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Abstract

We present a supervised machine learning
algorithm for metonymy resolution, which
exploits the similarity between examples
of conventional metonymy. We show
that syntactic head-modifier relations are
a high precision feature for metonymy
recognition but suffer from data sparse-
ness. We partially overcome this problem
by integrating a thesaurus and introduc-
ing simpler grammatical features, thereby
preserving precision and increasing recall.
Our algorithm generalises over two levels
of contextual similarity. Resulting infer-
ences exceed the complexity of inferences
undertaken in word sense disambiguation.
We also compare automatic and manual
methods for syntactic feature extraction.

1 Introduction

Metonymy is a figure of speech, in which one ex-
pression is used to refer to the standard referent of
a related one (Lakoff and Johnson, 1980). In (1),1

“seat 19” refers to the person occupying seat 19.

(1) Askseat 19whether he wants to swap

The importance of resolving metonymies has
been shown for a variety of NLP tasks, e.g., ma-
chine translation (Kamei and Wakao, 1992), ques-
tion answering (Stallard, 1993) and anaphora reso-
lution (Harabagiu, 1998; Markert and Hahn, 2002).

1(1) was actually uttered by a flight attendant on a plane.

In order to recognise and interpret the metonymy
in (1), a large amount of knowledge and contextual
inference is necessary (e.g. seats cannot be ques-
tioned, people occupy seats, people can be ques-
tioned). Metonymic readings are also potentially
open-ended (Nunberg, 1978), so that developing a
machine learning algorithm based on previous ex-
amples does not seem feasible.

However, it has long been recognised that many
metonymic readings are actually quite regular
(Lakoff and Johnson, 1980; Nunberg, 1995).2 In (2),
“Pakistan”, the name of a location, refers to one of
its national sports teams.3

(2) Pakistanhad won the World Cup

Similar examples can be regularly found for many
other location names (see (3) and (4)).

(3) Englandwon the World Cup

(4) Scotlandlost in the semi-final

In contrast to (1), the regularity of these exam-
ples can be exploited by a supervised machine learn-
ing algorithm, although this method is not pursued
in standard approaches to regular polysemy and
metonymy (with the exception of our own previous
work in (Markert and Nissim, 2002a)). Such an al-
gorithm needs to infer from examples like (2) (when
labelled as a metonymy) that “England” and “Scot-
land” in (3) and (4) are also metonymic. In order to

2Due to its regularity, conventional metonymy is also known
asregular polysemy(Copestake and Briscoe, 1995). We use the
term “metonymy” to encompass both conventional and uncon-
ventional readings.

3All following examples are from the British National Cor-
pus (BNC,http://info.ox.ac.uk/bnc ).
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Figure 1: Context reduction and similarity levels

draw this inference, two levels of similarity need to
be taken into account. One concerns the similarity of
the words to be recognised as metonymic or literal
(Possibly Metonymic Words, PMWs). In the above
examples, the PMWs are “Pakistan”, “England” and
“Scotland”. The other level pertains to the similar-
ity between the PMW’s contexts (“ <subject> (had)
won the World Cup”and “ <subject> lost in the
semi-final”). In this paper, we show how a machine
learning algorithm can exploit both similarities.

Our corpus study on thesemantic classof lo-
cations confirms that regularmetonymic patterns,
e.g., using a place name for any of its sports teams,
cover most metonymies, whereas unconventional
metonymies like (1) are very rare (Section 2). Thus,
we can recast metonymy resolution as a classifica-
tion task operating on semantic classes (Section 3).

In Section 4, we restrict the classifier’s features to
head-modifier relations involving the PMW. In both
(2) and (3), the context is reduced tosubj-of-win.
This allows the inference from (2) to (3), as they
have thesamefeature value. Although the remain-
ing context is discarded, this feature achieves high
precision. In Section 5, we generalize context simi-
larity to draw inferences from (2) or (3) to (4). We
exploit both the similarity of the heads in the gram-
matical relation (e.g., “win” and “lose”) and that of
the grammatical role (e.g. subject). Figure 1 illus-
trates context reduction and similarity levels.

We evaluate the impact of automatic extraction of
head-modifier relations in Section 6. Finally, we dis-
cuss related work and our contributions.

2 Corpus Study

We summarize (Markert and Nissim, 2002b)’s an-
notation scheme for location names and present an

annotated corpus of occurrences of country names.

