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Abstract

In this paper, we present a learning ap-
proach to the scenario template task of
information extraction, where information
filling one template could come from mul-
tiple sentences. When tested on the MUC-
4 task, our learning approach achieves
accuracy competitive to the best of the
MUC-4 systems, which were all built with
manually engineered rules. Our analy-
sis reveals that our use of full parsing
and state-of-the-art learning algorithms
have contributed to the good performance.
To our knowledge, this is the first re-
search to have demonstrated that a learn-
ing approach to the full-scale informa-
tion extraction task could achieve per-
formance rivaling that of the knowledge-
engineering approach.

1 Introduction

The explosive growth of online texts written in natu-
ral language has prompted much research into infor-
mation extraction (IE), the task of automatically ex-
tracting specific information items of interest from
natural language texts. The extracted information
is used to fill database records, also known as tem-
plates in the IE literature.

Research efforts on IE tackle a variety of tasks.
They include extracting information from semi-
structured texts, such as seminar announcements,
rental and job advertisements, etc., as well as from
free texts, such as newspaper articles (Soderland,
1999). IE from semi-structured texts is easier than
from free texts, since the layout and format of a
semi-structured text provide additional useful clues

AYACUCHO, 19 JAN 89 – TODAY TWO PEOPLE WERE
WOUNDED WHEN A BOMB EXPLODED IN SAN JUAN
BAUTISTA MUNICIPALITY. OFFICIALS SAID THAT
SHINING PATH MEMBERS WERE RESPONSIBLE FOR
THE ATTACK ... ... POLICE SOURCES STATED THAT
THE BOMB ATTACK INVOLVING THE SHINING PATH
CAUSED SERIOUS DAMAGES ... ...

Figure 1: Snippet of a MUC-4 document

to aid in extraction. Several benchmark data sets
have been used to evaluate IE approaches on semi-
structured texts (Soderland, 1999; Ciravegna, 2001;
Chieu and Ng, 2002a).

For the task of extracting information from free
texts, a series of Message Understanding Confer-
ences (MUC) provided benchmark data sets for eval-
uation. Several subtasks for IE from free texts have
been identified. The named entity (NE) task extracts
person names, organization names, location names,
etc. The template element (TE) task extracts infor-
mation centered around an entity, like the acronym,
category, and location of a company. The template
relation (TR) task extracts relations between enti-
ties. Finally, the full-scale IE task, the scenario tem-
plate (ST) task, deals with extracting generic infor-
mation items from free texts. To tackle the full ST
task, an IE system needs to merge information from
multiple sentences in general, since the information
needed to fill one template can come from multiple
sentences, and thus discourse processing is needed.
The full-scale ST task is considerably harder than all
the other IE tasks or subtasks outlined above.

As is the case with many other natural language
processing (NLP) tasks, there are two main ap-
proaches to IE, namely the knowledge-engineering
approach and the learning approach. Most early
IE systems adopted the knowledge-engineering ap-



0 MESSAGE: ID TST3-MUC4-0014
1 MESSAGE: TEMPLATE 1
2 INCIDENT: DATE 19-JAN-89
3 INCIDENT: LOCATION PERU: SAN JUAN BAUTISTA

(MUNICIPALITY)
4 INCIDENT: TYPE BOMBING
5 INCIDENT: STAGE OF EXECUTION ACCOMPLISHED
6 INCIDENT: INSTRUMENT ID “BOMB”
7 INCIDENT: INSTRUMENT TYPE BOMB:“BOMB”
8 PERP: INCIDENT CATEGORY TERRORIST ACT
9 PERP: INDIVIDUAL ID “SHINING PATH MEMBERS”
10 PERP: ORGANIZATION ID “SHINING PATH”
11 PERP: ORGANIZATION SUSPECTED OR ACCUSED BY

