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Abstract
Traditional vector-based models use word
co-occurrence counts from large corpora
to represent lexical meaning. In this pa-
per we present a novel approach for con-
structing semantic spaces that takes syn-
tactic relations into account. We introduce
a formalisation for this class of models
and evaluate their adequacy on two mod-
elling tasks: semantic priming and auto-
matic discrimination of lexical relations.

1 Introduction

Vector-based models of word co-occurrence have
proved a useful representational framework for a
variety of natural language processing (NLP) tasks
such as word sense discrimination (Schütze, 1998),
text segmentation (Choi et al., 2001), contextual
spelling correction (Jones and Martin, 1997), auto-
matic thesaurus extraction (Grefenstette, 1994), and
notably information retrieval (Salton et al., 1975).
Vector-based representations of lexical meaning
have been also popular in cognitive science and
figure prominently in a variety of modelling stud-
ies ranging from similarity judgements (McDonald,
2000) to semantic priming (Lund and Burgess, 1996;
Lowe and McDonald, 2000) and text comprehension
(Landauer and Dumais, 1997).

In this approach semantic information is extracted
from large bodies of text under the assumption that
the context surrounding a given word provides im-
portant information about its meaning. The semantic
properties of words are represented by vectors that
are constructed from the observed distributional pat-
terns of co-occurrence of their neighbouring words.
Co-occurrence information is typically collected in

a frequency matrix, where each row corresponds to
a unique target word and each column represents its
linguistic context.

Contexts are defined as a small number of words
surrounding the target word (Lund and Burgess,
1996; Lowe and McDonald, 2000) or as entire para-
graphs, even documents (Landauer and Dumais,
1997). Context is typically treated as a set of
unordered words, although in some cases syntac-
tic information is taken into account (Lin, 1998;
Grefenstette, 1994; Lee, 1999). A word can be
thus viewed as a point in an n-dimensional semantic
space. The semantic similarity between words can
be then mathematically computed by measuring the
distance between points in the semantic space using
a metric such as cosine or Euclidean distance.

In the variants of vector-based models where no
linguistic knowledge is used, differences among
parts of speech for the same word (e.g., to drink
vs. a drink ) are not taken into account in the con-
struction of the semantic space, although in some
cases word lexemes are used rather than word sur-
face forms (Lowe and McDonald, 2000; McDonald,
2000). Minimal assumptions are made with respect
to syntactic dependencies among words. In fact it is
assumed that all context words within a certain dis-
tance from the target word are semantically relevant.
The lack of syntactic information makes the build-
ing of semantic space models relatively straightfor-
ward and language independent (all that is needed is
a corpus of written or spoken text). However, this
entails that contextual information contributes indis-
criminately to a word’s meaning.

Some studies have tried to incorporate syntactic
information into vector-based models. In this view,
the semantic space is constructed from words that



bear a syntactic relationship to the target word of in-
terest. This makes semantic spaces more flexible,
different types of contexts can be selected and words
do not have to physically co-occur to be considered
contextually relevant. However, existing models ei-
ther concentrate on specific relations for construct-
ing the semantic space such as objects (e.g., Lee,
1999) or collapse all types of syntactic relations
available for a given target word (Grefenstette, 1994;
Lin, 1998). Although syntactic information is now
used to select a word’s appropriate contexts, this in-
formation is not explicitly captured in the contexts
themselves (which are still represented by words)
and is therefore not amenable to further processing.

A commonly raised criticism for both types of se-
mantic space models (i.e., word-based and syntax-
based) concerns the notion of semantic similarity.
Proximity between two words in the semantic space
cannot indicate the nature of the lexical relations be-
tween them. Distributionally similar words can be
antonyms, synonyms, hyponyms or in some cases
semantically unrelated. This limits the application
of semantic space models for NLP tasks which re-
quire distinguishing between lexical relations.