2.1 Annotation Scheme for Location Names

We identify literal, metonymic, andmixedreadings.
The literal reading comprises a locative (5)

and a political entity interpretation (6).

(5) coral coast ofPapua New Guinea

(6) Britain ’s current account deficit

We distinguish the following metonymic patterns
(see also (Lakoff and Johnson, 1980; Fass, 1997;
Stern, 1931)). In aplace-for-people pattern,
a place stands for any persons/organisations associ-
ated with it, e.g., for sports teams in (2), (3), and (4),
and for the government in (7).4

(7) a cardinal element inIran ’s strategy when
Iranian naval craft [...] bombarded [...]

In a place-for-event pattern, a location
name refers to an event that occurred there (e.g., us-
ing the word Vietnam for the Vietnam war). In a
place-for-product pattern a place stands for
a product manufactured there (e.g., the word Bor-
deaux referring to the local wine).

The categoryothermet covers unconventional
metonymies, as (1), and is only used if none of the
other categories fits (Markert and Nissim, 2002b).

We also found examples where two predicates are
involved, each triggering a different reading.

(8) they arrived inNigeria, hitherto a leading
critic of the South African regime

In (8), both a literal (triggered by “arriving in”)
and aplace-for-people reading (triggered by
“leading critic”) are invoked. We introduced the cat-
egorymixed to deal with these cases.

2.2 Annotation Results

UsingGsearch (Corley et al., 2001), we randomly
extracted 1000 occurrences of country names from
the BNC, allowing any country name and its variants
listed in the CIA factbook5 or WordNet (Fellbaum,

4As the explicit referent is often underspecified, we intro-
duceplace-for-people as asupertypecategory and we
evaluate our system on supertype classification in this paper. In
the annotation, we further specify the different groups of people
referred to, whenever possible (Markert and Nissim, 2002b).

5http://www.cia.gov/cia/publications/
factbook/



1998) to occur. Each country name is surrounded by
three sentences of context.

The 1000 examples of our corpus have been inde-
pendently annotated by two computational linguists,
who are the authors of this paper. The annotation
can be considered reliable (Krippendorff, 1980) with
95% agreement and akappa(Carletta, 1996) of .88.
Our corpus for testing and training the algorithm
includes only the examples which both annotators
could agree on and which were not marked asnoise
(e.g. homonyms, as“Professor Greenland” ), for a
total of 925. Table 1 reports the reading distribution.

Table 1: Distribution of readings in our corpus
reading freq %
literal 737 79.7
place-for-people 161 17.4
place-for-event 3 .3
place-for-product 0 .0
mixed 15 1.6
othermet 9 1.0
total non-literal 188 20.3
total 925 100.0

3 Metonymy Resolution as a Classification
Task

The corpus distribution confirms that metonymies
that do not follow established metonymic patterns
(othermet ) are very rare. This seems to be the
case for other kinds of metonymies, too (Verspoor,
1997). We can therefore reformulate metonymy res-
olution as aclassification taskbetween the literal
reading and a fixed set of metonymic patterns that
can be identified in advance for particular semantic
classes. This approach makes the task comparable to
classicword sense disambiguation(WSD), which is
also concerned with distinguishing between possible
word senses/interpretations.

However, whereas a classic (supervised) WSD
algorithm is trained on a set of labelled instances
of one particular wordand assigns word senses to
new test instances of thesame word, (supervised)
metonymy recognition can be trained on a set of
labelled instances ofdifferent words of one seman-
tic classand assign literal readings and metonymic
patterns to new test instances ofpossibly different
words of the same semantic class. This class-based
approach enables one to, for example, infer the read-
ing of (3) from that of (2).

We use a decision list (DL) classifier. All features
encountered in the training data are ranked in the DL
(best evidence first) according to the following log-
likelihood ratio (Yarowsky, 1995):

Log

(
Pr(readingi|featurek)∑

j 6=i
Pr(readingj|featurek)

)

We estimated probabilities via maximum likeli-
hood, adopting a simple smoothing method (Mar-
tinez and Agirre, 2000): 0.1 is added to both the de-
nominator and numerator.

