
Compounding and derivational morphology in a finite-state setting

Jonas Kuhn
Department of Linguistics

The University of Texas at Austin
1 University Station, B5100

Austin, TX 78712-11196, USA
jonask@mail.utexas.edu

Abstract

This paper proposes the application of
finite-state approximation techniques on a
unification-based grammar of word for-
mation for a language like German. A
refinement of an RTN-based approxima-
tion algorithm is proposed, which extends
the state space of the automaton by se-
lectively adding distinctions based on the
parsing history at the point of entering a
context-free rule. The selection of history
items exploits the specific linguistic nature
of word formation. As experiments show,
this algorithm avoids an explosion of the
size of the automaton in the approxima-
tion construction.

1 The locus of word formation rules in
grammars for NLP

In English orthography, compounds following pro-
ductive word formation patterns are spelled with
spaces or hyphens separating the components (e.g.,
classic car repair workshop). This is convenient
from an NLP perspective, since most aspects of
word formation can be ignored from the point of
view of the conceptually simpler token-internal pro-
cesses of inflectional morphology, for which stan-
dard finite-state techniques can be applied. (Let
us assume that to a first approximation, spaces and
punctuation are used to identify token boundaries.)
It makes it also very easy to access one or more of
the components of a compound (like classic car in
the example), which is required in many NLP tech-
niques (e.g., in a vector space model).

If an NLP task for English requires detailed in-
formation about the structure of compounds (as
complex multi-token units), it is natural to use the

formalisms of computational syntax for English,
i.e., context-free grammars, or possibly unification-
based grammars. This makes it possible to deal with
the bracketing structure of compounding, which
would be impossible to cover in full generality in
the finite-state setting.

In languages like German, spelling conventions
for compounds do not support such a convenient
split between sub-token processing based on finite-
state technology and multi-token processing based
on context-free grammars or beyond—in German,
even very complex compounds are written without
spaces or hyphens: words like Verkehrswegepla-
nungsbeschleunigungsgesetz (‘law for speeding up
the planning of traffic routes’) appear in corpora. So,
for a fully adequate and general account, the token-
level analysis in German has to be done at least with
a context-free grammar:1 For checking the selection
features of derivational affixes, in the general case a
tree or bracketing structure is required. For instance,
the prefix Fehl- combines with nouns (compare (1));
however, it can appear linearly adjacent with a verb,
including its own prefix, and only then do we get the
suffix -ung, which turns the verb into a noun.

(1) N
�

N
�

V
�

N
���

V
���

V
�

N
���

Fehl ver arbeit ung
mis work

‘misprocessing’
1For a fully general account of derivational morphology in

English, the token-level analysis has to go beyond finite-state
means too: the prefix non- in nonrealizability combines with the
complex derived adjective realizable, not with the verbal stem
realize (and non- could combine with a more complex form).
However, since in English there is much less token-level inter-
action between derivation and compounding, a finite-state ap-
proximation of the relevant facts at token-level is more straight-
forward than in German.

Furthermore, context-free power is required to parse
the internal bracketing structure of complex words
like (2), which occur frequently and productively.

(2) N
�

N
�

A
�

A
�

N
�

V
�

N
�

A
�

N
���

V
���

V
�

A
���

N
���

V
�

N
���

Gesund heits ver träg lich keits prüf ung
healthy bear examine

‘check for health compatibility’

As the results of the DeKo project on deriva-
tional and compositional morphology of German
show (Schmid et al. 2001), an adequate account
of the word formation principles has to rely on a
number of dimensions (or features/attributes) of the
morphological units. An affix’s selection of the el-
ement it combines with is based on these dimen-
sions. Besides part-of-speech category, the dimen-
sions include origin of the morpheme (Germanic vs.
classical, i.e., Latinate or Greek2), complexity of
the unit (simplex/derived), and stem type (for many
lemmata, different base stems, derivation stems and
compounding stems are stored; e.g., träg in (2) is
a derivational stem for the lemma trag(en) (‘bear’);
heits is the compositional stem for the affix heit).

