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Abstract
This paper describes an incremental parsing approach
where parameters are estimated using a variant of the
perceptron algorithm. A beam-search algorithm is used
during both training and decoding phases of the method.
The perceptron approach was implemented with the
same feature set as that of an existing generative model
(Roark, 2001a), and experimental results show that it
gives competitive performance to the generative model
on parsing the Penn treebank. We demonstrate that train-
ing a perceptron model to combine with the generative
model during search provides a 2.1 percent F-measure
improvement over the generative model alone, to 88.8
percent.

1 Introduction
In statistical approaches to NLP problems such as tag-
ging or parsing, it seems clear that the representation
used as input to a learning algorithm is central to the ac-
curacy of an approach. In an ideal world, the designer
of a parser or tagger would be free to choose any fea-
tures which might be useful in discriminating good from
bad structures, without concerns about how the features
interact with the problems of training (parameter estima-
tion) or decoding (search for the most plausible candidate
under the model). To this end, a number of recently pro-
posed methods allow a model to incorporate “arbitrary”
global features of candidate analyses or parses. Exam-
ples of such techniques are Markov Random Fields (Rat-
naparkhi et al., 1994; Abney, 1997; Della Pietra et al.,
1997; Johnson et al., 1999), and boosting or perceptron
approaches to reranking (Freund et al., 1998; Collins,
2000; Collins and Duffy, 2002).

A drawback of these approaches is that in the general
case, they can require exhaustive enumeration of the set
of candidates for each input sentence in both the train-
ing and decoding phases1. For example, Johnson et al.
(1999) and Riezler et al. (2002) use all parses generated
by an LFG parser as input to an MRF approach – given
the level of ambiguity in natural language, this set can
presumably become extremely large. Collins (2000) and
Collins and Duffy (2002) rerank the topN parses from
an existing generative parser, but this kind of approach

1Dynamic programming methods (Geman and Johnson, 2002; Laf-
ferty et al., 2001) can sometimes be used for both training and decod-
ing, but this requires fairly strong restrictions on the features in the
model.

presupposes that there is an existing baseline model with
reasonable performance. Many of these baseline models
are themselves used with heuristic search techniques, so
that the potential gain through the use of discriminative
re-ranking techniques is further dependent on effective
search.

This paper explores an alternative approach to pars-
ing, based on the perceptron training algorithm intro-
duced in Collins (2002). In this approach the training
and decoding problems are very closely related – the
training method decodes training examples in sequence,
and makes simple corrective updates to the parameters
when errors are made. Thus the main complexity of the
method is isolated to the decoding problem. We describe
an approach that uses an incremental, left-to-right parser,
with beam search, to find the highest scoring analysis un-
der the model. The same search method is used in both
training and decoding. We implemented the perceptron
approach with the same feature set as that of an existing
generative model (Roark, 2001a), and show that the per-
ceptron model gives performance competitive to that of
the generative model on parsing the Penn treebank, thus
demonstrating that an unnormalized discriminative pars-
ing model can be applied with heuristic search. We also
describe several refinements to the training algorithm,
and demonstrate their impact on convergence properties
of the method.

Finally, we describe training the perceptron model
with the negative log probability given by the generative
model as another feature. This provides the perceptron
algorithm with a better starting point, leading to large
improvements over using either the generative model or
the perceptron algorithm in isolation (the hybrid model
achieves 88.8% f-measure on the WSJ treebank, com-
pared to figures of 86.7% and 86.6% for the separate
generative and perceptron models). The approach is an
extremely simple method for integrating new features
into the generative model: essentially all that is needed
is a definition of feature-vector representations of entire
parse trees, and then the existing parsing algorithms can
be used for both training and decoding with the models.

2 The General Framework
In this section we describe a general framework – linear
models for NLP – that could be applied to a diverse range
of tasks, including parsing and tagging. We then describe
a particular method for parameter estimation, which is a
generalization of the perceptron algorithm. Finally, we



give an abstract description of an incremental parser, and
describe how it can be used with the perceptron algo-
rithm.