In this paper we generalise semantic space models
by proposing a flexible conceptualisation of context
which is parametrisable in terms of syntactic rela-
tions. We develop a general framework for vector-
based models which can be optimised for different
tasks. Our framework allows the construction of se-
mantic space to take place over words or syntactic
relations thus bridging the distance between word-
based and syntax-based models. Furthermore, we
show how our model can incorporate well-defined,
informative contexts in a principled way which re-
tains information about the syntactic relations avail-
able for a given target word.

We first evaluate our model on semantic prim-
ing, a phenomenon that has received much attention
in computational psycholinguistics and is typically
modelled using word-based semantic spaces. We
next conduct a study that shows that our model is
sensitive to different types of lexical relations.

2 Dependency-based Vector Space Models

Once we move away from words as the basic con-
text unit, the issue of representation of syntactic in-
formation becomes pertinent. Information about the
dependency relations between words abstracts over
word order and can be considered as an intermediate
layer between surface syntax and semantics. More
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Figure 1: A dependency parse of a short sentence

formally, dependencies are asymmetric binary rela-
tionships between a head and a modifier (Tesnière,
1959). The structure of a sentence can be repre-
sented by a set of dependency relationships that form
a tree as shown in Figure 1. Here the head of the sen-
tence is the verb carry which is in turn modified by
its subject lorry and its object apples.

It is the dependencies in Figure 1 that will form
the context over which the semantic space will be
constructed. The construction mechanism sets out
by identifying the local context of a target word,
which is a subset of all dependency paths starting
from it. The paths consist of the dependency edges
of the tree labelled with dependency relations such
as subj, obj, or aux (see Figure 1). The paths can be
ranked by a path value function which gives differ-
ent weight to different dependency types (for exam-
ple, it can be argued that subjects and objects convey
more semantic information than determiners). Tar-
get words are then represented in terms of syntactic
features which form the dimensions of the seman-
tic space. Paths are mapped to features by the path
equivalence relation and the appropriate cells in the
matrix are incremented.

2.1 Definition of Semantic Space

We assume the semantic space formalisation pro-
posed by Lowe (2001). A semantic space is a matrix
whose rows correspond to target words and columns
to dimensions which Lowe calls basis elements:

Definition 1. A Semantic Space Model is a matrix
K = B×T , where bi ∈ B denotes the basis element
of column i, t j ∈ T denotes the target word of row j,
and Ki j the cell (i, j).

T is the set of words for which the matrix con-
tains representations; this can be either word types
or word tokens. In this paper, we assume that co-
occurrence counts are constructed over word types,
but the framework can be easily adapted to represent
word tokens instead.



In traditional semantic spaces, the cells Ki j of
the matrix correspond to word co-occurrence counts.
This is no longer the case for dependency-based
models. In the following we explain how co-
occurrence counts are constructed.

2.2 Building the Context

The first step in constructing a semantic space from
a large collection of dependency relations is to con-
struct a word’s local context.

Definition 2. The dependency parse p of a sentence
s is an undirected graph p(s) = (Vp,Ep). The set of
nodes corresponds to words of the sentence: Vp =
{w1, . . . ,wn}. The set of edges is Ep ⊆Vp ×Vp.

Definition 3. A class q is a three-tuple consisting
of a POS-tag, a relation, and another POS-tag. We
write Q for the set of all classes Cat ×R×Cat. For
each parse p, the labelling function Lp : Ep → Q as-
signs a class to every edge of the parse.

In Figure 1, the labelling function labels the left-
most edge as Lp((a, lorry)) = 〈Det,det,N〉. Note that
Det represents the POS-tag “determiner” and det the
dependency relation “determiner”.

In traditional models, the target words are sur-
rounded by context words. In a dependency-based
model, the target words are surrounded by depen-
dency paths.

Definition 4. A path φ is an ordered tuple of edges
〈e1, . . . ,en〉 ∈ En

p so that

∀ i : (ei−1 = (v1,v2) ∧ ei = (v3,v4)) ⇒ v2 = v3

Definition 5. A path anchored at a word w is a path
〈e1, . . . ,en〉 so that e1 = (v1,v2) and w = v1. Write
Φw for the set of all paths over Ep anchored at w.

