
Balancing Clarity and Efficiency in Typed Feature Logic through Delaying

Gerald Penn
University of Toronto
10 King’s College Rd.

Toronto M5S 3G4
Canada

gpenn@cs.toronto.edu

Abstract

The purpose of this paper is to re-examine the bal-
ance between clarity and efficiency in HPSG design,
with particular reference to the design decisions
made in the English Resource Grammar (LinGO,
1999, ERG). It is argued that a simple generaliza-
tion of the conventional delay statements used in
logic programming is sufficient to restore much of
the functionality and concomitant benefit that the
ERG elected to forego, with an acceptable although
still perceptible computational cost.

1 Motivation

By convention, current HPSGs consist, at the very
least, of a deductive backbone of extended phrase
structure rules, in which each category is a descrip-
tion of a typed feature structure (TFS), augmented
with constraints that enforce the principles of gram-
mar. These principles typically take the form of
statements, “for all TFSs, ψ holds,” where ψ is
usually an implication. Historically, HPSG used
a much richer set of formal descriptive devices,
however, mostly on analogy to developments in
the use of types and description logics in program-
ming language theory (Aı̈t-Kaći, 1984), which had
served as the impetus for HPSG’s invention (Pol-
lard, 1998). This included logic-programming-style
relations (Höhfeld and Smolka, 1988), a powerful
description language in which expressions could de-
note sets of TFSs through the use of an explicit
disjunction operator, and the full expressive power
of implications, in which antecedents of the above-
mentioned ψ principles could be arbitrarily com-
plex.

Early HPSG-based natural language processing
systems faithfully supported large chunks of this
richer functionality, in spite of their inability to han-
dle it efficiently — so much so that when the de-
signers of the ERG set out to select formal descrip-
tive devices for their implementation with the aim
of “balancing clarity and efficiency,” (Flickinger,
2000), they chose to include none of these ameni-

ties. The ERG uses only phrase-structure rules and
type-antecedent constraints, pushing all would-be
description-level disjunctions into its type system or
rules. In one respect, this choice was successful, be-
cause it did at least achieve a respectable level of
efficiency. But the ERG’s selection of functionality
has acquired an almost liturgical status within the
HPSG community in the intervening seven years.
Keeping this particular faith, moreover, comes at a
considerable cost in clarity, as will be argued below.

This paper identifies what it is precisely about
this extra functionality that we miss (modularity,
Section 2), determines what it would take at a mini-
mum computationally to get it back (delaying, Sec-
tion 3), and attempts to measure exactly how much
that minimal computational overhead would cost
(about 4 µs per delay, Section 4). This study has
not been undertaken before; the ERG designers’
decision was based on largely anecdotal accounts
of performance relative to then-current implemen-
tations that had not been designed with the inten-
tion of minimizing this extra cost (indeed, the ERG
baseline had not yet been devised).

2 Modularity: the cost in clarity
Semantic types and inheritance serve to organize
the constraints and overall structure of an HPSG
grammar. This is certainly a familiar, albeit vague
justification from programming languages research,
but the comparison between HPSG and modern
programming languages essentially ends with this
statement.

Programming languages with inclusional poly-
morphism (subtyping) invariably provide functions
or relations and allow these to be reified as meth-
ods within user-defined subclasses/subtypes. In
HPSG, however, values of features must necessar-
ily be TFSs themselves, and the only method (im-
plicitly) provided by the type signature to act on
these values is unification. In the absence of other
methods and in the absence of an explicit disjunc-
tion operator, the type signature itself has the re-
sponsibility of not only declaring definitional sub-

fin-wh-fill-rel-clinf-wh-fill-rel-cl red-rel-cl simp-inf-rel-cl

fin-hd-fill-ph inf-hd-fill-ph

wh-rel-cl non-wh-rel-cl hd-fill-ph hd-comp-ph

inter-cl rel-cl hd-adj-ph hd-nexus-ph

clause non-hd-ph hd-ph

headed phrase

phrase

Figure 1: Relative clauses in the ERG (partial).

class relationships, but expressing all other non-
definitional disjunctions in the grammar (as subtyp-
ing relationships). It must also encode the neces-
sary accoutrements for implementing all other nec-
essary means of combination as unification, such as
difference lists for appending lists, or the so-called
qeq constraints of Minimal Recursion Semantics
(Copestake et al., 2003) to encode semantic embed-
ding constraints.