CONFIDENCE AUTHORITIES:“SHINING PATH”
12 PHYS TGT: ID -
13 PHYS TGT: TYPE -
14 PHYS TGT: NUMBER -
15 PHYS TGT: FOREIGN NATION -
16 PHYS TGT: EFFECT OF INCIDENT SOME DAMAGE:“-”
17 PHYS TGT: TOTAL NUMBER -
18 HUM TGT: NAME -
19 HUM TGT: DESCRIPTION “PEOPLE”
20 HUM TGT: TYPE CIVILIAN:“PEOPLE”
21 HUM TGT: NUMBER 2:“PEOPLE”
22 HUM TGT: FOREIGN NATION -
23 HUM TGT: EFFECT OF INCIDENT INJURY:“PEOPLE”
24 HUM TGT: TOTAL NUMBER -

Figure 2: Example of a MUC-4 template

proach, where manually engineered rules were used
for IE. More recently, machine learning approaches
have been used for IE from semi-structured texts
(Califf and Mooney, 1999; Soderland, 1999; Roth
and Yih, 2001; Ciravegna, 2001; Chieu and Ng,
2002a), named entity extraction (Chieu and Ng,
2002b), template element extraction, and template
relation extraction (Miller et al., 1998). These ma-
chine learning approaches have been successful for
these tasks, achieving accuracy comparable to the
knowledge-engineering approach.

However, for the full-scale ST task of generic IE
from free texts, the best reported method to date is
still the knowledge-engineering approach. For ex-
ample, almost all participating IE systems in MUC
used the knowledge-engineering approach for the
full-scale ST task. The one notable exception is
the work of UMass at MUC-6 (Fisher et al., 1995).
Unfortunately, their learning approach did consider-
ably worse than the best MUC-6 systems. Soder-
land (1999) and Chieu and Ng (2002a) attempted
machine learning approaches for a scaled-down ver-
sion of the ST task, where it was assumed that the
information needed to fill one template came from
one sentence only.

In this paper, we present a learning approach
to the full-scale ST task of extracting information
from free texts. The task we tackle is considerably
more complex than that of (Soderland, 1999; Chieu

and Ng, 2002a), since we need to deal with merg-
ing information from multiple sentences to fill one
template. We evaluated our learning approach on
the MUC-4 task of extracting terrorist events from
free texts. We chose the MUC-4 task since man-
ually prepared templates required for training are
available.1 When trained and tested on the official
benchmark data of MUC-4, our learning approach
achieves accuracy competitive with the best MUC-4
systems, which were all built using manually engi-
neered rules. To our knowledge, our work is the first
learning-based approach to have achieved perfor-
mance competitive with the knowledge-engineering
approach on the full-scale ST task.

2 Task Definition

The task addressed in this paper is the Scenario Tem-
plate (ST) task defined in the Fourth Message Un-
derstanding Conference (MUC-4).2 The objective of
this task is to extract information on terrorist events
occurring in Latin American countries from free text
documents. For example, given the input document
in Figure 1, an IE system is to extract information
items related to any terrorist events to fill zero or
more database records, or templates. Each distinct
terrorist event is to fill one template. An example
of an output template is shown in Figure 2. Each of
the 25 fields in the template is called a slot, and the
string or value that fills a slot is called a slot fill.

Different slots in the MUC-4 template need to be
treated differently. Besides slot 0 (MESSAGE: ID)
and slot 1 (MESSAGE: TEMPLATE), the other 23
slots have to be extracted or inferred from the text
document. These slots can be divided into the fol-
lowing categories:

String Slots. These slots are filled using strings
extracted directly from the text document (slot 6, 9,
10, 12, 18, 19).

Text Conversion Slots. These slots have to be
inferred from strings in the document (slot 2, 14,
17, 21, 24). For example, INCIDENT: DATE has to
be inferred from temporal expressions such as “TO-

1http://www.itl.nist.gov/iaui/894.02/related projects/muc/
muc data/muc data index.html

2The full-scale IE task is called the ST task only in MUC-6
and MUC-7, when other subtasks like NE and TE tasks were
defined. Here, we adopted this terminology also in describing
the full-scale IE task for MUC-4.



Figure 3: ALICE: our information extraction system

DAY”, “LAST WEEK”, etc.
Set Fill Slots. This category includes the rest of

the slots. The value of a set fill slot comes from a
finite set of possible values. They often have to be
inferred from the document.

3 The Learning Approach

Our supervised learning approach is illustrated in
Figure 3. Our system, called ALICE (Automated
Learning-based Information Content Extraction),
requires manually extracted templates paired with
their corresponding documents that contain terrorist
events for training. After the training phase, ALICE

is then able to extract relevant templates from new
documents, using the model learnt during training.