The target readings to be distinguished are
literal , place-for-people , place-for-
event , place-for-product , othermet and
mixed . All our algorithms are tested on our an-
notated corpus, employing 10-fold cross-validation.
We evaluate accuracy and coverage:

Acc =
# correct decisions made

# decisions made

Cov =
# decisions made

# test data

We also use a backing-off strategy to the most fre-
quent reading (literal ) for the cases where no
decision can be made. We report the results as ac-
curacy backoff (Accb); coverage backoff is always
1. We are also interested in the algorithm’s perfor-
mance in recognising non-literal readings. There-
fore, we compute precision (P ), recall (R), and F-
measure (F ), whereA is the number of non-literal
readings correctly identified as non-literal (true pos-
itives) andB the number of literal readings that are
incorrectly identified as non-literal (false positives):

P = A/(A + B)

R =
A

#non-literal examples in the test data

F = 2PR/(R + P )

The baseline used for comparison is the assign-
ment of the most frequent readingliteral .

4 Context Reduction

We show that reducing the context to head-modifier
relations involving the Possibly Metonymic Word
achieves high precision metonymy recognition.6

6In (Markert and Nissim, 2002a), we also considered local
and topical cooccurrences as contextual features. They con-
stantly achieved lower precision than grammatical features.



Table 2: Example feature values forrole-of-head
role-of-head (r-of-h) example

subj-of-win Englandwon the World Cup(place-for-people )
subjp-of-govern Britain has been governed by . . .(literal )
dobj-of-visit the Apostle had visitedSpain(literal )
gen-of-strategy in Iran ’s strategy . . .(place-for-people )
premod-of-veteran a Vietnamveteran from Rhode Island(place-for-event )
ppmod-of-with its border withHungary (literal )

Table 3: Role distribution
role freq #non-lit
subj 92 65
subjp 6 4
dobj 28 12
gen 93 20
premod 94 13
ppmod 522 57
other 90 17
total 925 188

We represent each example in our corpus by a sin-
gle featurerole-of-head, expressing the grammat-
ical role of the PMW (limited to (active) subject,
passive subject, direct object, modifier in a prenom-
inal genitive, other nominal premodifier, dependent
in a prepositional phrase) and its lemmatised lexi-
cal head within a dependency grammar framework.7

Table 2 shows example values and Table 3 the role
distribution in our corpus.

We trained and tested our algorithm with this fea-
ture (hmr).8 Results forhmr are reported in the
first line of Table 5. The reasonably high precision
(74.5%) and accuracy (90.2%) indicate that reduc-
ing the context to a head-modifier feature does not
cause loss of crucial information in most cases. Low
recall is mainly due to low coverage (see Problem 2
below). We identified two main problems.

Problem 1. The featurecan be too simplistic, so
that decisions based on the head-modifier relation
can assign the wrong reading in the following cases:

• “Bad” heads: Some lexical heads are semanti-
cally empty, thus failing to provide strong evi-
dence for any reading and lowering both recall
and precision. Bad predictors are the verbs “to
have” and “to be” and some prepositions such
as “with”, which can be used with metonymic
(talk with Hungary) and literal (border with
Hungary) readings. This problem is more se-
rious for function than for content word heads:
precision on the set of subjects and objects is
81.8%, but only 73.3% on PPs.

• “Bad” relations: Thepremodrelation suffers
from noun-noun compound ambiguity.US op-

7We consider only one link per PMW, although cases like (8)
would benefit from including all links the PMW participates in.

8The feature values were manually annotated for the follow-
ing experiments, adapting the guidelines in (Poesio, 2000). The
effect of automatic feature extraction is described in Section 6.

erationcan refer to an operationin the US (lit-
eral) orby the US (metonymic).

• Other cases: Very rarely neglecting the remain-
ing context leads to errors, even for “good”
lexical heads and relations. Inferring from the
metonymy in (4) that “Germany” in“ Germany
lost a fifth of its territory” is also metonymic,
e.g., is wrong and lowers precision.

However, wrong assignments (based on head-
modifier relations) do not constitute a major problem
as accuracy is very high (90.2%).

Problem 2. The algorithm is often unable to make
any decision that is based on the head-modifier re-
lation. This is by far the more frequent problem,
which we adress in the remainder of the paper. The
featurerole-of-head accounts for the similarity be-
tween (2) and (3) only, as classification of a test in-
stance with a particular feature value relies on hav-
ing seenexactly the samefeature value in the train-
ing data. Therefore, we have not tackled the infer-
ence from (2) or (3) to (4). This problem manifests
itself in data sparseness and low recall and coverage,
as many heads are encountered only once in the cor-
pus. Ashmr’s coverage is only 63.1%, backoff to a
literal reading is required in 36.9% of the cases.