Unification, furthermore, is an inherently non-
modular, global operation because it can only be
defined relative to the structure of the entire par-
tial order of types (as a least upper bound). Of
course, some partial orders are more modularizable
than others, but legislating the global form that type
signatures must take on is not an easy property to
enforce without more local guidance.

The conventional wisdom in programming lan-
guages research is indeed that types are responsi-
ble for mediating the communication between mod-
ules. A simple type system such as HPSG’s can thus
only mediate very simple communication. Modern
programming languages incorporate some degree of
parametric polymorphism, in addition to subtyping,
in order to accommodate more complex communi-
cation. To date, HPSG’s use of parametric types has
been rather limited, although there have been some
recent attempts to apply them to the ERG (Penn and
Hoetmer, 2003). Without this, one obtains type sig-
natures such as Figure 1 (a portion of the ERG’s for
relative clauses), in which both the semantics of the
subtyping links themselves (normally, subset inclu-
sion) and the multi-dimensionality of the empirical
domain’s analysis erode into a collection of arbi-
trary naming conventions that are difficult to vali-
date or modify.

A more avant-garde view of typing in program-
ming languages research, inspired by the Curry-
Howard isomorphism, is that types are equivalent
to relations, which is to say that a relation can me-
diate communication between modules through its
arguments, just as a parametric type can through its

parameters. The fact that we witness some of these
mediators as types and others as relations is sim-
ply an intensional reflection of how the grammar
writer thinks of them. In classical HPSG, relations
were generally used as goals in some proof resolu-
tion strategy (such as Prolog’s SLD resolution), but
even this has a parallel in the world of typing. Using
the type signature and principles of Figure 2, for ex-

appendbase appendrec
Arg1: e list Arg1:ne list

Junk:append

append
Arg1: list
Arg2: list
Arg3: list

⊥

appendbase =⇒ Arg2 : L ∧ Arg3 : L.

appendrec =⇒ Arg1 : [H |L1] ∧
Arg2 : L2 ∧ Arg3 : [H |L3] ∧
Junk : (append ∧ A1 : L1 ∧

A2 : L2 ∧ Arg3 : L3).

Figure 2: Implementing SLD resolution over the ap-
pend relation as sort resolution.

ample, we can perform proof resolution by attempt-
ing to sort resolve every TFS to a maximally spe-
cific type. This is actually consistent with HPSG’s
use of feature logic, although most TFS-based NLP
systems do not sort resolve because type inference
under sort resolution is NP-complete (Penn, 2001).

Phrase structure rules, on the other hand, while
they can be encoded inside a logic programming re-
lation, are more naturally viewed as algebraic gen-
erators. In this respect, they are more similar to
the immediate subtyping declarations that grammar
writers use to specify type signatures — both chart
parsing and transitive closure are instances of all-
source shortest-path problems on the same kind of
algebraic structure, called a closed semi-ring. The
only notion of modularity ever proven to hold of
phrase structure rule systems (Wintner, 2002), fur-
thermore, is an algebraic one.

3 Delaying: the missing link of
functionality

If relations are used in the absence of recursive data
structures, a grammar could be specified using rela-
tions, and the relations could then be unfolded off-
line into relation-free descriptions. In this usage,
relations are just macros, and not at all inefficient.
Early HPSG implementations, however, used quite
a lot of recursive structure where it did not need to
be, and the structures they used, such as lists, buried

important data deep inside substructures that made
parsing much slower. Provided that grammar writ-
ers use more parsimonious structures, which is a
good idea even in the absence of relations, there is
nothing wrong with the speed of logic programming
relations (Van Roy, 1990).

Recursive datatypes are also prone to non-
termination problems, however. This can happen
when partially instantiated and potentially recur-
sive data structures are submitted to a proof reso-
lution procedure which explores the further instan-
tiations of these structures too aggressively. Al-
though this problem has received significant atten-
tion over the last fifteen years in the constraint logic
programming (CLP) community, no true CLP im-
plementation yet exists for the logic of typed fea-
ture structures (Carpenter, 1992, LTFS). Some as-
pects of general solution strategies, including in-
cremental entailment simplification (Aı̈t-Kaci et al.,
1992), deterministic goal expansion (Doerre, 1993),
and guard statements for relations (Doerre et al.,
1996) have found their way into the less restrictive
sorted feature constraint systems from which LTFS
descended. The CUF implementation (Doerre et al.,
1996), notably, allowed for delay statements to be
attached to relation definitions, which would wait
until each argument was at least as specific as some
variable-free, disjunction-free description before re-
solving.