In the training phase, each input training docu-
ment is first preprocessed through a chain of prepro-
cessing modules. The outcome of the preprocessing
is a full parse tree for each sentence, and corefer-
ence chains linking various coreferring noun phrases
both within and across sentences. The core of AL-
ICE uses supervised learning to build one classifier
for each string slot. The candidates to fill a template
slot are base (non-recursive) noun phrases. A noun
phrase ��� that occurs in a training document � and
fills a template slot � is used to generate one positive
training example for the classifier of slot � . Other
noun phrases in the training document � are neg-
ative training examples for the classifier of slot � .

The features of a training example generated from
��� are the verbs and other noun phrases (serving
roles like agent and patient) related to ��� in the same
sentence, as well as similar features for coreferring
noun phrases of ��� . Thus, our features for a tem-
plate slot classifier encode semantic (agent and pa-
tient roles) and discourse (coreference) information.
Our experimental results in this paper demonstrate
that such features are effective in learning what to
fill a template slot.

During testing, a new document is preprocessed
through the same chain of preprocessing modules.
Each candidate noun phrase ��� generates one test
example, and it is presented to the classifier of a tem-
plate slot � to determine whether ��� fills the slot � .
A separate template manager decides whether a new
template should be created to include slot � , or slot
� should fill the existing template.

3.1 Preprocessing

All the preprocessing modules of ALICE were built
with supervised learning techniques. They include
sentence segmentation (Ratnaparkhi, 1998), part-of-
speech tagging (Charniak et al., 1993), named en-
tity recognition (Chieu and Ng, 2002b), full parsing
(Collins, 1999), and coreference resolution (Soon et
al., 2001). Each module performs at or near state-
of-the-art accuracy, but errors are unavoidable, and
later modules in the preprocessing chain have to deal
with errors made by the previous modules.

3.2 Features in Training and Test Examples

As mentioned earlier, the features of an example are
generated based on a base noun phrase (denoted as
baseNP), which is a candidate for filling a template
slot. While most strings that fill a string slot are base
noun phrases, this is not always the case. For in-
stance, consider the two examples in Figure 4. In the
first example, “BOMB” should fill the string slot IN-
CIDENT: INSTRUMENT ID, while in the second
example, “FMLN” should fill the string slot PERP:
ORGANIZATION ID. However, “BOMB” is itself
not a baseNP (the baseNP is “A BOMB EXPLO-
SION”). Similarly for “FMLN”.

As such, a string that fills a template slot but is
itself not a baseNP (like “BOMB”) is also used to
generate a training example, by using its smallest en-
compassing noun phrase (like “A BOMB EXPLO-



(1) ONE PERSON WAS KILLED TONIGHT AS THE RE-
SULT OF A BOMB EXPLOSION IN SAN SALVADOR.
(2) FORTUNATELY, NO CASUALTIES WERE REPORTED
AS A RESULT OF THIS INCIDENT, FOR WHICH THE
FMLN GUERRILLAS ARE BEING HELD RESPONSIBLE.

Figure 4: Sentences illustrating string slots that can-
not be filled by baseNPs.

(1) MEMBERS OF THAT SECURITY GROUP ARE COMB-
ING THE AREA TO DETERMINE THE FINAL OUTCOME
OF THE FIGHTING.
(2) A BOMB WAS THROWN AT THE HOUSE OF FRE-
DEMO CANDIDATE FOR DEPUTY MIGUEL ANGEL
BARTRA BY TERRORISTS.

Figure 5: Sample sentences for the illustration of
features

SION”) to generate the training example features.
During training, a list of such words is compiled for
slots 6 and 10 from the training templates. During
testing, these words are also used as candidates for
generating test examples for slots 6 and 10, in addi-
tion to base NPs.

The features of an example are derived from the
treebank-style parse tree output by an implementa-
tion of Collins' parser (Collins, 1999). In particular,
we traverse the full parse tree to determine the verbs,
agents, patients, and indirect objects related to a
noun phrase candidate ��� . While a machine learning
approach is used in (Gildea and Jurafsky, 2000) to
determine general semantic roles, we used a simple
rule-based traversal of the parse tree instead, which
could also reliably determine the generic agent and
patient role of a sentence, and this suffices for our
current purpose.