2.1 Linear Models for NLP
We follow the framework outlined in Collins (2002;
2004). The task is to learn a mapping from inputsx ∈ X
to outputsy ∈ Y. For example,X might be a set of sen-
tences, withY being a set of possible parse trees. We
assume:. Training examples(xi, yi) for i = 1 . . . n.. A functionGEN which enumerates a set of candi-
datesGEN(x) for an inputx.. A representationΦ mapping each(x, y) ∈ X ×Y
to a feature vectorΦ(x, y) ∈ Rd.. A parameter vector ᾱ ∈ Rd.
The componentsGEN,Φ andᾱ define a mapping from
an inputx to an outputF (x) through

F (x) = arg max
y∈GEN(x)

Φ(x, y) · ᾱ (1)

whereΦ(x, y) · ᾱ is the inner product
∑
s αsΦs(x, y).

The learning task is to set the parameter valuesᾱ using
the training examples as evidence. Thedecoding algo-
rithm is a method for searching for thearg max in Eq. 1.

This framework is general enough to encompass sev-
eral tasks in NLP. In this paper we are interested in pars-
ing, where(xi, yi), GEN, andΦ can be defined as fol-
lows:

• Each training example(xi, yi) is a pair wherexi is
a sentence, andyi is the gold-standard parse for that
sentence.

• Given an input sentencex, GEN(x) is a set of
possible parses for that sentence. For example,
GEN(x) could be defined as the set of possible
parses forx under some context-free grammar, per-
haps a context-free grammar induced from the train-
ing examples.

• The representationΦ(x, y) could track arbitrary
features of parse trees. As one example, suppose
that there arem rules in a context-free grammar
(CFG) that definesGEN(x). Then we could define
the i’th component of the representation,Φi(x, y),
to be the number of times thei’th context-free rule
appears in the parse tree(x, y). This is implicitly
the representation used in probabilistic or weighted
CFGs.

Note that the difficulty of finding thearg max in Eq. 1
is dependent on the interaction ofGEN andΦ. In many
casesGEN(x) could grow exponentially with the size
of x, making brute force enumeration of the members
of GEN(x) intractable. For example, a context-free
grammar could easily produce an exponentially growing
number of analyses with sentence length. For some rep-
resentations, such as the “rule-based” representation de-
scribed above, thearg max in the set enumerated by the
CFG can be found efficiently, using dynamic program-
ming algorithms, without having to explicitly enumer-
ate all members ofGEN(x). However in many cases

we may be interested in representations which do not al-
low efficient dynamic programming solutions. One way
around this problem is to adopt a two-pass approach,
whereGEN(x) is the topN analyses under some initial
model, as in the reranking approach of Collins (2000).
In the current paper we explore alternatives to rerank-
ing approaches, namely heuristic methods for finding the
arg max, specifically incremental beam-search strategies
related to the parsers of Roark (2001a) and Ratnaparkhi
(1999).

2.2 The Perceptron Algorithm for Parameter
Estimation

We now consider the problem of setting the parameters,
ᾱ, given training examples(xi, yi). We will briefly re-
view the perceptron algorithm, and its convergence prop-
erties – see Collins (2002) for a full description. The
algorithm and theorems are based on the approach to
classification problems described in Freund and Schapire
(1999).

Figure 1 shows the algorithm. Note that the
most complex step of the method is findingzi =
arg maxz∈GEN(xi) Φ(xi, z)·ᾱ – and this is precisely the
decoding problem. Thus the training algorithm is in prin-
ciple a simple part of the parser: any system will need
a decoding method, and once the decoding algorithm is
implemented the training algorithm is relatively straight-
forward.