In the remainder of this section, a method is
presented for reducing delays on any inequation-
free description, including variables and disjunc-
tions, to the SICStus Prolog when/2 primitive
(Sections 3.4). This method takes full advan-
tage of the restrictions inherent to LTFS (Sec-
tion 3.1) to maximize run-time efficiency. In ad-
dition, by delaying calls to subgoals individually
rather than the (universally quantified) relation defi-
nitions themselves,1 we can also use delays to post-
pone non-deterministic search on disjunctive de-
scriptions (Section 3.3) and to implement complex-
antecedent constraints (Section 3.2). As a result,
this single method restores all of the functionality
we were missing.

For simplicity, it will be assumed that the target
language of our compiler is Prolog itself. This is in-
consequential to the general proposal, although im-
plementing logic programs in Prolog certainly in-
volves less effort.

1Delaying relational definitions is a subcase of this func-
tionality, which can be made more accessible through some ex-
tra syntactic sugar.

3.1 Restrictions inherent to LTFS
LTFS is distinguished by its possession of appro-
priateness conditions that mediate the occurrence of
features and types in these records. Appropriateness
conditions stipulate, for every type, a finite set of
features that can and must have values in TFSs of
that type. This effectively forces TFSs to be finite-
branching terms with named attributes. Appropri-
ateness conditions also specify a type to which the
value of an appropriate feature is restricted (a value
restriction). These conditions make LTFS very con-
venient for linguistic purposes because the combi-
nation of typing with named attributes allows for a
very terse description language that can easily make
reference to a sparse amount of information in what
are usually extremely large structures/records:
Definition: Given a finite meet semi-lattice of types,
Type, a fixed finite set of features, Feat, and a count-
able set of variables, Var, Φ is the least set of de-
scriptions that contains:

• v, v ∈ Var ,
• τ, τ ∈ Type ,
• F : φ, F ∈ Feat , φ ∈ Φ,
• φ1 ∧ φ2, φ1, φ2 ∈ Φ, and
• φ1 ∨ φ2, φ1, φ2 ∈ Φ.

A nice property of this description language is
that every non-disjunctive description with a non-
empty denotation has a unique most general TFS in
its denotation. This is called its most general satis-
fier.

We will assume that appropriateness guarantees
that there is a unique most general type, Intro(F)
to which a given feature, F, is appropriate. This is
called unique feature introduction. Where unique
feature introduction is not assumed, it can be added
automatically in O(F ·T) time, where F is the num-
ber of features and T is the number of types (Penn,
2001). Meet semi-latticehood can also be restored
automatically, although this involves adding expo-
nentially many new types in the worst case.

3.2 Complex Antecedent Constraints
It will be assumed here that all complex-antecedent
constraints are implicitly universally quantified, and
are of the form:

α =⇒ (γ ∧ ρ)

where α, γ are descriptions from the core descrip-
tion language, Φ, and ρ is drawn from a definite
clause language of relations, whose arguments are
also descriptions from Φ. As mentioned above, the
ERG uses the same form, but where α can only be a
type description, τ , and ρ is the trivial goal, true.

The approach taken here is to allow for arbitrary
antecedents, α, but still to interpret the implica-
tions of principles using subsumption by α, i.e., for
every TFS (the implicit universal quantification is
still there), either the consequent holds, or the TFS
is not subsumed by the most general satisfier of
α. The subsumption convention dates back to the
TDL (Krieger and Schäfer, 1994) and ALE (Car-
penter and Penn, 1996) systems, and has earlier an-
tecedents in work that applied lexical rules by sub-
sumption (Krieger and Nerbone, 1991). The Con-
Troll constraint solver (Goetz and Meurers, 1997)
attempted to handle complex antecedents, but used
a classical interpretation of implication and no de-
ductive phrase-structure backbone, which created a
very large search space with severe non-termination
problems.

Within CLP more broadly, there is some related
work on guarded constraints (Smolka, 1994) and on
inferring guards automatically by residuation of im-
plicational rules (Smolka, 1991), but implicit uni-
versal quantification of all constraints seems to be
unique to linguistics. In most CLP, constraints on a
class of terms or objects must be explicitly posted to
a store for each member of that class. If a constraint
is not posted for a particular term, then it does not
apply to that term.