Given these dimensions in the affix feature selec-
tion, we need a unification-based (attribute) gram-
mar to capture the word formation principles explic-
itly in a formal account. A slightly simplified such
grammar is given in (3), presented in a PATR-II-
style notation:3

(3) a. X0 � X1 X2�
X1 CAT � = PREFIX�
X0 CAT � =

�
X1 MOTHER-CAT ��

X0 COMPLEXITY � = PREFIX-DERIVED�
X1 SELECTION � = X2

b. X0 � X1 X2�
X2 CAT � = SUFFIX�
X0 CAT � =

�
X2 MOTHER-CAT ��

X0 COMPLEXITY � = SUFFIX-DERIVED�
X2 SELECTION � = X1

2Of course, not the true ethymology is relevant here; ORIGIN

is a category in the synchronic grammar of speakers, and for
individual morphemes it may or may not be in accordance with
diachronic facts.

3An implementation of the DeKo rules in the unification for-
malism YAP is discussed in (Wurster 2003).

c. X0 � X1 X2�
X0 CAT � =

�
X2 CAT ��

X0 COMPLEXITY � = COMPOUND

(4) Sample lexicon entries
a. X0: intellektual-�

X0 CAT � = A�
X0 ORIGIN � = CLASSICAL�
X0 COMPLEXITY � = SIMPLEX�
X0 STEM-TYPE � = DERIVATIONAL�
X0 LEMMA � = ‘intellektuell’

b. X0: -isier-�
X0 CAT � = SUFFIX�
X0 MOTHER-CAT � = V�
X0 SELECTION CAT � = A�
X0 SELECTION ORIGIN � = CLASSICAL

Applying the suffixation rule, we can derive
intellektual.isier- (the stem of ‘intellectualize’) from
the two sample lexicon entries in (4). Note how the
selection feature (SELECTION) of prefixes and af-
fixes are unified with the selected category’s features
(triggered by the last feature equation in the prefixa-
tion and suffixation rules (3a,b)).

Context-freeness Since the range of all atomic-
valued features is finite and we can exclude lexicon
entries specifying the SELECTION feature embedded
in their own SELECTION value, the three attribute
grammar rewrite rules can be compiled out into an
equivalent context-free grammar.

2 Arguments for a finite-state word
formation component

While there is linguistic justification for a context-
free (or unification-based) model of word formation,
there are a number of considerations that speak in
favor of a finite-state account. (A basic assumption
made here is that a morphological analyzer is typi-
cally used in a variety of different system contexts,
so broad usability, consistency, simplicity and gen-
erality of the architecture are important criteria.)

First, there are a number of NLP applications
for which a token-based finite-state analysis is stan-
dardly used as the only linguistic analysis. It would
be impractical to move to a context-free technol-
ogy in these areas; at the same time it is desirable
to include an account of word formation in these
tasks. In particular, it is important to be able to break
down complex compounds into the individual com-
ponents, in order to reach an effect similar to the way
compounds are treated in English orthography.

Second, inflectional morphology has mostly been
treated in the finite-state two-level paradigm. Since
any account of word formation has to be combined
with inflectional morphology, using the same tech-
nology for both parts guarantees consistency and re-
usability.4

Third, when a morphological analyzer is used
in a linguistically sophisticated application context,
there will typically be other linguistic components,
most notably a syntactic grammar. In these compo-
nents, more linguistic information will be available
to address derivation/compounding. Since the nec-
essary generative capacity is available in the syntac-
tic grammar anyway, it seems reasonable to leave
more sophisticated aspects of morphological analy-
sis to this component (very much like the syntax-
based account of English compounds we discussed
initially). Given the first two arguments, we will
however nevertheless aim for maximal exactness of
the finite-state word formation component.

3 Previous strategies of addressing
compounding and derivation

Naturally, existing morphological analyzers of lan-
guages like German include a treatment of compo-
sitional morphology (e.g., Schiller 1995). An over-
generation strategy has been applied to ensure cov-
erage of corpus data. Exactness was aspired to for
the inflected head of a word (which is always right-
peripheral in German), but not for the non-head part
of a complex word. The non-head may essentially
be a flat concatenation of lexical elements or even an
arbitrary sequence of symbols. Clearly, an account
making use of morphological principles would be
desirable. While the internal structure of a word
is not relevant for the identification of the part-of-
speech category and morphosyntactic agreement in-
formation, it is certainly important for information
extraction, information retrieval, and higher-level
tasks like machine translation.

4An alternative is to construct an interface component be-
tween a finite-state inflectional morphology and a context-free
word formation component. While this can be conceivably
done, it restricts the applicability of the resulting overall system,
since many higher-level applications presuppose a finite-state
analyzer; this is for instance the case for the Xerox Linguistic
Environment (http://www.parc.com/istl/groups/nltt/xle/), a de-
velopment platform for syntactic Lexical-Functional Grammars
(Butt et al. 1999).