In words, a path is a tuple of connected edges in
a parse graph and it is anchored at w if it starts at w.
In Figure 1, the set of paths anchored at lorry 1 is:

{〈(lorry,carry)〉,〈(lorry,carry),(carry,apples)〉,
〈(lorry,a)〉,〈(lorry,carry),(carry,might)〉, . . .}

The local context of a word is the set or a subset of
its anchored paths. The class information can always
be recovered by means of the labelling function.

Definition 6. A local context of a word w from a
sentence s is a subset of the anchored paths at w. A
function c : W → 2Φw which assigns a local context
to a word is called a context specification function.

1For the sake of brevity, we only show paths up to length 2.

The context specification function allows to elim-
inate paths on the basis of their classes. For exam-
ple, it is possible to eliminate all paths from the set
of anchored paths but those which contain immedi-
ate subject and direct object relations. This can be
formalised as:

c(w) = {φ ∈ Φw |φ = 〈e〉∧
(Lp(e) = 〈V,obj,N〉∨Lp(e) = 〈V,subj,N〉)}

In Figure 1, the labels of the two edges which
form paths of length 1 and conform to this context
specification are marked in boldface. Notice that the
local context of lorry contains only one anchored
path (c(lorry) = {〈(lorry,carry)〉}).

2.3 Quantifying the Context

The second step in the construction of the
dependency-based semantic models is to specify the
relative importance of different paths. Linguistic in-
formation can be incorporated into our framework
through the path value function.

Definition 7. The path value function v assigns a
real number to a path: v : Φ → R.

For instance, the path value function could pe-
nalise longer paths for only expressing indirect re-
lationships between words. An example of a length-
based path value function is v(φ) = 1

n where φ =
〈e1, . . . ,en〉. This function assigns a value of 1 to the
one path from c(lorry) and fractions to longer paths.

Once the value of all paths in the local context
is determined, the dimensions of the space must be
specified. Unlike word-based models, our contexts
contain syntactic information and dimensions can
be defined in terms of syntactic features. The path
equivalence relation combines functionally equiva-
lent dependency paths that share a syntactic feature
into equivalence classes.

Definition 8. Let ∼ be the path equivalence relation
on Φ. The partition induced by this equivalence re-
lation is the set of basis elements B.

For example, it is possible to combine all paths
which end at the same word: A path which starts
at wi and ends at w j, irrespectively of its length and
class, will be the co-occurrence of wi and w j. This
word-based equivalence function can be defined in
the following manner:

〈(v1,v2), . . . ,(vn−1,vn)〉 ∼ 〈(v′1,v′2), . . . ,(v′m−1,v
′
m)〉

iff vn = v′m
This means that in Figure 1 the set of basis elements
is the set of words at which paths end. Although co-



occurrence counts are constructed over words like in
traditional semantic space models, it is only words
which stand in a syntactic relationship to the target
that are taken into account.

Once the value of all paths in the local context
is determined, the local observed frequency for the
co-occurrence of a basis element b with the target
word w is just the sum of values of all paths φ in
this context which express the basis element b. The
global observed frequency is the sum of the local
observed frequencies for all occurrences of a target
word type t and is therefore a measure for the co-
occurrence of t and b over the whole corpus.

Definition 9. Global observed frequency:

f̂ (b, t) = ∑
w∈W (t)

∑
φ∈C(w)∧φ∼b

v(φ)

As Lowe (2001) notes, raw frequency counts are
likely to give misleading results. Due to the Zip-
fian distribution of word types, words occurring
with similar frequencies will be judged more similar
than they actually are. A lexical association func-
tion can be used to explicitly factor out chance co-
occurrences.