5 Generalising Context Similarity

In order to draw the more complex inference from
(2) or (3) to (4) we need to generalise context sim-
ilarity. We relax the identity constraint of the orig-
inal algorithm (thesamerole-of-head value of the
test instance must be found in the DL), exploiting
two similarity levels. Firstly, we allow to draw infer-
ences over similar values of lexical heads (e.g. from
subj-of-win to subj-of-lose), rather than over iden-
tical ones only. Secondly, we allow to discard the



Table 4: Example thesaurus entries
lose[V]: win1 0.216, gain2 0.209, have3 0.207, ...
attitude[N]:stance1 0.181, behavior2 0.18, ...,strategy17 0.128

lexical head and generalise over the PMW’s gram-
matical role (e.g. subject). These generalisations al-
low us to double recall without sacrificing precision
or increasing the size of the training set.

5.1 Relaxing Lexical Heads

We regard two feature valuesr-of-h and r-of-h
′

as
similar if h andh

′
are similar. In order to capture the

similarity betweenh andh
′
we integrate a thesaurus

(Lin, 1998) in our algorithm’s testing phase. In Lin’s
thesaurus, similarity between words is determined
by their distribution in dependency relations in a
newswire corpus. For a content wordh (e.g., “lose”)
of a specific part-of-speech a set of similar wordsΣh

of the same part-of-speech is given. The set mem-
bers are ranked in decreasing order by a similarity
score. Table 4 reports example entries.9

Our modified algorithm (relax I) is as follows:

1. train DL with role-of-head as inhmr; for each test in-
stance observe the following procedure (r-of-h indicates
the feature value of the test instance);

2. if r-of-h is found in the DL, apply the corresponding rule
and stop;

2′ otherwisechoose a numbern ≥ 1 and seti = 1;

(a) extract theith most similar wordhi to h from the
thesaurus;

(b) if i > n or the similarity score ofhi < 0.10, assign
no reading and stop;

(b’) otherwise: if r-of-hi is found in the DL, apply cor-
responding rule and stop; ifr-of-hi is not found in
the DL, increasei by 1 and go to (a);

The examples already covered byhmr are clas-
sified in exactly the same way byrelax I (see Step
2). Let us therefore assume we encounter the test
instance (4), its feature valuesubj-of-losehas not
been seen in the training data (so that Step 2 fails
and Step 2

′
has to be applied) andsubj-of-winis in

the DL. For alln ≥ 1, relax I will use the rule for
subj-of-winto assign a reading to “Scotland” in (4)
as “win” is the most similar word to “lose” in the
thesaurus (see Table 4). In this case (2b’) is only

9In the original thesaurus, eachΣh is subdivided into clus-
ters. We do not take these divisions into account.
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Figure 2: Results forrelax I

applied once as already the first iteration over the
thesaurus finds a wordh1 with r-of-h1 in the DL.

The classification of “Turkey” with feature value
gen-of-attitudein (9) required 17 iterations to find
a wordh17 (“strategy”; see Example (7)) similar to
“attitude”, with r-of-h17 (gen-of-strategy) in the DL.

(9) To say that this sums upTurkey’s attitude as
a whole would nevertheless be untrue

Precision, recall and F-measure forn ∈
{1, ..., 10, 15, 20, 25, 30, 40, 50} are visualised in
Figure 2. Both precision and recall increase with
n. Recall more than doubles from 18.6% inhmr
to 41% and precision increases from 74.5% inhmr
to 80.2%, yielding an increase in F-measure from
29.8% to 54.2% (n = 50). Coverage rises to 78.9%
and accuracy backoff to 85.1% (Table 5).

Whereas the increase in coverage and recall is
quite intuitive, the high precision achieved byre-
lax I requires further explanation. LetS be the set
of examples thatrelax I covers. It consists of two
subsets:S1is the subset already covered byhmr and
its treatment does not change inrelax I, yielding the
same precision.S2 is the set of examples thatre-
lax I coversin addition tohmr. The examples inS2
consist of cases with highly predictive content word
heads as (a) function words are not included in the
thesaurus and (b) unpredictive content word heads
like “have” or “be” are very frequent and normally
already covered byhmr (they are therefore members
of S1). Precision onS2is very high (84%) and raises
the overall precision on the setS.