The subsumption-based approach is sound with
respect to the classical interpretation of implication
for those principles where the classical interpreta-
tion really is the correct one. For completeness,
some additional resolution method (in the form of
a logic program with relations) must be used. As is
normally the case in CLP, deductive search is used
alongside constraint resolution.

Under such assumptions, our principles can be
converted to:

trigger(α) =⇒ v ∧ whenfs((v = α), ((v = γ)∧ρ))

Thus, with an implementation of type-antecedent
constraints and an implementation of whenfs/2
(Section 3.3), which delays the goal in its second
argument until v is subsumed by (one of) the most
general satisfier(s) of description α, all that remains
is a method for finding the trigger, the most effi-
cient type antecedent to use, i.e., the most general
one that will not violate soundness. trigger(α) can
be defined as follows:

• trigger(v) = ⊥,
• trigger(τ) = τ ,
• trigger(F : φ) = Intro(F),
• trigger(φ1∧φ2) = trigger(φ1)ttrigger(φ2),

and
• trigger(φ1∨φ2) = trigger(φ1)utrigger(φ2),

where t and u are respectively unification and gen-
eralization in the type semi-lattice.

In this and the next two subsections, we can use
Figure 3 as a running example of the various stages
of compilation of a typical complex-antecedent con-
straint, namely the Finiteness Marking Principle for
German (1). This constraint is stated relative to the
signature shown in Figure 4. The description to the
left of the arrow in Figure 3 (1) selects TFSs whose
substructure on the path SYNSEM:LOC:CAT satisfies
two requirements: its HEAD value has type verb,
and its MARKING value has type fin. The princi-
ple says that every TFS that satisfies that descrip-
tion must also have a SYNSEM: LOC: CAT: HEAD:
VFORM value of type bse.

To find the trigger in Figure 3 (1), we can observe
that the antecedent is a feature value description
(F:φ), so the trigger is Intro(SYNSEM), the unique
introducer of the SYNSEM feature, which happens
to be the type sign. We can then transform this con-
straint as above (Figure 3 (2)). The cons and goal
operators in (2)–(5) are ALE syntax, used respec-
tively to separate the type antecedent of a constraint
from the description component of the consequent
(in this case, just the variable, X), and to separate
the description component of the consequent from
its relational attachment. We know that any TFS
subsumed by the original antecedent will also be
subsumed by the most general TFS of type sign, be-
cause sign introduces SYNSEM.

3.3 Reducing Complex Conditionals

Let us now implement our delay predicate,
whenfs(V=Desc,Goal). Without loss of
generality, it can be assumed that the first argument
is actually drawn from a more general conditional
language, including those of the form Vi = Desci

closed under conjunction and disjunction. It can
also be assumed that the variables of each Desc i are
distinct. Such a complex conditional can easily be
converted into a normal form in which each atomic
conditional contains a non-disjunctive description.
Conjunction and disjunction of atomic conditionals
then reduce as follows (using the Prolog convention
of comma for AND and semi-colon for OR):

whenfs((VD1,VD2),Goal) :-
whenfs(VD1,whenfs(VD2,Goal)).

whenfs((VD1;VD2),Goal) :-
whenfs(VD1,(Trigger = 0 -> Goal

; true)),
whenfs(VD2,(Trigger = 1 -> Goal

; true)).

The binding of the variable Trigger is necessary
to ensure that Goal is only resolved once in case the

(1) synsem:loc:cat:(head:verb,marking:fin) =⇒ synsem:loc:cat:head:vform:bse.

(2) sign cons X goal

whenfs((X=synsem:loc:cat:(head:verb,marking:fin)),

(X=synsem:loc:cat:head:vform:bse)).

(3) sign cons X goal

whentype(sign,X,(farg(synsem,X,SynVal),

whentype(synsem,SynVal,(farg(loc,SynVal,LocVal),

whentype(local,LocVal,(farg(cat,LocVal,CatVal),

whenfs((CatVal=(head:verb,marking:fin)),

(X=synsem:loc:cat:head:vform:bse)))))))).