Definition 10. Write A for the lexical association
function which computes the value of a cell of the
matrix from a co-occurrence frequency:

Ki j = A( f̂ (bi, t j))

3 Evaluation

3.1 Parameter Settings

All our experiments were conducted on the British
National Corpus (BNC), a 100 million word col-
lection of samples of written and spoken language
(Burnard, 1995). We used Lin’s (1998) broad cover-
age dependency parser MINIPAR to obtain a parsed
version of the corpus. MINIPAR employs a man-
ually constructed grammar and a lexicon derived
from WordNet with the addition of proper names
(130,000 entries in total). Lexicon entries con-
tain part-of-speech and subcategorization informa-
tion. The grammar is represented as a network of
35 nodes (i.e., grammatical categories) and 59 edges
(i.e., types of syntactic (dependency) relationships).
MINIPAR uses a distributed chart parsing algorithm.
Grammar rules are implemented as constraints asso-
ciated with the nodes and edges.

Cosine distance cos(~x,~y) = ∑i xiyi√
∑i x2

i

√
∑i y2

i

Skew divergence sα(~x,~y) = ∑i xi log xi
αxi+(1−α)yi

Figure 2: Distance measures

The dependency-based semantic space was con-
structed with the word-based path equivalence func-
tion from Section 2.3. As basis elements for our se-
mantic space the 1000 most frequent words in the
BNC were used. Each element of the resulting vec-
tor was replaced with its log-likelihood value (see
Definition 10 in Section 2.3) which can be consid-
ered as an estimate of how surprising or distinctive
a co-occurrence pair is (Dunning, 1993).

We experimented with a variety of distance mea-
sures such as cosine, Euclidean distance, L1 norm,
Jaccard’s coefficient, Kullback-Leibler divergence
and the Skew divergence (see Lee 1999 for an
overview). We obtained the best results for co-
sine (Experiment 1) and Skew divergence (Experi-
ment 2). The two measures are shown in Figure 2.
The Skew divergence represents a generalisation of
the Kullback-Leibler divergence and was proposed
by Lee (1999) as a linguistically motivated distance
measure. We use a value of α = .99.

We explored in detail the influence of different
types and sizes of context by varying the context
specification and path value functions. Contexts
were defined over a set of 23 most frequent depen-
dency relations which accounted for half of the de-
pendency edges found in our corpus. From these,
we constructed four context specification functions:
(a) minimum contexts containing paths of length 1
(in Figure 1 sweet and carry are the minimum con-
text for apples), (b) np context adds dependency in-
formation relevant for noun compounds to minimum
context, (c) wide takes into account paths of length
longer than 1 that represent meaningful linguistic re-
lations such as argument structure, but also prepo-
sitional phrases and embedded clauses (in Figure 1
the wide context of apples is sweet, carry, lorry, and
might ), and (d) maximum combined all of the above
into a rich context representation.

Four path valuation functions were used: (a) plain
assigns the same value to every path, (b) length
assigns a value inversely proportional to a path’s
length, (c) oblique ranks paths according to the
obliqueness hierarchy of grammatical relations
(Keenan and Comrie, 1977), and (d) oblength



context specification path value function
1 minimum plain
2 minimum oblique
3 np plain
4 np length
5 np oblique
6 np oblength
7 wide plain
8 wide length
9 wide oblique
10 wide oblength
11 maximum plain
12 maximum length
13 maximum oblique
14 maximum oblength

Table 1: The fourteen models

combines length and oblique . The resulting 14
parametrisations are shown in Table 1. Length-
based and length-neutral path value functions are
collapsed for the minimum context specification
since it only considers paths of length 1.

We further compare in Experiments 1 and 2 our
dependency-based model against a state-of-the-art
vector-based model where context is defined as a
“bag of words”. Note that considerable latitude is
allowed in setting parameters for vector-based mod-
els. In order to allow a fair comparison, we se-
lected parameters for the traditional model that have
been considered optimal in the literature (Patel et al.,
1998), namely a symmetric 10 word window and
the most frequent 500 content words from the BNC
as dimensions. These parameters were similar to
those used by Lowe and McDonald (2000) (symmet-
ric 10 word window and 536 content words). Again
the log-likelihood score is used to factor out chance
co-occurrences.