An alternative strategy—putting emphasis on a
linguistically satisfactory account of word forma-
tion—is to compile out a higher-level word forma-
tion grammar into a finite-state automaton (FSA),
assuming a bound to the depth of recursive self-
embedding. This strategy was used in a finite-state
implementation of the rules in the DeKo project
(Schmid et al. 2001), based on the AT&T Lextools
toolkit by Richard Sproat.5 The toolkit provides
a compilation routine which transforms a certain
class of regular-grammar-equivalent rewrite gram-
mars into finite-state transducers. Full context-free
recursion has to be replaced by an explicit cascading
of special category symbols (e.g., N1, N2, N3, etc.).

Unfortunately, the depth of embedding occur-
ring in real examples is at least four, even if we
assume that derivations like ver.träg.lich (‘com-
patible’; in (2)) are stored in the lexicon as
complex units: in the initially mentioned com-
pound Verkehrs.wege.planungs.beschleunigungs.ge-
setz (‘law for speeding up the planning of traffic
routes’), we might assume that Verkehrs.wege (‘traf-
fic routes’) is stored as a unit, but the remainder
of the analysis is rule-based. With this depth of
recursion (and a realistic morphological grammar),
we get an unmanagable explosion of the number of
states in the compiled (intermediate) FSA.

4 Proposed strategy

We propose a refinement of finite-state approxima-
tion techniques for context-free grammars, as they
have been developed for syntax (Pereira and Wright
1997, Grimley-Evans 1997, Johnson 1998, Neder-
hof 2000). Our strategy assumes that we want to
express and develop the morphological grammar at
the linguistically satisfactory level of a (context-
free-equivalent) unification grammar. In process-
ing, a finite-state approximation of this grammar is
used. Exploiting specific facts about morphology,
the number of states for the constructed FSA can be
kept relatively low, while still being in a position to
cover realistic corpus example in an exact way.

The construction is based on the following obser-
vation: Intuitively, context-free expressiveness is not
needed to constrain grammaticality for most of the

5Lextools: a toolkit for finite-state linguistic analysis, AT&T
Labs Research; http://www.research.att.com/sw/tools/lextools/

word formation combinations. This is because in
most cases, either (i) morphological feature selec-
tion is performed between string-adjacent terminal
symbols, or (ii) there are no categorial restrictions
on possible combinations. (i) is always the case
for suffixation, since German morphology is exclu-
sively right-headed.6 So the head of the unit selected
by the suffix is always adjacent to it, no matter how
complex the unit is:

(5) X

Y

. . . Y X
���

(i) is also the case for prefixes combining with a sim-
ple unit. (ii) is the case for compounding: while
affix-derivation is sensitive to the mentioned dimen-
sions like category and origin, no such grammati-
cal restrictions apply in compounding.7 So the fact
that in compounding, the heads of the two combined
units may not be adjacent (since the right unit may
be complex) does not imply that context-freeness is
required to exclude impossible combinations:

(6) X �
X �

X � X � X � X �

or X �
X � X �

X � X � X � X �

or X �
X �

X � X � X � X �
The only configuration requiring context-freeness

to exclude ungrammatical examples is the combina-
tion of a prefix with a complex morphological unit:

(7)

X

X

X
���

. . . X

As (1) showed, such examples do occur; so they
should be given an exact treatment. However, the
depth of recursive embeddings of this particular type
(possibly with other embeddings intervening) in re-
alistic text is limited. So a finite-state approximation

6This may appear to be falsified by examples like ver- (V
���

)
+ Urteil (N, ‘judgement’) = verurteilen (V, ‘convict’); how-
ever, in this case, a noun-to-verb conversion precedes the prefix
derivation. Note that the inflectional marking is always right-
peripheral.

7Of course, when speakers disambiguate the possible brack-
etings of a complex compound, they can exclude many com-
binations as implausible. But this is a defeasible world
knowledge-based effect, which should not be modeled as strict
selection in a morphological grammar.

keeping track of prefix embeddings in particular, but
leaving the other operations unrestricted seems well
justified. We will show in sec. 6 how such a tech-
nique can be devised, building on the algorithm re-
viewed in sec. 5.