We will now give a first theorem regarding the con-
vergence of this algorithm. First, we need the following
definition:

Definition 1 Let GEN(xi) = GEN(xi) − {yi}. In
other wordsGEN(xi) is the set ofincorrectcandidates
for an examplexi. We will say that a training sequence
(xi, yi) for i = 1 . . . n is separable with margin δ > 0
if there exists some vectorU with ||U|| = 1 such that

∀i, ∀z ∈ GEN(xi), U · Φ(xi, yi)−U · Φ(xi, z) ≥ δ
(2)

(||U|| is the 2-norm ofU, i.e.,||U|| =
√∑

s U2
s.)

Next, defineNe to be the number of times an error is
made by the algorithm in figure 1 – that is, the number of
times thatzi 6= yi for some(t, i) pair. We can then state
the following theorem (see (Collins, 2002) for a proof):

Theorem 1 For any training sequence(xi, yi) that is
separable with marginδ, for any value ofT , then for
the perceptron algorithm in figure 1

Ne ≤
R2

δ2

where R is a constant such that∀i, ∀z ∈
GEN(xi) ||Φ(xi, yi)− Φ(xi, z)|| ≤ R.

This theorem implies that if there is a parameter vec-
tor U which makes zero errors on the training set, then
after a finite number of iterations the training algorithm
will converge to parameter values with zero training er-
ror. A crucial point is that the number of mistakes is in-
dependent of the number of candidates for each example



Inputs: Training examples(xi, yi) Algorithm:
Initialization: Setᾱ = 0 For t = 1 . . . T , i = 1 . . . n
Output: Parameters̄α Calculatezi = arg maxz∈GEN(xi) Φ(xi, z) · ᾱ

If(zi 6= yi) thenᾱ = ᾱ+ Φ(xi, yi)− Φ(xi, zi)

Figure 1: A variant of the perceptron algorithm.

(i.e. the size ofGEN(xi) for eachi), depending only
on the separation of the training data, where separation
is defined above. This is important because in many NLP
problemsGEN(x) can be exponential in the size of the
inputs. All of the convergence and generalization results
in Collins (2002) depend on notions of separability rather
than the size ofGEN.

Two questions come to mind. First, are there guar-
antees for the algorithm if the training data is not sepa-
rable? Second, performance on a training sample is all
very well, but what does this guarantee about how well
the algorithm generalizes to newly drawn test examples?
Freund and Schapire (1999) discuss how the theory for
classification problems can be extended to deal with both
of these questions; Collins (2002) describes how these
results apply to NLP problems.

As a final note, following Collins (2002), we used the
averagedparameters from the training algorithm in de-
coding test examples in our experiments. Sayᾱti is the
parameter vector after thei’th example is processed on
the t’th pass through the data in the algorithm in fig-
ure 1. Then the averaged parametersᾱAVG are defined
asᾱAVG =

∑
i,t ᾱ

t
i/NT . Freund and Schapire (1999)

originally proposed the averaged parameter method; it
was shown to give substantial improvements in accuracy
for tagging tasks in Collins (2002).

2.3 An Abstract Description of Incremental
Parsing

This section gives a description of the basic incremental
parsing approach. The input to the parser is a sentence
x with lengthn. A hypothesisis a triple 〈x, t, i〉 such
thatx is the sentence being parsed,t is a partial or full
analysis of that sentence, andi is an integer specifying
the number of words of the sentence which have been
processed. Each full parse for a sentence will have the
form 〈x, t, n〉. The initial state is〈x, ∅, 0〉 where∅ is a
“null” or empty analysis.

We assume an “advance” function ADV which takes
a hypothesis triple as input, and returns asetof new hy-
potheses as output. The advance function will absorb
another word in the sentence: this means that if the input
to ADV is 〈x, t, i〉, then each member of ADV(〈x, t, i〉)
will have the form〈x, t′,i+1〉. Each new analysist′ will
be formed by somehow incorporating thei+1’th word
into the previous analysist.

With these definitions in place, we can iteratively de-
fine the full set of partial analysesHi for the firsti words
of the sentence asH0(x) = {〈x, ∅, 0〉}, andHi(x) =
∪h′∈Hi−1(x)ADV(h′) for i = 1 . . . n. The full set of
parses for a sentencex is thenGEN(x) = Hn(x) where
n is the length ofx.