Cases thatrelax I does not cover are mainly due
to (a) missing thesaurus entries (e.g., many proper



Table 5: Results summary for manual annotation.
For relax I andcombination we report best results
(50 thesaurus iterations).

algorithm Acc Cov Accb P R F
hmr .902 .631 .817 .745 .186 .298
relax I .877 .789 .851 .802 .410 .542
relax II .865 .903 .859 .813 .441 .572
combination .894 .797 .870 .814 .510 .627
baseline .797 1.00 .797 n/a .000 n/a

names or alternative spelling), (b) the small num-
ber of training instances for some grammatical roles
(e.g.dobj), so that even after 50 thesaurus iterations
no similarrole-of-head value could be found that is
covered in the DL, or (c) grammatical roles that are
not covered (other in Table 3).

5.2 Discarding Lexical Heads

Another way of capturing the similarity between (3)
and (4), or (7) and (9) is to ignore lexical heads and
generalise over the grammatical role (role) of the
PMW (with the feature values as in Table 3:subj,
subjp, dobj, gen, premod, ppmod). We therefore de-
veloped the algorithmrelax II.

1. train decision lists:

(a) DL1 with role-of-head as inhmr
(b) DL2 with role;

for each test instance observe the following procedure (r-
of-handr are the feature values of the test instance);

2. if r-of-h is found in the DL1, apply the corresponding rule
and stop;

2’ otherwise, if r is found in DL2, apply the corresponding
rule.

Let us assume we encounter the test instance
(4), subj-of-loseis not in DL1 (so that Step 2 fails
and Step 2

′
has to be applied) andsubj is in DL2.

The algorithmrelax II will assign aplace-for-
people reading to “Scotland”, as most subjects in
our corpus are metonymic (see Table 3).

Generalising over the grammatical role outper-
forms hmr, achieving 81.3% precision, 44.1% re-
call, and 57.2% F-measure (see Table 5). The algo-
rithm relax II also yields fewer false negatives than
relax I (and therefore higher recall) since all sub-
jects not covered in DL1 are assigned a metonymic
reading, which is not true forrelax I.

5.3 Combining Generalisations

There are several ways of combining the algorithms
we introduced. In our experiments, the most suc-
cessful one exploits the facts thatrelax II performs
better thanrelax I on subjects and thatrelax I per-
forms better on the other roles. Therefore the algo-
rithm combination usesrelax II if the test instance
is a subject, andrelax I otherwise. This yields the
best results so far, with 87% accuracy backoff and
62.7% F-measure (Table 5).

6 Influence of Parsing

The results obtained by training and testing our clas-
sifier with manually annotated grammatical relations
are the upper bound of what can be achieved by us-
ing these features. To evaluate the influence pars-
ing has on the results, we used the RASP toolkit
(Briscoe and Carroll, 2002) that includes a pipeline
of tokenisation, tagging and state-of-the-art statisti-
cal parsing, allowing multiple word tags. The toolkit
also maps parse trees to representations of gram-
matical relations, which we in turn could map in a
straightforward way to ourrole categories.

RASP produces at least partial parses for 96% of
our examples. However, some of these parses do
not assign any role of our roleset to the PMW —
only 76.9% of the PMWs are assigned such a role
by RASP (in contrast to 90.2% in the manual anno-
tation; see Table 3). RASP recognises PMW sub-
jects with 79% precision and 81% recall. For PMW
direct objects, precision is 60% and recall 86%.10

We reproduced all experiments using the auto-
matically extracted relations. Although the relative
performance of the algorithms remains mostly un-
changed, most of the resulting F-measures are more
than 10% lower than for hand annotated roles (Ta-
ble 6). This is in line with results in (Gildea and
Palmer, 2002), who compare the effect of man-
ual and automatic parsing on semantic predicate-
argument recognition.

7 Related Work

Previous Approaches to Metonymy Recognition.
Our approach is the first machine learning algorithm
to metonymy recognition, building on our previous

10We did not evaluate RASP’s performance on relations that
do not involve the PMW.