5 RTN-based approximation techniques

A comprehensive overview and experimental com-
parison of finite-state approximation techniques for
context-free grammars is given in (Nederhof 2000).
In Nederhof’s approximation experiments based on
an HPSG grammar, the so-called RTN method
provided the best trade-off between exactness and
the resources required in automaton construction.
(Techniques that involve a heavy explosion of the
number of states are impractical for non-trivial
grammars.) More specifically, a parameterized ver-
sion of the RTN method, in which the FSA keeps
track of possible derivational histories, was consid-
ered most adequate.

The RTN method of finite-state approximation is
inspired by recursive transition networks (RTNs).
RTNs are collections of sub-automata. For each rule�����
	��������

in a context-free grammar, a sub-
automaton with ����� states is constructed:

(8) ���

��� � 	 . . . � �

����
� �
	

. . .
��� �

As a symbol is processed in the
�

automaton (say,�
	
), the RTN control jumps to the respective sub-

automaton’s initial state (so, from � � in (8) to a state�� � in the sub-automaton for
��	

), keeping the return
address on a stack representation. When the sub-
automaton is in its final state (� �� �), control jumps
back to the next state in the

�
automaton: � 	 .

In the RTN-based finite-state approximation of a
context-free grammar (which does not have an un-
limited stack representation available), the jumps
to sub-automata are hard-wired, i.e., transitions for
non-terminal symbols like the

��	
transition from � �

to � 	 are replaced by direct � -transitions to the ini-
tial state and from the end state of the respective
sub-automata: (9). (Of course, the resulting non-
deterministic FSA is then determinized and mini-
mized by standard techniques.)

(9) � �

� �

����� ���� �

� 	 . . .

����� ���� �

� �
� ��

�

�
. . .

�
. . .

�
. . .

�

�

The technique is approximative, since on jump-
ing back, the automaton “forgets” where it had come
from, so if there are several rules with a right-hand
side occurrence of, say

� �
, the automaton may non-

deterministically jump back to the wrong rule. For
instance, if our grammar consists of a recursive pro-
duction B

�
a B c for category B, and a production

B
�

b, we will get the following FSA:

(10)
�
	

� � � 	 �
� �
�

� �	
b

�

a

� �

c

�

The approximation loses the original balancing of
a’s and c’s, so “abcc” is incorrectly accepted.

In the parameterized version of the RTN
method that Nederhof (2000) proposes, the state
space is enlarged: different copies of each state are
created to keep track of what the derivational his-
tory was at the point of entering the present sub-
automaton. For representing the derivational his-
tory, Nederhof uses a list of “dotted” productions,
as known from Earley parsing. So, for state �	 in
(10), we would get copies � 	������ , � 	������ 	�������	���� � , etc.,
likewise for the states � �"! � 	 ! ��� The � -transitions for
jumping to and from embedded categories observe
the laws for legal context-free derivations, as far as
recorded by the dotted rules.8 Of course, the win-
dow for looking back in history is bounded; there is
a parameter (which Nederhof calls #) for the size of
the history list in the automaton construction. Be-
yond the recorded history, the automaton’s approxi-
mation will again get inexact.

(11) shows the parameterized variant of (10), with
parameter #%$'& , i.e., a maximal length of one ele-
ment for the history ((is used as a short-hand for
item) * �,+.- *0/21). (11) will not accept “abcc” (but
it will accept “aabccc”).

8For the exact conditions see (Nederhof 2000, 25).

(11) � 	������

� � ���3� � 	 ���3� � �4���3� � �4���3�

� �	������

� 	�����56�

� � ���756� � 	 ���756� � �4���756� � �4���756�

� �	�����56�

b

�
a c

�

� �b

�

a

� �

c

�

The number of possible histories (and thus the
number of states in the non-deterministic FSA)
grows exponentially with the depth parameter, but
only polynomially with the size of the grammar.
Hence, with parameter #8$9& (“RTN2”), the tech-
nique is usable for non-trivial syntactic grammars.
Nederhof (2000) discusses an important additional
step for avoiding an explosion of the size of the in-
termediate, non-deterministic FSA: before the de-
scribed approximation is performed, the context-
free grammar is split up into subgrammars of mu-
tually recursive categories (i.e., categories which
can participate in a recursive cycle); in each sub-
grammar, all other categories are treated as non-
terminal symbols. For each subgrammar, the RTN
construction and FSA minimization is performed
separately, so in the end, the relatively small mini-
mized FSAs can be reassembled.