Under this definitionGEN(x) can include a huge

number of parses, and searching for the highest scor-
ing parse,arg maxh∈Hn(x) Φ(h) · ᾱ, will be intractable.
For this reason we introduce one additional function,
FILTER(H), which takes a set of hypothesesH, and re-
turns a much smaller set of “filtered” hypotheses. Typi-
cally, FILTER will calculate the scoreΦ(h) · ᾱ for each
h ∈ H, and then eliminate partial analyses which have
low scores under this criterion. For example, a simple
version of FILTER would take the topN highest scoring
members ofH for some constantN . We can then rede-
fine the set of partial analyses as follows (we useFi(x)
to denote the set of filtered partial analyses for the firsti
words of the sentence):

F0(x) = {〈x, ∅, 0〉}
Fi(x) = FILTER

(
∪h′∈Fi−1(x)ADV(h′)

)
for i=1 . . . n

The parsing algorithm returnsarg maxh∈Fn Φ(h) · ᾱ.
Note that this is a heuristic, in that there is no guar-
antee that this procedure will find the highest scoring
parse,arg maxh∈Hn Φ(h) · ᾱ. Search errors, where
arg maxh∈Fn Φ(h) · ᾱ 6= arg maxh∈Hn Φ(h) · ᾱ, will
create errors in decoding test sentences, and also errors in
implementing the perceptron training algorithm in Fig-
ure 1. In this paper we give empirical results that suggest
that FILTER can be chosen in such a way as to give ef-
ficient parsing performance together with high parsing
accuracy.

The exact implementation of the parser will depend on
the definition of partial analyses, of ADV and FILTER,
and of the representationΦ. The next section describes
our instantiation of these choices.

3 A full description of the parsing
approach

The parser is an incremental beam-search parser very
similar to the sort described in Roark (2001a; 2004), with
some changes in the search strategy to accommodate the
perceptron feature weights. We first describe the parsing
algorithm, and then move on to the baseline feature set
for the perceptron model.

3.1 Parser control
The input to the parser is a stringwn0 , a grammarG, a
mappingΦ from derivations to feature vectors, and a pa-
rameter vector̄α. The grammarG = (V, T,S†, S̄, C,B)
consists of a set of non-terminal symbolsV , a set of ter-
minal symbolsT , a start symbol S† ∈ V , an end-of-
constituent symbol̄S∈ V , a set of “allowable chains”C,
and a set of “allowable triples”B. S̄ is a special empty
non-terminal that marks the end of a constituent. Each
chain is a sequence of non-terminals followed by a ter-
minal symbol, for example〈S† → S → NP→ NN→
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Figure 2: Left child chains and connection paths. Dotted
lines represent potential attachments

Trash 〉. Each “allowable triple” is a tuple〈X,Y, Z〉
whereX,Y, Z ∈ V . The triples specify which non-
terminalsZ are allowed to follow a non-terminalY un-
der a parentX. For example, the triple〈S,NP,VP 〉
specifies that aVP can follow anNP under anS. The
triple 〈NP,NN, S̄〉 would specify that thēS symbol can
follow an NNunder anNP– i.e., that the symbolNN is
allowed to be the final child of a rule with parentNP

The initial state of the parser is the input string alone,
wn0 . In absorbing the first word, we add all chains of the
form S† . . . → w0. For example, in figure 2 the chain
〈S† → S→ NP→ NN→ Trash 〉 is used to construct
an analysis for the first word alone. Other chains which
start withS† and end withTrash would give competing
analyses for the first word of the string.