3.2 Experiment 1: Priming

A large number of modelling studies in psycholin-
guistics have focused on simulating semantic prim-
ing studies. The semantic priming paradigm pro-
vides a natural test bed for semantic space models
as it concentrates on the semantic similarity or dis-
similarity between a prime and its target, and it is
precisely this type of lexical relations that vector-
based models capture.

In this experiment we focus on Balota and Lorch’s
(1986) mediated priming study. In semantic priming
transient presentation of a prime word like tiger di-
rectly facilitates pronunciation or lexical decision on
a target word like lion. Mediated priming extends
this paradigm by additionally allowing indirectly re-
lated words as primes – like stripes, which is only

related to lion by means of the intermediate concept
tiger. Balota and Lorch (1986) obtained small medi-
ated priming effects for pronunciation tasks but not
for lexical decision. For the pronunciation task, re-
action times were reduced significantly for both di-
rect and mediated primes, however the effect was
larger for direct primes.

There are at least two semantic space simulations
that attempt to shed light on the mediated priming
effect. Lowe and McDonald (2000) replicated both
the direct and mediated priming effects, whereas
Livesay and Burgess (1997) could only replicate di-
rect priming. In their study, mediated primes were
farther from their targets than unrelated words.

3.2.1 Materials and Design
Materials were taken form Balota and Lorch

(1986). They consist of 48 target words, each paired
with a related and a mediated prime (e.g., lion-tiger-
stripes). Each related-mediated prime tuple was
paired with an unrelated control randomly selected
from the complement set of related primes.

3.2.2 Procedure
One stimulus was removed as it had a low cor-

pus frequency (less than 100), which meant that
the resulting vector would be unreliable. We con-
structed vectors from the BNC for all stimuli with
the dependency-based models and the traditional
model, using the parametrisations given in Sec-
tion 3.1 and cosine as a distance measure. We calcu-
lated the distance in semantic space between targets
and their direct primes (TarDirP), targets and their
mediated primes (TarMedP), targets and their unre-
lated controls (TarUnC) for both models.

3.2.3 Results
We carried out a one-way Analysis of Variance

(ANOVA) with the distance as dependent variable
(TarDirP, TarMedP, TarUnC). Recall from Table 1
that we experimented with fourteen different con-
text definitions. A reliable effect of distance was
observed for all models (p < .001). We used the
η2 statistic to calculate the amount of variance ac-
counted for by the different models. Figure 3 plots
η2 against the different contexts. The best result
was obtained for model 7 which accounts for 23.1%
of the variance (F(2,140) = 20.576, p < .001) and
corresponds to the wide context specification and
the plain path value function. A reliable distance
effect was also observed for the traditional vector-
based model (F(2,138) = 9.384, p < .001).
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Figure 3: η2 scores for mediated priming materials

Model TarDirP – TarUnC TarMedP – TarUnC
Model 7 F = 25.290 (p < .001) F = .001 (p = .790)
Traditional F = 12.185 (p = .001) F = .172 (p = .680)
L & McD F = 24.105 (p < .001) F = 13.107 (p < .001)

Table 2: Size of direct and mediated priming effects

Pairwise ANOVAs were further performed to ex-
amine the size of the direct and mediated priming ef-
fects individually (see Table 2). There was a reliable
direct priming effect (F(1,94) = 25.290, p < .001)
but we failed to find a reliable mediated priming
effect (F(1,93) = .001, p = .790). A reliable di-
rect priming effect (F(1,92) = 12.185, p = .001)
but no mediated priming effect was also obtained for
the traditional vector-based model. We used the η2

statistic to compare the effect sizes obtained for the
dependency-based and traditional model. The best
dependency-based model accounted for 23.1% of
the variance, whereas the traditional model ac-
counted for 12.2% (see also Table 2).

Our results indicate that dependency-based mod-
els are able to model direct priming across a wide
range of parameters. Our results also show that
larger contexts (see models 7 and 11 in Figure 3) are
more informative than smaller contexts (see mod-
els 1 and 3 in Figure 3), but note that the wide con-
text specification performed better than maximum. At
least for mediated priming, a uniform path value as
assigned by the plain path value function outper-
forms all other functions (see Figure 3).