(4) sign cons X goal

(whentype(sign,X,(farg(synsem,X,SynVal),

whentype(synsem,SynVal,(farg(loc,SynVal,LocVal),

whentype(local,LocVal,(farg(cat,LocVal,CatVal),

whentype(category,CatVal,(farg(head,CatVal,HdVal),

whentype(verb,HdVal,

whentype(category,CatVal,(farg(marking,CatVal,MkVal),

whentype(fin,MkVal,

(X=synsem:loc:cat:head:vform:bse)))))))))))))).

(5) sign cons X goal

(farg(synsem,X,SynVal),

farg(loc,SynVal,LocVal),

farg(cat,LocVal,CatVal),

farg(head,CatVal,HdVal),

whentype(verb,HdVal,(farg(marking,CatVal,MkVal),

whentype(fin,MkVal,

(X=synsem:loc:cat:head:vform:bse))))).

(6) sign(e list(),e list(),SynVal,DelayVar)

(7) whentype(Type,FS,Goal) :-

functor(FS,CurrentType,Arity),

(sub type(Type,CurrentType) -> call(Goal)

; arg(Arity,FS,DelayVar), whentype(Type,DelayVar,Goal)).

Figure 3: Reduction stages for the Finiteness Marking Principle.

bse ind fin inf verb noun

vform marking head
VFORM:vform

sign
QRETR:list
QSTORE:list
SYNSEM:synsem

synsem
LOC:local

category
HEAD:head
MARKING:marking

local
CAT:category

⊥

Figure 4: Part of the signature underlying the constraint in Figure 3.

goals for both conditionals eventually unsuspend.

For atomic conditionals, we must thread two
extra arguments, VsIn, and VsOut, which track
which variables have been seen so far. Delaying
on atomic type conditionals is implemented by a
special whentype/3 primitive (Section 3.4), and
feature descriptions reduce using unique feature
introduction:

whenfs(V=T,Goal,Vs,Vs) :-
type(T) -> whentype(T,V,Goal).

whenfs(V=(F:Desc),Goal,VsIn,VsOut):-
unique introducer(F,Intro),
whentype(Intro,V,

(farg(F,V,FVal),
whenfs(FVal=Desc,Goal,VsIn,

VsOut))).

farg(F,V,FVal) binds FVal to the argument
position of V that corresponds to the feature F once
V has been instantiated to a type for which F is
appropriate.

In the variable case, whenfs/4 simply binds the
variable when it first encounters it, but subsequent
occurrences of that variable create a suspension
using Prolog when/2, checking for identity with
the previous occurrences. This implements a
primitive delay on structure sharing (Section 3.4):

whenfs(V=X,Goal,VsIn,VsOut) :-
var(X),
(select(VsIn,X,VsOut)
-> % not first X - wait

when(?=(V,X),
((V==X) -> call(Goal) ; true))

; % first X - bind
VsOut=VsIn,V=X,call(Goal)).

In practice, whenfs/2 can be partially evalu-
ated by a compiler. In the running example, Fig-
ure 3, we can compile the whenfs/2 subgoal in
(2) into simpler whentype/2 subgoals, that delay
until X reaches a particular type. The second case of
whenfs/4 tells us that this can be achieved by suc-
cessively waiting for the types that introduce each
of the features, SYNSEM, LOC, and CAT. As shown
in Figure 4, those types are sign, synsem and local,
respectively (Figure 3 (3)).

The description that CatVal is suspended on is
a conjunction, so we successively suspend on each
conjunct. The type that introduces both HEAD and
MARKING is category (4). In practice, static anal-
ysis can greatly reduce the complexity of the re-
sulting relational goals. In this case, static analy-
sis of the type system tells us that all four of these
whentype/2 calls can be eliminated (5), since X
must be a sign in this context, synsem is the least
appropriate type of any SYNSEM value, local is the
least appropriate type of any LOC value, and cate-
gory is the least appropriate type of any CAT value.

3.4 Primitive delay statements

The two fundamental primitives typically provided
for Prolog terms, e.g., by SICStus Prolog when/2,
are: (1) suspending until a variable is instantiated,
and (2) suspending until two variables are equated
or inequated. The latter corresponds exactly to
structure-sharing in TFSs, and to shared variables
in descriptions; its implementation was already dis-
cussed in the previous section. The former, if car-
ried over directly, would correspond to delaying un-
til a variable is promoted to a type more specific
than ⊥, the most general type in the type semi-
lattice. There are degrees of instantiation in LTFS,

however, corresponding to long subtyping chains
that terminate in ⊥. A more general and useful
primitive in a typed language with such chains is
suspending until a variable is promoted to a partic-
ular type. whentype(Type,X,Goal), i.e., de-
laying subgoal Goal until variable X reaches Type,
is then the non-universally-quantified cousin of the
type-antecedent constraints that are already used in
the ERG.