6 A selective history-based RTN-method
In word formation, the split of the original gram-
mar into subgrammars of mutually recursive (MR)
categories has no great complexity-reducing effect
(if any), contrary to the situation in syntax. Essen-
tially, all recursive categories are part of a single
large equivalence class of MR categories. Hence,
the size of the grammar that has to be effectively ap-
proximated is fairly large (recall that we are dealing
with a compiled-out unification grammar). For a re-
alistic grammar, the parameterized RTN technique is
unusable with parameter #:$ � or higher. Moreover,
a history of just two previous embeddings (as we get
it with #;$ �) is too limited in a heavily recursive
setting like word formation: recursive embeddings
of depth four occur in realistic text.

However, we can exploit more effectively the
“mildly context-free” characteristics of morpholog-

ical grammars (at least of German) discussed in
sec. 4. We propose a refined version of the parame-
terized RTN-method, with a selective recording of
derivational history. We stipulate a distinction of
two types of rules: “historically important” h-rules

(written
� �� �
	��������

) and non-h-rules (writ-

ten
������ �
	��������

). The h-rules are treated as
in the parameterized RTN-method. The non-h-rules
are not recorded in the construction of history lists;
they are however taken into account in the determi-

nation of legal histories. For instance,) ���� - *0/ 1
will appear as a legal history for the sub-automaton
for some category D only if there is a derivation

B
����	��
 D � (i.e., a sequence of rule rewrites mak-

ing use of non-h-rules). By classifying certain rules
as non-h-rules, we can concentrate record-keeping
resources on a particular subset of rules.

In sec. 4, we saw that for most rules in the
compiled-out context-free grammar for German
morphology (all rules compiled from (3b) and (3c)),
the inexactness of the RTN-approximation does
not have any negative effect (either due to head-
adjacency, which is preserved by the non-parametric
version of RTN, or due to lack of category-specific
constraints, which means that no context-free bal-
ancing is checked). Hence, it is safe to classify these
rules as non-h-rules. The only rules in which the in-
exactness may lead to overgeneration are the ones
compiled from the prefix rule (3a). Marking these
rules as h-rules and doing selective history-based
RTN construction gives us exactly the desired effect:
we will get an FSA that will accept a free alternation
of all three word-formation types (as far as compat-
ible with the lexical affixes’ selection), but stacking
of prefixes is kept track of. Suffix derivations and
compounding steps do not increase the length of our
history list, so even with a #%$'& or # $ � , we can
get very far in exact coverage.

7 Additional optimizations

Besides the selective history list construction, two
further optimizations were applied to Nederhof’s
(2000) parameterized RTN-method: First, Earley
items with the same remainder to the right of the dot

were collapsed () � ��
 	 - � 1 and) � ��
 � - � 1).
Since they are indistinguishable in terms of future
behavior, making a distinction results in an unnec-

essary increase of the state space. (Effectively,
only the material to the right of the dot was used
to build the history items.) Second, for immedi-
ate right-peripheral recursion, the history list was
collapsed; i.e., if the current history has the form) ���������- � 1 ! ����� , and the next item to be added

would be again) ���� ��� - � 1 , the present list is left
unchanged. This is correct because completion of

) � �� ��� ��- 1 will automatically result in the com-
pletion of all immediately stacked such items.

Together, the two optimizations help to keep the
number of different histories small, without losing
relevant distinctions. Especially the second opti-
mization is very effective in a selective history set-
ting, since the “immediate” recursion need not be
literally immediate, but an arbitrary number of non-
h-rules may intervene. So if we find a noun pre-

fix [N
��

N
��� -

N], i.e., we are looking for a noun,
we need not pay attention (in terms of coverage-
relevant history distinctions) whether we are running
into compounds or suffixations: we know, when we
find another noun prefix (with the same selection
features, i.e., origin etc.), one analysis will always
be to close off both prefixations with the same noun:

(12) N

N
���

N

N
���

N
. . .

Of course, the second prefixation need not have hap-
pened on the right-most branch, so at the point of
having accepted N

���
N

���
N, we may actually be in

the configuration sketched in (13a):

(13) a. N

N
���

?

N ?

N
���

N
. . .

b. ?

N ?

N
���

N

N
���

N
. . .

Note however that in terms of grammatically le-
gal continuations, this configuration is “subsumed”
by (13b), which is compatible with (12) (the top
‘?’ category will be accessible using � -transitions
back from a completed N—recall that suffixation
and compounding is not controlled by any history
items).