Specifically, for a given noun phrase candidate
��� , the following groups of features are used:

Verb of Agent NP (VAg) When ��� is an agent
in a sentence, each of its associated verbs is a VAg
feature. For example, in sentence (1) of Figure 5, if
��� is MEMBERS, then its VAg features are COMB
and DETERMINE.

Verb of Patient NP (VPa) When ��� is a patient
in a sentence, each of its associated verbs is a VPa
feature. For example, in sentence (2) of Figure 5, if
��� is BOMB, then its VPa feature is THROW.

Verb-Preposition of NP-in-PP (V-Prep) When

��� is the NP in a prepositional phrase PP, then this
feature is the main verb and the preposition of PP.
For example, in sentence (2) of Figure 5, if ��� is
HOUSE, its V-Prep feature is THROW-AT.

VPa and related NPs/PPs (VPaRel) If ��� is a
patient in a sentence, each of its VPa may have its
own agents (Ag) and prepositional phrases (Prep-
NP). In this case, the tuples (VPa, Ag) and (VPa,
Prep-NP) are used as features. For example, in
“GUARDS WERE SHOT TO DEATH”, if ��� is
GUARDS, then its VPa SHOOT, and the preposi-
tional phrase TO-DEATH form the feature (SHOOT,
TO-DEATH).

VAg and related NPs/PPs (VAgRel) This is sim-
ilar to VPa above, but for VAg.

V-Prep and related NPs (V-PrepRel) When ���
is the NP in a prepositional phrase PP, then the main
verb (V) may have its own agents (Ag) and pa-
tients (Pa). In this case, the tuples (Ag, V-Prep)
and (V-Prep, Pa) are used as features. For example,
HOUSE in sentence (2) of Figure 5 will have the fea-
tures (TERRORIST, THROW-AT) and (THROW-
AT, BOMB).

Noun-Preposition (N-Prep) This feature aims at
capturing information in phrases such as “MUR-
DER OF THE PRIESTS”. If ��� is PRIESTS, this
feature will be MURDER-OF.

Head Word (H) The head word of each ��� is also
used as a feature. In a parse tree, there is a head word
at each tree node. In cases where a phrase does not
fit into a parse tree node, the last word of the phrase
is used as the head word. This feature is useful as
the system has no information of the semantic class
of ��� . From the head word, the system can get some
clue to help decide if ��� is a possible candidate for a
slot. For example, an ��� with head word PEASANT
is more likely to fill the human target slot compared
to another ��� with head word CLASH.

Named Entity Class (NE) The named entity
class of ��� is used as a feature.

Real Head (RH) For a phrase that does not fit into
a parse node, the head word feature is taken to be the
last word of the phrase. The real head word of its
encompassing parse node is used as another feature.
For example, in the NP “FMLN GUERRILLAS”,
“FMLN” is a positive example for slot 10, with head
word “FMLN” and real head “GUERRILLA”.

Coreference features Coreference chains found



by our coreference resolution module based on de-
cision tree learning are used to determine the noun
phrases that corefer with ��� . In particular, we use
the two noun phrases ��� � � and ����� � , where ��� � �
( ����� � ) is the noun phrase that corefers with ��� and
immediately precedes (follows) ��� . If such a pre-
ceding (or following) noun phrase ����� exists, we
generate the following features based on ��� � : VAg,
VPa, and N-Prep.

To give an idea of the informative features used in
the classifier of a slot, we rank the features used for
a slot classifier according to their correlation met-
ric values (Chieu and Ng, 2002a), where informa-
tive features are ranked higher. Table 1 shows the
top-ranking features for a few feature groups and
template slots. The bracketed number behind each
feature indicates the rank of this feature for that slot
classifier, ordered by the correlation metric value.
We observed that certain feature groups are more
useful for certain slots. For example, DIE is the top
VAg verb for the human target slot, and is ranked
12 among all features used for the human target slot.
On the other hand, VAg is so unimportant for the
physical target slot that the top VAg verb is due to a
preprocessing error that made MONSERRAT a verb.