How whentype(Type,X,Goal) is imple-
mented depends on the data structure used for TFSs,
but in Prolog they invariably use the underlying Pro-
log implementation of when/2. In ALE, for ex-
ample, TFSs are represented with reference chains
that extend every time their type changes. One
can simply wait for a variable position at the end
of this chain to be instantiated, and then com-
pare the new type to Type. Figure 3 (6) shows
a schematic representation of a sign-typed TFS
with SYNSEM value SynVal, and two other ap-
propriate feature values. Acting upon this as its
second argument, the corresponding definition of
whentype(Type,X,Goal) in Figure 3 (7) de-
lays on the variable in the extra, fourth argument
position. This variable will be instantiated to a sim-
ilar term when this TFS promotes to a subtype of
sign.

As described above, delaying until the antecedent
of the principle in Figure 3 (1) is true or false ul-
timately reduces to delaying until various feature
values attain certain types using whentype/3. A
TFS may not have substructures that are specific
enough to determine whether an antecedent holds
or not. In this case, we must wait until it is known
whether the antecedent is true or false before ap-
plying the consequent. If we reach a deadlock,
where several constraints are suspended on their
antecedents, then we must use another resolution
method to begin testing more specific extensions of
the TFS in turn. The choice of these other methods
characterizes a true CLP solution for LTFS, all of
which are enabled by the method presented in this
paper. In the case of the signature in Figure 4, one
of these methods may test whether a marking-typed
substructure is consistent with either fin or inf. If it
is consistent with fin, then this branch of the search
may unsuspend the Finiteness Marking Principle on
a sign-typed TFS that contains this substructure.

4 Measuring the cost of delaying

How much of a cost do we pay for using delay-
ing? In order to answer this question definitively,
we would need to reimplement a large-scale gram-
mar which was substantially identical in every way

to the ERG but for its use of delay statements. The
construction of such a grammar is outside the scope
of this research programme, but we do have access
to MERGE,2 which was designed to have the same
extensional coverage of English as the ERG. Inter-
nally, the MERGE is quite unlike the ERG. Its TFSs
are far larger because each TFS category carries in-
side it the phrase structure daughters of the rule that
created it. It also has far fewer types, more fea-
ture values, a heavy reliance on lists, about a third
as many phrase structure rules with daughter cate-
gories that are an average of 32% larger, and many
more constraints. Because of these differences, this
version of MERGE runs on average about 300 times
slower than the ERG.

On the other hand, MERGE uses delaying for all
three of the purposes that have been discussed in this
paper: complex antecedents, explicit whenfs/2
calls to avoid non-termination problems, and ex-
plicit whenfs/2 calls to avoid expensive non-
deterministic searches. While there is currently no
delay-free grammar to compare it to, we can pop
open the hood on our implementation and mea-
sure delaying relative to other system functions on
MERGE with its test suite. The results are shown in
Figure 5. These results show that while the per call

per sent.
avg. avg. %

Function µs avg. parse
/ call # calls time

PS rules 1458 410 0.41
Chart access 13.3 13426 0.12
Relations 4.0 1380288 1.88
Delays 2.6 3633406 6.38
Path compression 2.0 955391 1.31
Constraints 1.6 1530779 1.62
Unification 1.5 37187128 38.77
Dereferencing 0.5 116731777 38.44
Add type MGSat 0.3 5131391 0.97
Retrieve feat. val. 0.02 19617973 0.21

Figure 5: Run-time allocation of functionality in
MERGE. Times were measured on an HP Omni-
book XE3 laptop with an 850MHz Pentium II pro-
cessor and 512MB of RAM, running SICStus Pro-
log 3.11.0 on Windows 98 SE.

cost of delaying is on a par with other system func-
tions such as constraint enforcement and relational
goal resolution, delaying takes between three and
five times more of the percentage of sentence parse

2The author sincerely thanks Kordula DeKuthy and Det-
mar Meurers for their assistance in providing the version of
MERGE (0.9.6) and its test suite (1347 sentences, average word
length 6.3, average chart size 410 edges) for this evaluation.
MERGE is still under development.

time because it is called so often. This reflects, in
part, design decisions of the MERGE grammar writ-
ers, but it also underscores the importance of having
an efficient implementation of delaying for large-
scale use. Even if delaying could be eliminated en-
tirely from this grammar at no cost, however, a 6%
reduction in parsing speed would not, in the present
author’s view, warrant the loss of modularity in a
grammar of this size.