So we can note that the only examples for which
the approximating FSA is inexact are those where
the stacking depth of distinct prefixes (i.e., selecting

diff. pairs of interm. non-deterministic fsa minimized fsa
categ./hist. list # states # � -trans. # � -trans. # states # trans.

plain # $ & 169 1,118 640 963 2 16
parameterized # $ � 1,861 13,149 7,595 11,782 11 198
RTN-method #:$�� 22,333

selective #:$ & 229 2,934 1,256 4,000 14 361
history-based # $ � 2,011 26,343 11,300 36,076 14 361
RTN-method #:$�� 18,049

Figure 1: Experimental results for sample grammar with 185 rules

for a different set of features) is greater than our pa-
rameter # . Thanks to the second optimization, the
relatively frequent case of stacking of two verbal
prefixes as in vor.ver.arbeiten ‘preprocess’ counts as
a single prefix for book-keeping purposes.

8 Implementation and experiments

We implemented the selective history-based RTN-
construction in Prolog, as a conversion routine
that takes as input a definite-clause grammar with
compiled-out grounded feature values; it produces
as output a Prolog representation of an FSA. The re-
sulting automaton is determinized and minimized,
using the FSA library for Prolog by Gertjan van No-
ord.9 Emphasis was put on identifying the most suit-
able strategy for dealing with word formation taking
into account the relative size of the FSAs generated
(other techniques than the selective history strategy
were tried out and discarded).

The algorithm was applied on a sample word for-
mation grammar with 185 compiled-out context-free
rules, displaying the principled mechanism of cat-
egory and other feature selection, but not the full
set of distinctions made in the DeKo project. 9 of
the rules were compiled from the prefixation rule,
and were thus marked as h-rules for the selective
method.

We ran a comparison between a version of
the non-selective parameterized RTN-method of
(Nederhof 2000) and the selective history method
proposed in this paper. An overview of the results
is given in fig. 1.10 It should be noted that the op-
timizations of sec. 7 were applied in both methods
(the non-selective method was simulated by mark-

9FSA6.2xx: Finite State Automata Utilities;
http://odur.let.rug.nl/˜vannoord/Fsa/

10The fact that the minimized FSAs for �����	��
 are identical
for the selective method is an artefact of the sample grammar.

ing all rules as h-rules).

As the size results show, the non-deterministic
FSAs constructed by the selective method are more
complex (and hence resource-intensive in minimiza-
tion) than the ones produced by the “plain” param-
eterized version. However, the difference in exact-
ness of the approximizations has to be taken into ac-
count. As a tentative indication for this, note that the
minimized FSA for #;$ & in the plain version has
only two states; so obviously too many distinctions
from the context-free grammar have been lost.

In the plain version, all word formation operations
are treated alike, hence the history list of length one
or two is quickly filled up with items that need not
be recorded. A comparison of the number of dif-
ferent pairs of categories and history lists used in
the construction shows that the selective method is
more economical in the use of memory space as the
depth parameter grows larger. (For # $�� , the selec-
tive method would even have fewer different cate-
gory/history list pairs than the plain method, since
the patterns become repetitive. However, the ap-
proximations were impractical for # $�� .) Since the
selective method uses non-h-rules only in the deter-
mination of legal histories (as discussed in sec. 6), it
can actually “see” further back into the history than
the length of the history list would suggest.

What the comparison clearly indicates is that
in terms of resource requirements, our selective
method with a parameter # � is much closer to the
� -version of the plain RTN-method than to the next
higher # � �� version. But since the selective method
focuses its record-keeping resources on the crucial
aspects of the finite-state approximation, it brings
about a much higher gain in exactness than just ex-
tending the history list by one in the plain method.

We also ran the selective method on a more fine-

grained morphological grammar with 403 rules (in-
cluding 12 h-rules). Parameter # $ & was ap-
plicable, leading to a non-deterministic FSA with
7,345 states, which could be minimized. Param-
eter # $ � led to a non-deterministic FSA with
87,601 states, for which minimization could not be
completed due to a memory overflow. It is one
goal for future research to identify possible ways of
breaking down the approximation construction into
smaller subproblems for which minimization can be
run separately (even though all categories belong to
the same equivalence class of mutually recursive cat-
egories).11 Another goal is to experiment with the
use of transduction as a means of adding structural
markings from which the analysis trees can be re-
constructed (to the extent they are not underspecified
by the finite-state approach); possible approaches
are discussed in Johnson 1996 and Boullier 2003.