Neither our dependency-based model nor the tra-
ditional model were able to replicate the mediated
priming effect reported by Lowe and McDonald
(2000) (see L & McD in Table 2). This may be
due to differences in lemmatisation of the BNC,
the parametrisations of the model or the choice of

context words (Lowe and McDonald use a spe-
cial procedure to identify “reliable” context words).
Our results also differ from Livesay and Burgess
(1997) who found that mediated primes were fur-
ther from their targets than unrelated controls, us-
ing however a model and corpus different from the
ones we employed for our comparative studies. In
the dependency-based model, mediated primes were
virtually indistinguishable from unrelated words.

In sum, our results indicate that a model which
takes syntactic information into account outper-
forms a traditional vector-based model which sim-
ply relies on word occurrences. Our model is able
to reproduce the well-established direct priming ef-
fect but not the more controversial mediated prim-
ing effect. Our results point to the need for further
comparative studies among semantic space models
where variables such as corpus choice and size as
well as preprocessing (e.g., lemmatisation, tokeni-
sation) are controlled for.

3.3 Experiment 2: Encoding of Relations

In this experiment we examine whether dependency-
based models construct a semantic space that encap-
sulates different lexical relations. More specifically,
we will assess whether word pairs capturing differ-
ent types of semantic relations (e.g., hyponymy, syn-
onymy) can be distinguished in terms of their dis-
tances in the semantic space.

3.3.1 Materials and Design

Our experimental materials were taken from
Hodgson (1991) who in an attempt to investigate
which types of lexical relations induce priming col-
lected a set of 142 word pairs exemplifying the fol-
lowing semantic relations: (a) synonymy (words
with the same meaning, value and worth ), (b) su-
perordination and subordination (one word is an in-
stance of the kind expressed by the other word, pain
and sensation), (c) category coordination (words
which express two instances of a common super-
ordinate concept, truck and train), (d) antonymy
(words with opposite meaning, friend and enemy),
(e) conceptual association (the first word subjects
produce in free association given the other word,
leash and dog), and (f) phrasal association (words
which co-occur in phrases private and property).
The pairs were selected to be unambiguous exam-
ples of the relation type they instantiate and were
matched for frequency. The pairs cover a wide range
of parts of speech, like adjectives, verbs, and nouns.
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Figure 4: η2 scores for the Hodgson materials

Mean PA SUP CO ANT SYN
CA 16.25 × × × ×
PA 15.13 × ×
SUP 11.04
CO 10.45
ANT 10.07
SYN 8.87

Table 3: Mean skew divergences and Tukey test re-
sults for model 7

3.3.2 Procedure

As in Experiment 1, six words with low fre-
quencies (less than 100) were removed from the
materials. Vectors were computed for the re-
maining 278 words for both the traditional and
the dependency-based models, again with the
parametrisations detailed in Section 3.1. We calcu-
lated the semantic distance for every word pair, this
time using Skew divergence as distance measure.

3.3.3 Results

We carried out an ANOVA with the lexical rela-
tion as factor and the distance as dependent variable.
The lexical relation factor had six levels, namely the
relations detailed in Section 3.3.1. We found no ef-
fect of semantic distance for the traditional semantic
space model (F(5,141) = 1.481, p = .200). The η2

statistic revealed that only 5.2% of the variance was
accounted for. On the other hand, a reliable effect
of distance was observed for all dependency-based
models (p < .001). Model 7 (wide context specifi-
cation and plain path value function) accounted for
the highest amount of variance in our data (20.3%).
Our results can be seen in Figure 4.