5 Conclusion

It has been shown that a simple generalization of
conventional delay statements to LTFS, combined
with a subsumption-based interpretation of impli-
cational constraints and unique feature introduction
are sufficient to restore much of the functionality
and concomitant benefit that has been routinely sac-
rificed in HPSG in the name of parsing efficiency.
While a definitive measurement of the computa-
tional cost of this functionality has yet to emerge,
there is at least no apparent indication from the
experiments that we can conduct that disjunction,
complex antecedents and/or a judicious use of recur-
sion pose a significant obstacle to tractable grammar
design when the right control strategy (CLP with
subsumption testing) is adopted.

References

H. Aı̈t-Kaci, A. Podelski, and G. Smolka. 1992.
A feature-based constraint system for logic pro-
gramming with entailment. In Proceedings of
the International Conference on Fifth Generation
Computer Systems.

H. Aı̈t-Kaći. 1984. A Lattice-theoretic Approach to
Computation based on a Calculus of Partially Or-
dered Type Structures. Ph.D. thesis, University of
Pennsylvania.

B. Carpenter and G. Penn. 1996. Compiling typed
attribute-value logic grammars. In H. Bunt and
M. Tomita, editors, Recent Advances in Parsing
Technologies, pages 145–168. Kluwer.

B. Carpenter. 1992. The Logic of Typed Feature
Structures. Cambridge.

A. Copestake, D. Flickinger, C. Pollard, and I. Sag.
2003. Minimal Recursion Semantics: An intro-
duction. Journal submission, November 2003.

J. Doerre, M. Dorna, J. Junger, and K. Schneider,
1996. The CUF User’s Manual. IMS Stuttgart,
2.0 edition.

J. Doerre. 1993. Generalizing Earley deduction
for constraint-based grammars. Technical Report
R1.2.A, DYANA Deliverable.

D. Flickinger. 2000. On building a more efficient

grammar by exploiting types. Natural Language
Engineering, 6(1):15–28.

T. Goetz and W.D. Meurers. 1997. Interleav-
ing universal principles and relational constraints
over typed feature logic. In Proceedings of the
35th ACL / 8th EACL, pages 1–8.

M. Höhfeld and G. Smolka. 1988. Definite re-
lations over constraint languages. LILOG Re-
port 53, IBM Deutschland.

H.-U. Krieger and J. Nerbone. 1991. Feature-based
inheritance networks for computational lexicons.
In Proceedings of the ACQUILEX Workshop on
Default Inheritance in the Lexicon, number 238
in University of Cambridge, Computer Labora-
tory Technical Report.

H.-U. Krieger and U. Schäfer. 1994. TDL —
a type description language for HPSG part
1: Overview. Technical Report RR-94-37,
Deutsches Forschungszentrum für Künstliche In-
telligenz (DFKI), November.

LinGO. 1999. The LinGO grammar and lexicon.
Available on-line at http://lingo.stanford.edu.

G. Penn and K. Hoetmer. 2003. In search of epis-
temic primitives in the english resource grammar.
In Proceedings of the 10th International Confer-
ence on Head-driven Phrase Structure Grammar,
pages 318–337.

G. Penn. 2001. Tractability and structural closures
in attribute logic signatures. In Proceedings of
the 39th ACL, pages 410–417.

C. J. Pollard. 1998. Personal communiciation to the
author.

G. Smolka. 1991. Residuation and guarded rules
for constraint logic programming. Technical Re-
port RR-91-13, DFKI.

G. Smolka. 1994. A calculus for higher-order
concurrent constraint programming with deep
guards. Technical Report RR-94-03, DFKI.

P. Van Roy. 1990. Can Logic Programming Exe-
cute as Fast as Imperative Programming? Ph.D.
thesis, University of California, Berkeley.

S. Wintner. 2002. Modular context-free grammars.
Grammars, 5(1):41–63.