3.3 Supervised Learning Algorithms

We evaluated four supervised learning algorithms.
Maximum Entropy Classifier (Alice-ME)
The maximum entropy (ME) framework is a re-

cent learning approach which has been successfully
used in various NLP tasks such as sentence segmen-
tation, part-of-speech tagging, and parsing (Ratna-
parkhi, 1998). However, to our knowledge, ours is
the first research effort to have applied ME learn-
ing to the full-scale ST task. We used the imple-
mentation of maximum entropy modeling from the
opennlp.maxent package.3.

Support Vector Machine (Alice-SVM) The
Support Vector Machine (SVM) (Vapnik, 1995) has
been successfully used in many recent applications
such as text categorization and handwritten digit
recognition. The learning algorithm finds a hyper-
plane that separates the training data with the largest
margin. We used a linear kernel for all our experi-
ments.

3http://maxent.sourceforge.net

Naive Bayes (Alice-NB) The Naive Bayes (NB)
algorithm (Duda and Hart, 1973) assumes the inde-
pendence of features given the class and assigns a
test example to the class which has the highest pos-
terior probability. Add-one smoothing was used.

Decision Tree (Alice-DT) The decision tree (DT)
algorithm (Quinlan, 1993) partitions training exam-
ples using the feature with the highest information
gain. It repeats this process recursively for each par-
tition until all examples in each partition belong to
one class.

We used the WEKA package4 for the implemen-
tation of SVM, NB, and DT algorithms.

A feature cutoff � is used for each algorithm: fea-
tures occurring less than � times are rejected. For
all experiments, � is set to 3. For ME and SVM, no
other feature selection is applied. For NB and DT,
the top 100 features as determined by chi-square are
selected. While not trying to do a serious compari-
son of machine learning algorithms, ME and SVM
seem to be able to perform well without feature
selection, whereas NB and DT require some form
of feature selection in order to perform reasonably
well.

3.4 Template Manager

As each sentence is processed, phrases classified as
positive for any of the string slots are sent to the
Template Manager (TM), which will decide if a new
template should be created when it receives a new
slot fill.

The system first attempts to attach a date and a lo-
cation to each slot fill ��� . Dates and locations are
first attached to their syntactically nearest verb, by
traversing the parse tree. Then, for each string fill
��� , we search its syntactically nearest verb � in the
same manner and assign the date and location at-
tached to � to ��� .

When a new slot fill is found, the Template Man-
ager will decide to start a new template if one of the
following conditions is true:

Date The date attached to the current slot fill is
different from the date of the current template.

Location The location attached to the current slot
fill is not compatible with the location of the current
template (one location does not contain the other).

4http://www.cs.waikato.ac.nz/ml/weka



Slot VAg VPa V-Prep N-Prep
Human Target DIE(12) KILL(2) IDENTIFY-AS(47) MURDER-OF(3)
Perpetrator Individual KIDNAP(5) IMPLICATE(17) ISSUE-FOR(73) WARRANT-FOR(64)
Physical Target MONSERRAT(420) DESTROY(1) THROW-AT(32) ATTACK-ON(11)
Perpetrator Organization KIDNAP(16) BLAME(25) SUSPEND-WITH(87) GUERRILLA-OF(31)
Instrument ID EXPLODE(4) PLACE(5) EQUIP-WITH(31) EXPLOSION-OF(17)

Table 1: The top-ranking feature for each group of features and the classifier of a slot

Incident Type Seed Words
ATTACK JESUIT, MURDER, KILL, ATTACK
BOMBING BOMB, EXPLOS, DYNAMIT, EXPLOD, INJUR
KIDNAPPING KIDNAP, ELN, RELEAS

Table 2: Stemmed seed words for each incident type

This is determined by using location lists provided
by the MUC-4 conference, which specify whether
one location is contained in another. An entry in this
list has the format of “PLACE-NAME1:PLACE-
NAME2”, where PLACE-NAME2 is contained in
PLACE-NAME1 (e.g., CUBA: HAVANA (CITY)).

