflects the fact that if the machine
learning system accepts an user utterance, it is al-
most certainly the correct one. Note that although
the machine learning system in total accepted far
fewer utterances (169 vs. 233) it accepted more cor-
rect utterances than the baseline (159 vs. 154).

7.2 Evaluation

The baseline accuracy for the 3-class problem is
65.68% (61.81% weighted f-score). Our best re-
sults, obtained by using TiMBL with parameter op-



System or features used Acc/wf-score Acc/wf-score Acc/wf-score Acc/wf-score
for classification (3 classes) (4 classes) (3 classes) (4 classes)
Baseline 65.68/61.81%

TiMBL RIPPER
REC 67.66/67.51% 63.04/63.03%69.31/69.03% 66.67/65.14%
REC+UTT 68.98/68.32% 64.03/63.08%72.61/72.33% 70.30/68.61%
REC+UTT+DIAL 77.56/77.59% 72.94/73.70%74.92/75.34% 71.29/71.62%
REC+UTT+DIAL+TASK 77.89/77.91% 73.27/74.12%75.25/75.61% 70.63/71.54%
TiMBL (optimized params.) 86.14/86.39% 82.51/83.29%
Oracle 94.06/94.17% 94.06/94.18%

Table 2: Classification Results

timization, show a 25% weighted f-score improve-
ment over the baseline system.

We can compare these results to a hypothetical
“oracle” system in order to obtain an upper bound
on classification performance. This is an imagi-
nary system which performs perfectly on the ex-
perimental data given the 10-best recognition out-
put. The oracle results reveal that for 18 of the
in-grammar utterances the 10-best recognition hy-
potheses do not include the correct logical form at
all and therefore have to be classified asclarify or
reject (i.e. it is not possible to achieve 100% accu-
racy on the experimental data). Table 2 shows that
our best results are only 8%/12% (absolute) away
from the optimal performance.

7.2.1 Costs andχ2 Levels of Significance
We use theχ2 test of independence to statistically
compare the different classification results. How-
ever, sinceχ2 only tells us whether two classifica-
tions are different from each other, we introduce a
simple cost measure (Table 4) for the 3-way classi-
fication problem to complement theχ2 results.6

System behavior
User utterance accept reject ignore
in-grammar 0 2 2
out-of-grammar 4 2 2
crosstalk 4 2 0

Table 4: Cost measure

Table 4 captures the intuition that the correct be-
havior of a dialogue system is to accept correctly
recognized utterances and ignore crosstalk (cost 0).
The worst a system can do is to accept misrec-
ognized utterances or utterances that were not ad-
dressed to the system. The remaining classes are as-

6We only evaluate the 3-way classification problem because
there are no baseline results for the 4-way classification avail-
able.

signed a value in-between these two extremes. Note
that the cost assignment is not validated against user
judgments. We only use the costs to interpret theχ2

levels of significance (i.e. as an indicator to compare
the relative quality of different systems).

Table 5 shows the differences in cost andχ2 lev-
els of significance when we compare the classifica-
tion results. Here, TiOP stands for TiMBL with op-
timized parameters and the stars indicate the level of
statistical significance as computed by theχ2 statis-
tics (∗∗∗ indicates significance atp = .001, ∗∗ at
p = .01, and∗ atp = .05).7

Baseline RIPPER TiMBL Ti OP
Oracle −232∗∗∗ −116∗∗∗ −100∗∗∗ −56
Ti OP −176∗∗∗ −60∗ −44
TiMBL −132∗∗∗ −16
RIPPER−116∗∗∗

Table 5: Cost comparisons andχ2 levels of signifi-
cance for 3-way classification

The cost measure shows the strict ordering: Or-
acle < Ti OP < TiMBL < RIPPER< Baseline.
Note however that according to theχ2 test there is
no significant difference between the oracle system
and TiMBL with optimized parameters. Table 5 also
shows that all of our experiments significantly out-
perform the baseline system.

8 Conclusion
We used a combination of acoustic confidence and
pragmatic plausibility features (i.e. computed from
dialogue context) to predict the quality of incom-
ing recognition hypotheses to a multi-modal dia-
logue system. We classified hypotheses asaccept,
(clarify), reject, or ignore: functional categories that

7Following (Hinton, 1995), we leave out categories with ex-
pected frequencies< 5 in theχ2 computation and reduce the
degrees of freedom accordingly.



can be used by a dialogue manager to decide appro-
priate system reactions. The approach is novel in
combining machine learning with n-best processing
for spoken dialogue systems using the Information
State Update approach.

Our best results, obtained using TiMBL with op-
timized parameters, show a 25% weighted f-score
improvement over a baseline system that uses a
“grammar-switching” approach to context-sensitive
speech recognition, and are only 8% away from the
optimal performance that can be achieved on the
data. Clearly, this improvement would result in bet-
ter dialogue system performance overall. Parameter
optimization improved the classification results by
9% compared to using the learner with default set-
tings, which shows the importance of such tuning.

Future work points in two directions: first, inte-
grating our methodology into working ISU-based
dialogue systems and determining whether or not
they improve in terms of standard dialogue eval-
uation metrics (e.g. task completion). The ISU
approach is a particularly useful testbed for our
methodology because it collects information per-
taining to dialogue context in a central data struc-
ture from which it can be easily extracted. This av-
enue will be further explored in the TALK project8.
Second, it will be interesting to investigate the im-
pact of different dialogue and task features for clas-
sification and to introduce a distinction between
“generic” features that are domain independent and
“application-specific” features which reflect proper-
ties of individual systems and application scenarios.
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