Figure 2 shows an example of how the next word in
a sentence can be incorporated into a partial analysis for
the previous words. For any partial analysis there will
be a set of potential attachment sites: in the example, the
attachment sites are under theNP or the S. There will
also be a set of possible chains terminating in the next
word – there are three in the example. Each chain could
potentially be attached at each attachment site, giving
6 ways of incorporating the next word in the example.
For illustration, assume that the setB is {〈S,NP,VP 〉,
〈NP,NN,NN〉, 〈NP,NN, S̄〉, 〈S,NP,VP 〉}. Then some
of the 6 possible attachments may be disallowed because
they create triples that are not in the setB. For example,
in figure 2 attaching either of theVP chains under the
NP is disallowed because the triple〈NP,NN,VP〉 is not
in B. Similarly, attaching theNNchain under theS will
be disallowed if the triple〈S,NP,NN 〉 is not inB. In
contrast, adjoining〈NN→ can 〉 under theNPcreates a
single triple,〈NP,NN,NN〉, which is allowed. Adjoining
either of theVP chains under theS creates two triples,
〈S,NP,VP 〉 and〈NP,NN, S̄〉, which are both in the set
B.

Note that the “allowable chains” in our grammar are
what Costa et al. (2001) call “connection paths” from
the partial parse to the next word. It can be shown that
the method is equivalent to parsing with a transformed
context-free grammar (a first-order “Markov” grammar)
– for brevity we omit the details here.

In this way, given a set of candidatesFi(x) for the first
i words of the string, we can generate a set of candidates

Tree POS f24 f2-21 f2-21, #> 1
transform tags Type Type OOV Type OOV

None Gold 386 1680 0.1% 1013 0.1%

None Tagged 401 1776 0.1% 1043 0.2%

FSLC Gold 289 1214 0.1% 746 0.1%

FSLC Tagged 300 1294 0.1% 781 0.1%

Table 1: Left-child chain type counts (of length> 2) for
sections of the Wall St. Journal Treebank, and out-of-
vocabulary (OOV) rate on the held-out corpus.

for the firsti + 1 words,∪h′∈Fi(x)ADV(h′), where the
ADV function uses the grammar as described above. We
then calculateΦ(h) · ᾱ for all of these partial hypotheses,
and rank the set from best to worst. A FILTER function is
then applied to this ranked set to giveFi+1. Lethk be the
kth ranked hypothesis inHi+1(x). Thenhk ∈ Fi+1 if
and only ifΦ(hk) · ᾱ ≥ θk. In our case, we parameterize
the calculation ofθk with γ as follows:

θk = Φ(h0) · ᾱ− γ

k3
. (3)

The problem with using left-child chains is limiting
them in number. With a left-recursive grammar, of
course, the set of all possible left-child chains is infinite.
We use two techniques to reduce the number of left-child
chains: first, we remove some (but not all) of the recur-
sion from the grammar through a tree transform; next,
we limit the left-child chains consisting of more than
two non-terminal categories to those actually observed
in the training data more than once. Left-child chains of
length less than or equal to two are all those observed
in training data. As a practical matter, the set of left-
child chains for a terminalx is taken to be the union of
the sets of left-child chains for all pre-terminal part-of-
speech (POS) tagsT for x.

Before inducing the left-child chains and allowable
triples from the treebank, the trees are transformed with a
selective left-corner transformation (Johnson and Roark,
2000) that has been flattened as presented in Roark
(2001b). This transform is only applied to left-recursive
productions, i.e. productions of the formA → Aγ.
The transformed trees look as in figure 3. The transform
has the benefit of dramatically reducing the number of
left-child chains, without unduly disrupting the immedi-
ate dominance relationships that provide features for the
model. The parse trees that are returned by the parser are
then de-transformed to the original form of the grammar
for evaluation2.