Seed Word The sentence of the current slot fill
contains a seed word for a different incident type.
A number of seed words are automatically learned
for each of the incident types ATTACK, BOMBING,
and KIDNAPPING. They are automatically derived
based on the correlation metric value used in (Chieu
and Ng, 2002a). For the remaining incident types,
there are too few incidents in the training data for
seed words to be collected. The seeds words used
are shown in Table 2.

3.5 Enriching Templates

In the last stage before output, the template content
is further enriched in the following manner:

Removal of redundant slot fills For each slot in
the template, there might be several slot fills refer-
ring to the same thing. For example, for HUM TGT:
DESCRIPTION, the system might have found both
“PRIESTS” and “JESUIT PRIESTS”. A slot fill that
is a substring of another slot fill will be removed
from the template.

Effect/Confidence and Type Classifiers are also
trained for effect and confidence slots 11, 16, and
23 (ES slots), as well as type slots 7, 13, and 20
(TS slots). ES slots used exactly the same features
as string slots, while TS slots used only head words
and adjectives as features. For such slots, each entry
refers to another slot fill. For example, slot 23 may
contain the entry “DEATH” : “PRIESTS”, where

“PRIESTS” fills slot 19. During training, each train-
ing example is a fill of a reference slot (e.g., for slot
23, the reference slots are slot 18 and 19). For slot
23, for example, each instance will have a class such
as DEATH or INJURY, or if there is no entry in slot
23, UNKNOWN EFFECT. During testing, slot fills
of reference slots will be classified to determine if
they should have an entry in an ES or a TS slot.

Date and Location. If the system is unable to fill
the DATE or LOCATION slot of a template, it will
use as default value the date and country of the city
in the dateline of the document.

Other Slots. The remaining slots are filled with
default values. For example, slot 5 has the default
value “ACCOMPLISHED”, and slot 8 “TERROR-
IST ACT” (except when the perpetrator contains
strings such as “GOVERNMENT”, in which case
it will be changed to “STATE-SPONSORED VIO-
LENCE”). Slot 15, 17, 22, and 24 are always left
unfilled.

4 Evaluation

There are 1,300 training documents, of which 700
are relevant (i.e., have one or more event templates).
There are two official test sets, i.e., TST3 and TST4,
containing 100 documents each. We trained our sys-
tem ALICE using the 700 documents with relevant
templates, and then tested it on the two official test
sets. The output templates were scored using the
scorer provided on the official website.

The accuracy figures of ALICE (with different
learning algorithms) on string slots and all slots are
listed in Table 3 and Table 4, respectively. Accu-
racy is measured in terms of recall (R), precision (P),
and F-measure (F). We also list in the two tables the
accuracy figures of the top 7 (out of a total of 17)
systems that participated in MUC-4. The accuracy
figures in the two tables are obtained by running the
official scorer on the output templates of ALICE, and
those of the MUC-4 participating systems (available



TST3 TST4
R P F R P F

GE 55 54 54 GE 60 54 57
GE-CMU 43 52 47 GE-CMU 48 52 50
Alice-ME 41 51 45 Alice-ME 44 49 46
Alice-SVM 41 45 43 Alice-SVM 45 44 44
SRI 37 51 43 NYU 42 45 43
UMASS 36 49 42 SRI 39 49 43
Alice-DT 31 51 39 Alice-DT 36 50 42
NYU 35 43 39 UMASS 42 42 42
Alice-NB 41 30 35 Alice-NB 51 32 39
UMICH 32 36 34 BBN 35 42 38
BBN 22 40 28 UMICH 32 34 33

Table 3: Accuracy of string slots on the TST3 and
TST4 test set

TST3 TST4
R P F R P F

GE 58 54 56 GE 62 53 57
GE-CMU 48 55 51 GE-CMU 53 53 53
UMASS 45 56 50 SRI 44 51 47
Alice-ME 46 51 48 Alice-ME 46 46 46
SRI 43 54 48 NYU 46 46 46
Alice-SVM 45 46 45 UMASS 47 45 46
Alice-DT 38 53 44 Alice-SVM 47 40 43
NYU 40 46 43 Alice-DT 41 46 43
UMICH 40 39 39 BBN 40 43 41
Alice-NB 45 34 39 Alice-NB 52 33 40
BBN 29 43 35 UMICH 36 34 35

Table 4: Accuracy of all slots on the TST3 and TST4
test set

on the official web site). The same history file down-
loaded from the official web site is uniformly used
for scoring the output templates of all systems (the
history file contains the arbitration decisions for am-
biguous cases).