Inspection of the longest few hundred prefix-
containing word forms in a large German newspaper
corpus indicates that prefix stacking is rare. (If there
are several prefixes in a word form, this tends to arise
through compounding.) No instance of stacking of
depth 3 was observed. So, the range of phenom-
ena for which the approximation is inexact is of lit-
tle practical relevance. For a full evaluation of the
coverage and exactness of the approach, a compre-
hensive implementation of the morphological gram-
mar would be required. We ran a preliminary exper-
iment with a small grammar, focusing on the cases
that might be problematic: we extracted from the
corpus a random sample of 100 word forms con-
taining prefixes. From these 100 forms, we gen-
erated about 3700 grammatical and ungrammatical
test examples by omission, addition and permutation
of stems and affixes. After making sure that the re-
quired affixes and stems were included in the lexicon
of the grammar, we ran a comparison of exact pars-
ing with the unification-based grammar and the se-
lective history-based RTN-approximation, with pa-
rameter # $ & (which means that there is a history
window of one item). For 97% of the test items,
the two methods agreed; 3% of the items were ac-
cepted by the approximation method, but not by the
full grammar. The approximation does not lose any

11A related possibility pointed out by a reviewer would be
to expand features from the original unification-grammar only
where necessary (cf. Kiefer and Krieger 2000).

test items parsed by the full grammar. Some obvi-
ous improvements should make it possible soon to
run experiments with a larger history window, reach-
ing exactness of the finite-state method for almost all
relevant data.

9 Acknowledgement
I’d like to thank my former colleagues at the Institut
für Maschinelle Sprachverarbeitung at the Univer-
sity of Stuttgart for invaluable discussion and input:
Arne Fitschen, Anke Lüdeling, Bettina Säuberlich
and the other people working in the DeKo project
and the IMS lexicon group. I’d also like to thank
Christian Rohrer and Helmut Schmid for discussion
and support.

References
Boullier, Pierre. 2003. Supertagging: A non-statistical

parsing-based approach. In Proceedings of the 8th Interna-
tional Workshop on Parsing Technologies (IWPT’03), Nancy,
France.

Butt, Miriam, Tracy King, Maria-Eugenia Niño, and Frédérique
Segond. 1999. A Grammar Writer’s Cookbook. Number 95
in CSLI Lecture Notes. Stanford, CA: CSLI Publications.

Grimley-Evans, Edmund. 1997. Approximating context-free
grammars with a finite-state calculus. In ACL, pp. 452–459,
Madrid, Spain.

Johnson, Mark. 1996. Left corner transforms and finite state
approximations. Ms., Rank Xerox Research Centre, Greno-
ble.

Johnson, Mark. 1998. Finite-state approximation of constraint-
based grammars using left-corner grammar transforms. In
COLING-ACL, pp. 619–623, Montreal, Canada.

Kiefer, Bernd, and Hans-Ulrich Krieger. 2000. A context-
free approximation of head-driven phrase structure grammar.
In Proceedings of the 6th International Workshop on Pars-
ing Technologies (IWPT’00), February 23-25, pp. 135–146,
Trento, Italy.

Nederhof, Mark-Jan. 2000. Practical experiments with regu-
lar approximation of context-free languages. Computational
Linguistics 26:17–44.

Pereira, Fernando, and Rebecca Wright. 1997. Finite-state ap-
proximation of phrase-structure grammars. In Emmanuel
Roche and Yves Schabes (eds.), Finite State Language Pro-
cessing, pp. 149–173. Cambridge: MIT Press.

Schiller, Anne. 1995. DMOR: Entwicklerhandbuch [develop-
er’s handbook]. Technical report, Institut für Maschinelle
Sprachverarbeitung, Universität Stuttgart.

Schmid, Tanja, Anke Lüdeling, Bettina Säuberlich, Ulrich
Heid, and Bernd Möbius. 2001. DeKo: Ein System zur
Analyse komplexer Wörter. In GLDV Jahrestagung, pp. 49–
57.

Wurster, Melvin. 2003. Entwicklung einer Wortbildungsgram-
matik fuer das Deutsche in YAP. Studienarbeit [Intermediate
student research thesis], Institut für Maschinelle Sprachver-
arbeitung, Universität Stuttgart.