Table 1 presents the number of left-child chains of
length greater than 2 in sections 2-21 and 24 of the Penn
Wall St. Journal Treebank, both with and without the
flattened selective left-corner transformation (FSLC), for
gold-standard part-of-speech (POS) tags and automati-
cally tagged POS tags. When the FSLC has been applied
and the set is restricted to those occurring more than once

2See Johnson (1998) for a presentation of the transform/de-
transform paradigm in parsing.
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Figure 3: Three representations of NP modifications: (a) the original treebank representation; (b) Selective left-corner
representation; and (c) a flat structure that is unambiguously equivalent to (b)

F0 = {L00, L10} F4 = F3 ∪ {L03} F8 = F7 ∪ {L21} F12 = F11 ∪ {L11}
F1 = F0 ∪ {LKP} F5 = F4 ∪ {L20} F9 = F8 ∪ {CL} F13 = F12 ∪ {L30}
F2 = F1 ∪ {L01} F6 = F5 ∪ {L11} F10 = F9 ∪ {LK} F14 = F13 ∪ {CCP}
F3 = F2 ∪ {L02} F7 = F6 ∪ {L30} F11 = F0 ∪ {L20} F15 = F14 ∪ {CC}

Table 2: Baseline feature set. FeaturesF0 − F10 fire at non-terminal nodes. FeaturesF0, F11 − F15 fire at terminal
nodes.

in the training corpus, we can reduce the total number of
left-child chains of length greater than 2 by half, while
leaving the number of words in the held-out corpus with
an unobserved left-child chain (out-of-vocabulary rate –
OOV) to just one in every thousand words.

3.2 Features

For this paper, we wanted to compare the results of a
perceptron model with a generative model for a compa-
rable feature set. Unlike in Roark (2001a; 2004), there
is no look-ahead statistic, so we modified the feature set
from those papers to explicitly include the lexical item
and POS tag of the next word. Otherwise the features
are basically the same as in those papers. We then built
a generative model with this feature set and the same
tree transform, for use with the beam-search parser from
Roark (2004) to compare against our baseline perceptron
model.

To concisely present the baseline feature set, let us
establish a notation. Features will fire whenever a new
node is built in the tree. The features are labels from the
left-context, i.e. the already built part of the tree. All
of the labels that we will include in our feature sets are
i levels above the current node in the tree, andj nodes
to the left, which we will denoteLij . Hence,L00 is the
node label itself;L10 is the label of parent of the current
node;L01 is the label of the sibling of the node, imme-
diately to its left;L11 is the label of the sibling of the
parent node, etc. We also include: the lexical head of the
current constituent (CL); the c-commanding lexical head
(CC) and its POS (CCP); and the look-ahead word (LK)
and its POS (LKP). All of these features are discussed at
more length in the citations above. Table 2 presents the
baseline feature set.

In addition to the baseline feature set, we will also

present results using features that would be more dif-
ficult to embed in a generative model. We included
some punctuation-oriented features, which included (i)
a Boolean feature indicating whether the final punctua-
tion is a question mark or not; (ii) the POS label of the
word after the current look-ahead, if the current look-
ahead is punctuation or a coordinating conjunction; and
(iii) a Boolean feature indicating whether the look-ahead
is punctuation or not, that fires when the category imme-
diately to the left of the current position is immediately
preceded by punctuation.

4 Refinements to the Training Algorithm
This section describes two modifications to the “basic”
training algorithm in figure 1.

4.1 Making Repeated Use of Hypotheses

Figure 4 shows a modified algorithm for parameter es-
timation. The input to the function is a gold standard
parse, together with a set of candidatesF generated
by the incremental parser. There are two steps. First,
the model is updated as usual with the current example,
which is then added to a cache of examples. Second, the
method repeatedly iterates over the cache, updating the
model at each cached example if the gold standard parse
is not the best scoring parse from among the stored can-
didates for that example. In our experiments, the cache
was restricted to contain the parses from up toN pre-
viously processed sentences, whereN was set to be the
size of the training set.

The motivation for these changes is primarily effi-
ciency. One way to think about the algorithms in this
paper is as methods for finding parameter values that sat-
isfy a set of linear constraints – one constraint for each
incorrect parse in training data. The incremental parser is



Input: A gold-standard parse= g for sentencek of N . A set of candidate parsesF . Current parameters
ᾱ. A Cache of triples 〈gj ,Fj , cj〉 for j = 1 . . . N where eachgj is a previously generated gold standard
parse,Fj is a previously generated set of candidate parses, andcj is a counter of the number of times thatᾱ
has been updated due to this particular triple. ParametersT1 and T2 controlling the number of iterations be-
low. In our experiments,T1 = 5 and T2 = 50. Initialize the Cacheto include, forj = 1 . . . N , 〈gj , ∅, T2〉.