We conducted statistical significance test, using
the approximate randomization method adopted in
MUC-4. Table 5 shows the systems that are not sig-
nificantly different from Alice-ME.

Our system ALICE-ME, using a learning ap-
proach, is able to achieve accuracy competitive to
the best of the MUC-4 participating systems, which
were all built using manually engineered rules. We
also observed that ME and SVM, the more recent
machine learning algorithms, performed better than
DT and NB.

Full Parsing. To illustrate the benefit of full pars-
ing, we conducted experiments using a subset of fea-
tures, with and without full parsing. We used ME as
the learning algorithm in these experiments. The re-
sults on string slots are summarized in Table 6. The

Test set/slots Systems in the same group
TST3/string GE-CMU, SRI, UMASS, NYU
TST4/string GE-CMU, Alice-SVM, NYU, SRI,

Alice-DT, UMASS
TST3/all GE-CMU, UMASS, SRI, NYU
TST4/all SRI, NYU, UMASS, Alice-SVM,

Alice-DT, BBN

Table 5: Systems whose F-measures are not signif-
icantly different from Alice-ME at the 0.10 signifi-
cance level with 0.99 confidence

TST3 TST4
System R P F R P F
H + NE 23 44 30 18 30 23
H + NE + V (w/o parsing) 26 42 32 28 40 33
H + NE + V (with parsing) 38 49 43 40 45 42

Table 6: Accuracy of string slots with and without
full parsing

baseline system used only two features, head word
(H) and named entity class (NE). Next, we added
three features, VAg, VPa, and V-Prep. Without full
parsing, these verbs were obtained based on the im-
mediately preceding (or following) verb of a noun
phrase, and the voice of the verb. With full pars-
ing, these verbs were obtained based on traversing
the full parse tree. The results indicate that verb fea-
tures contribute to the performance of the system,
even without full parsing. With full parsing, verbs
can be determined more accurately, leading to better
overall performance.

5 Discussion

Although the best MUC-4 participating systems,
GE/GE-CMU, still outperform ALICE-ME, it must
be noted that for GE, “10 1/2 person months” were
spent on MUC-4 using the GE NLTOOLSET , af-
ter spending “15 person months” on MUC-3 (Rau et
al., 1992). With a learning approach, IE systems are
more portable across domains.

Not all occurrences of a string in a document that
match a slot fill of a template provide good positive
training examples. For example, in the same docu-
ment, there might be the following sentences “THE
MNR REPORTS THE KIDNAPPING OF OQUELI
COLINDRES...”, followed by “OQUELI COLIN-
DRES ARRIVED IN GUATEMALA ON 11 JAN-
UARY”. In this case, only the first occurrence of
OQUELI COLINDRES should be used as a positive



example for the human target slot. However, ALICE

does not have access to such information, since the
MUC-4 training documents are not annotated (i.e.,
only templates are provided, but the text strings in a
document are not marked). Thus, ALICE currently
uses all occurrences of “OQUELI COLINDRES” as
positive training examples, which introduces noise
in the training data. We believe that annotating the
string occurrences in training documents will pro-
vide higher quality training data for the learning ap-
proach and hence further improve accuracy.

Although part-of-speech taggers often boast of
accuracy over 95%, the errors they make can be fatal
to the parsing of sentences. For example, they often
tend to confuse “VBN” with “VBD”, which could
change the entire parse tree. The MUC-4 corpus
was provided as uppercase text, and this also has a
negative impact on the named entity recognizer and
part-of-speech tagger, which both make use of case
information.

Learning approaches have been shown to perform
on par or even outperform knowledge-engineering
approaches in many NLP tasks. However, the
full-scale scenario template IE task was still dom-
inated by knowledge-engineering approaches. In
this paper, we demonstrate that using both state-
of-art learning algorithms and full parsing, learning
approaches can rival knowledge-engineering ones,
bringing us a step closer to building full-scale IE
systems in a domain-independent fashion with state-
of-the-art accuracy.
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