We examined whether there are any significant
differences among the six relations using Post-hoc
Tukey tests. The pairwise comparisons for model 7

are given in Table 3. The mean distances for concep-
tual associates (CA), phrasal associates (PA), super-
ordinates/subordinates (SUP), category coordinates
(CO), antonyms (ANT), and synonyms (SYN) are
also shown in Table 3. There is no significant differ-
ence between PA and CA, although SUP, CO, ANT,
and SYN, are all significantly different from CA (see
Table 3, where × indicates statistical significance,
a = .05). Furthermore, ANT and SYN are signifi-
cantly different from PA.

Kilgarriff and Yallop (2000) point out that man-
ually constructed taxonomies or thesauri are typ-
ically organised according to synonymy and hy-
ponymy for nouns and verbs and antonymy for ad-
jectives. They further argue that for automatically
constructed thesauri similar words are words that
either co-occur with each other or with the same
words. The relations SYN, SUP, CO, and ANT can be
thought of as representing taxonomy-related knowl-
edge, whereas CA and PA correspond to the word
clusters found in automatically constructed thesauri.
In fact an ANOVA reveals that the distinction be-
tween these two classes of relations can be made
reliably (F(1,136) = 15.347, p < .001), after col-
lapsing SYN, SUP, CO, and ANT into one class and
CA and PA into another.

Our results suggest that dependency-based vector
space models can, at least to a certain degree, dis-
tinguish among different types of lexical relations,
while this seems to be more difficult for traditional
semantic space models. The Tukey test revealed that
category coordination is reliably distinguished from
all other relations and that phrasal association is re-
liably different from antonymy and synonymy. Tax-
onomy related relations (e.g., synonymy, antonymy,
hyponymy) can be reliably distinguished from con-
ceptual and phrasal association. However, no reli-
able differences were found between closely associ-
ated relations such as antonymy and synonymy.

Our results further indicate that context encoding
plays an important role in discriminating lexical re-
lations. As in Experiment 1 our best results were
obtained with the wide context specification. Also,
weighting schemes such as the obliqueness hierar-
chy length again decreased the model’s performance
(see conditions 2, 5, 9, and 13 in Figure 4), show-
ing that dependency relations contribute equally to
the representation of a word’s meaning. This points
to the fact that rich context encodings with a wide
range of dependency relations are promising for cap-
turing lexical semantic distinctions. However, the



performance for maximum context specification was
lower, which indicates that collapsing all depen-
dency relations is not the optimal method, at least
for the tasks attempted here.

4 Discussion

In this paper we presented a novel semantic space
model that enriches traditional vector-based models
with syntactic information. The model is highly gen-
eral and can be optimised for different tasks. It ex-
tends prior work on syntax-based models (Grefen-
stette, 1994; Lin, 1998), by providing a general
framework for defining context so that a large num-
ber of syntactic relations can be used in the construc-
tion of the semantic space.

Our approach differs from Lin (1998) in three
important ways: (a) by introducing dependency
paths we can capture non-immediate relationships
between words (i.e., between subjects and objects),
whereas Lin considers only local context (depen-
dency edges in our terminology); the semantic
space is therefore constructed solely from isolated
head/modifier pairs and their inter-dependencies are
not taken into account; (b) Lin creates the semantic
space from the set of dependency edges that are rel-
evant for a given word; by introducing dependency
labels and the path value function we can selectively
weight the importance of different labels (e.g., sub-
ject, object, modifier) and parametrize the space ac-
cordingly for different tasks; (c) considerable flexi-
bility is allowed in our formulation for selecting the
dimensions of the semantic space; the latter can be
words (see the leaves in Figure 1), parts of speech
or dependency edges; in Lin’s approach, it is only
dependency edges (features in his terminology) that
form the dimensions of the semantic space.

Experiment 1 revealed that the dependency-based
model adequately simulates semantic priming. Ex-
periment 2 showed that a model that relies on rich
context specifications can reliably distinguish be-
tween different types of lexical relations. Our re-
sults indicate that a number of NLP tasks could
potentially benefit from dependency-based models.
These are particularly relevant for word sense dis-
crimination, automatic thesaurus construction, auto-
matic clustering and in general similarity-based ap-
proaches to NLP.
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