Step 1: Step 2:
Calculatez = arg maxt∈F Φ(t) · ᾱ For t = 1 . . . T1, j = 1 . . . N
If (z 6= g) thenᾱ = ᾱ+ Φ(g)− Φ(z) If cj < T2 then
Set thekth triple in theCacheto 〈g,F , 0〉 Calculatez = arg maxt∈Fj Φ(t) · ᾱ

If (z 6= gj) then
ᾱ = ᾱ+ Φ(gj)− Φ(z)
cj = cj + 1

Figure 4: The refined parameter update method makes repeated use of hypotheses

a method for dynamically generating constraints (i.e. in-
correct parses) which are violated, or close to being vio-
lated, under the current parameter settings. The basic al-
gorithm in Figure 1 is extremely wasteful with the gener-
ated constraints, in that it only looks at one constraint on
each sentence (thearg max), and it ignores constraints
implied by previously parsed sentences. This is ineffi-
cient because the generation of constraints (i.e., parsing
an input sentence), is computationally quite demanding.

More formally, it can be shown that the algorithm in
figure 4 also has the upper bound in theorem 1 on the
number of parameter updates performed. If the cost of
steps 1 and 2 of the method are negligible compared to
the cost of parsing a sentence, then the refined algorithm
will certainly converge no more slowly than the basic al-
gorithm, and may well converge more quickly.

As a final note, we used the parametersT1 andT2 to
limit the number of passes over examples, the aim being
to prevent repeated updates based on outlier examples
which are not separable.

4.2 Early Update During Training

As before, defineyi to be the gold standard parse for the
i’th sentence, and also defineyji to be thepartial analy-
sisunder the gold-standard parse for the firstj words of
thei’th sentence. Then ifyji /∈ Fj(xi) a search error has
been made, and there is no possibility of the gold stan-
dard parseyi being in the final set of parses,Fn(xi). We
call the following modification to the parsing algorithm
during training “early update”: ifyji /∈ Fj(xi), exit the
parsing process, passyji ,Fj(xi) to the parameter estima-
tion method, and move on to the next string in the train-
ing set. Intuitively, the motivation behind this is clear. It
makes sense to make a correction to the parameter values
at the point that a search error has been made, rather than
allowing the parser to continue to the end of the sentence.
This is likely to lead to less noisy input to the parameter
estimation algorithm; and early update will also improve
efficiency, as at the early stages of training the parser will
frequently give up after a small proportion of each sen-
tence is processed. It is more difficult to justify from a
formal point of view, we leave this to future work.

Figure 5 shows the convergence of the training algo-
rithm with neither of the two refinements presented; with
just early update; and with both. Early update makes
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Figure 5: Performance on development data (section f24)
after each pass over the training data, with and without
repeated use of examples and early update.

an enormous difference in the quality of the resulting
model; repeated use of examples gives a small improve-
ment, mainly in recall.

5 Empirical results
The parsing models were trained and tested on treebanks
from the Penn Wall St. Journal Treebank: sections 2-21
were kept training data; section 24 was held-out devel-
opment data; and section 23 was for evaluation. After
each pass over the training data, the averaged perceptron
model was scored on the development data, and the best
performing model was used for test evaluation. For this
paper, we used POS tags that were provided either by
the Treebank itself (gold standard tags) or by the per-
ceptron POS tagger3 presented in Collins (2002). The
former gives us an upper bound on the improvement that
we might expect if we integrated the POS tagging with
the parsing.

3For trials when the generative or perceptron parser was given POS
tagger output, the models were trained on POS tagged sections 2-21,
which in both cases helped performance slightly.