Table 6: Results summary for the different algo-
rithms using RASP. Forrelax I and combination
we report best results (50 thesaurus iterations).

algorithm Acc Cov Accb P R F
hmr .884 .514 .812 .674 .154 .251
relax I .841 .666 .821 .619 .319 .421
relax II .820 .769 .823 .621 .340 .439
combination .850 .672 .830 .640 .388 .483
baseline .797 1.00 .797 n/a .000 n/a

work (Markert and Nissim, 2002a). The current ap-
proach expands on it by including a larger number
of grammatical relations, thesaurus integration, and
an assessment of the influence of parsing. Best F-
measure for manual annotated roles increased from
46.7% to 62.7% on the same dataset.

Most other traditional approaches rely on hand-
crafted knowledge bases or lexica and usevi-
olations of hand-modelled selectional restrictions
(plus sometimes syntactic violations) for metonymy
recognition (Pustejovsky, 1995; Hobbs et al., 1993;
Fass, 1997; Copestake and Briscoe, 1995; Stallard,
1993).11 In these approaches, selectional restric-
tions (SRs) are not seen as preferences but as ab-
solute constraints. If and only if such an absolute
constraint is violated, a non-literal reading is pro-
posed. Our system, instead, does not haveany a
priori knowledge of semantic predicate-argument re-
strictions. Rather, it refers to previously seen train-
ing examples in head-modifier relations and their la-
belled senses and computes the likelihood of each
sense using this distribution. This is an advantage as
our algorithm also resolved metonymieswithoutSR
violations in our experiments. An empirical compar-
ison between our approach in (Markert and Nissim,
2002a)12 and an SRs violation approach showed that
our approach performed better.

In contrast to previous approaches (Fass, 1997;
Hobbs et al., 1993; Copestake and Briscoe, 1995;
Pustejovsky, 1995; Verspoor, 1996; Markert and
Hahn, 2002; Harabagiu, 1998; Stallard, 1993), we
use a corpus reliably annotated for metonymy for
evaluation, moving the field towards more objective

11(Markert and Hahn, 2002) and (Harabagiu, 1998) en-
hance this with anaphoric information. (Briscoe and Copes-
take, 1999) propose using frequency information besides syn-
tactic/semantic restrictions, but use only a priori sense frequen-
cies without contextual features.

12Note that our current approach even outperforms (Markert
and Nissim, 2002a).

evaluation procedures.
Word Sense Disambiguation.We compared our

approach to supervised WSD in Section 3, stressing
word-to-word vs. class-to-class inference. This al-
lows for a level of abstraction not present in standard
supervised WSD. We can infer readings for words
that have not been seen in the training data before,
allow an easy treatment of rare words that undergo
regular sense alternations and do not have to anno-
tate and train separately for every individual word to
treat regular sense distinctions.13

By exploiting additional similarity levels and inte-
grating a thesaurus we further generalise the kind of
inferences we can make and limit the size of anno-
tated training data: as our sampling frame contains
553 different names, an annotated data set of 925
samples is quite small. These generalisations over
context and collocates are also applicable to stan-
dard WSD and can supplement those achieved e.g.,
by subcategorisation frames (Martinez et al., 2002).
Our approach to word similarity to overcome data
sparseness is perhaps most similar to (Karov and
Edelman, 1998). However, they mainly focus on the
computation of similarity measures from the train-
ing data. We instead use an off-the-shelf resource
without adding much computational complexity and
achieve a considerable improvement in our results.

8 Conclusions

We presented a supervised classification algorithm
for metonymy recognition, which exploits the simi-
larity between examples of conventional metonymy,
operates on semantic classes and thereby enables
complex inferences from training to test examples.
We showed that syntactic head-modifier relations
are a high precision feature for metonymy recogni-
tion. However, basing inferences only on the lex-
ical heads seen in the training data leads to data
sparseness due to the large number of different lex-
ical heads encountered in natural language texts. In
order to overcome this problem we have integrated
a thesaurus that allows us to draw inferences be-

13Incorporating knowledge about particular PMWs (e.g., as
a prior) will probably improve performance, as word idiosyn-
cracies — which can still exist even when treating regular sense
distinctions — could be accounted for. In addition, knowledge
about the individual word is necessary to assign its original se-
mantic class.



tween examples with similar but not identical lex-
ical heads. We also explored the use of simpler
grammatical role features that allow further gener-
alisations. The results show a substantial increase in
precision, recall and F-measure. In the future, we
will experiment with combining grammatical fea-
tures and local/topical cooccurrences. The use of
semantic classes and lexical head similarity gener-
alises over two levels of contextual similarity, which
exceeds the complexity of inferences undertaken in
standard supervised word sense disambiguation.
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