Model Gold-standard tags POS-tagger tags
LP LR F LP LR F

Generative 88.1 87.6 87.8 86.8 86.5 86.7

Perceptron (baseline) 87.5 86.9 87.2 86.2 85.5 85.8

Perceptron (w/ punctuation features)88.1 87.6 87.8 87.0 86.3 86.6

Table 3: Parsing results, section 23, all sentences, including labeled precision (LP), labeled recall (LR), and F-measure

Table 3 shows results on section 23, when either gold-
standard or POS-tagger tags are provided to the parser4.
With the base features, the generative model outperforms
the perceptron parser by between a half and one point,
but with the additional punctuation features, the percep-
tron model matches the generative model performance.

Of course, using the generative model and using the
perceptron algorithm are not necessarily mutually ex-
clusive. Another training scenario would be to include
the generative model score as another feature, with some
weight in the linear model learned by the perceptron al-
gorithm. This sort of scenario was used in Roark et al.
(2004) for training an n-gram language model using the
perceptron algorithm. We follow that paper in fixing the
weight of the generative model, rather than learning the
weight along the the weights of the other perceptron fea-
tures. The value of the weight was empirically optimized
on the held-out set by performing trials with several val-
ues. Our optimal value was 10.

In order to train this model, we had to provide gen-
erative model scores for strings in the training set. Of
course, to be similar to the testing conditions, we can-
not use the standard generative model trained on every
sentence, since then the generative score would be from
a model that had already seen that string in the training
data. To control for this, we built ten generative models,
each trained on 90 percent of the training data, and used
each of the ten to score the remaining 10 percent that was
not seen in that training set. For the held-out and testing
conditions, we used the generative model trained on all
of sections 2-21.

In table 4 we present the results of including the gen-
erative model score along with the other perceptron fea-
tures, just for the run with POS-tagger tags. The gen-
erative model score (negative log probability) effectively
provides a much better initial starting point for the per-
ceptron algorithm. The resulting F-measure on section
23 is 2.1 percent higher than either the generative model
or perceptron-trained model used in isolation.

6 Conclusions
In this paper we have presented a discriminative train-
ing approach, based on the perceptron algorithm with
a couple of effective refinements, that provides a model
capable of effective heuristic search over a very difficult
search space. In such an approach, the unnormalized dis-
criminative parsing model can be applied without either

4When POS tagging is integrated directly into the generative pars-
ing process, the baseline performance is 87.0. For comparison with the
perceptron model, results are shown with pre-tagged input.

Model POS-tagger tags
LP LR F

Generative baseline 86.8 86.5 86.7

Perceptron (w/ punctuation features)87.0 86.3 86.6

Generative + Perceptron (w/ punct) 89.1 88.4 88.8

Table 4: Parsing results, section 23, all sentences, in-
cluding labeled precision (LP), labeled recall (LR), and
F-measure

an external model to present it with candidates, or poten-
tially expensive dynamic programming. When the train-
ing algorithm is provided the generative model scores as
an additional feature, the resulting parser is quite com-
petitive on this task. The improvement that was derived
from the additional punctuation features demonstrates
the flexibility of the approach in incorporating novel fea-
tures in the model.

Future research will look in two directions. First, we
will look to include more useful features that are diffi-
cult for a generative model to include. This paper was
intended to compare search with the generative model
and the perceptron model with roughly similar feature
sets. Much improvement could potentially be had by
looking for other features that could improve the mod-
els. Secondly, combining with the generative model can
be done in several ways. Some of the constraints on the
search technique that were required in the absence of the
generative model can be relaxed if the generative model
score is included as another feature. In the current paper,
the generative score was simply added as another feature.
Another approach might be to use the generative model
to produce candidates at a word, then assign perceptron
features for those candidates. Such variants deserve in-
vestigation.

Overall, these results show much promise in the use of
discriminative learning techniques such as the perceptron
algorithm to help perform heuristic search in difficult do-
mains such as statistical parsing.
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