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Abstract 
This paper proposes a Hidden Markov 
Model (HMM) and an HMM-based chunk 
tagger, from which a named entity (NE) 
recognition (NER) system is built to 
recognize and classify names, times and 
numerical quantities. Through the HMM, 
our system is able to apply and integrate 
four types of internal and external 
evidences: 1) simple deterministic internal 
feature of the words, such as capitalization 
and digitalization; 2) internal semantic 
feature of important triggers; 3) internal 
gazetteer feature; 4) external macro context 
feature. In this way, the NER problem can 
be resolved effectively. Evaluation of our 
system on MUC-6 and MUC-7 English NE 
tasks achieves F-measures of 96.6% and 
94.1% respectively. It shows that the 
performance is significantly better than 
reported by any other machine-learning 
system. Moreover, the performance is even 
consistently better than those based on 
handcrafted rules.  

1 Introduction 
Named Entity (NE) Recognition (NER) is to 
classify every word in a document into some 
predefined categories and "none-of-the-above". In 
the taxonomy of computational linguistics tasks, it 
falls under the domain of "information extraction", 
which extracts specific kinds of information from 
documents as opposed to the more general task of 
"document management" which seeks to extract all 
of the information found in a document. 

Since entity names form the main content of a 
document, NER is a very important step toward 
more intelligent information extraction and 
management. The atomic elements of information 

extraction -- indeed, of language as a whole -- could 
be considered as the "who", "where" and "how 
much" in a sentence. NER performs what is known 
as surface parsing, delimiting sequences of tokens 
that answer these important questions. NER can 
also be used as the first step in a chain of processors: 
a next level of processing could relate two or more 
NEs, or perhaps even give semantics to that 
relationship using a verb. In this way, further 
processing could discover the "what" and "how" of 
a sentence or body of text.  

While NER is relatively simple and it is fairly 
easy to build a system with reasonable performance, 
there are still a large number of ambiguous cases 
that make it difficult to attain human performance. 
There has been a considerable amount of work on 
NER problem, which aims to address many of these 
ambiguity, robustness and portability issues. During 
last decade, NER has drawn more and more 
attention from the NE tasks [Chinchor95a] 
[Chinchor98a] in MUCs [MUC6] [MUC7], where 
person names, location names, organization names, 
dates, times, percentages and money amounts are to 
be delimited in text using SGML mark-ups.  

Previous approaches have typically used 
manually constructed finite state patterns, which 
attempt to match against a sequence of words in 
much the same way as a general regular expression 
matcher. Typical systems are Univ. of Sheffield's 
LaSIE-II [Humphreys+98], ISOQuest's NetOwl 
[Aone+98] [Krupha+98] and Univ. of Edinburgh's 
LTG [Mikheev+98] [Mikheev+99] for English 
NER. These systems are mainly rule-based. 
However, rule-based approaches lack the ability of 
coping with the problems of robustness and 
portability. Each new source of text requires 
significant tweaking of rules to maintain optimal 
performance and the maintenance costs could be 
quite steep. 

The current trend in NER is to use the 
machine-learning approach, which is more 
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attractive in that it is trainable and adaptable and the 
maintenance of a machine-learning system is much 
cheaper than that of a rule-based one. The 
representative machine-learning approaches used in 
NER are HMM (BBN's IdentiFinder in [Miller+98] 
[Bikel+99] and KRDL's system [Yu+98] for 
Chinese NER.), Maximum Entropy (New York 
Univ.'s MEME in [Borthwick+98] [Borthwich99]) 
and Decision Tree (New York Univ.'s system in 
[Sekine98] and SRA's system in [Bennett+97]). 
Besides, a variant of Eric Brill's 
transformation-based rules [Brill95] has been 
applied to the problem [Aberdeen+95]. Among 
these approaches, the evaluation performance of 
HMM is higher than those of others. The main 
reason may be due to its better ability of capturing 
the locality of phenomena, which indicates names 
in text.  Moreover, HMM seems more and more 
used in NE recognition because of the efficiency of 
the Viterbi algorithm [Viterbi67] used in decoding 
the NE-class state sequence. However, the 
performance of a machine-learning system is 
always poorer than that of a rule-based one by about 
2% [Chinchor95b] [Chinchor98b]. This may be 
because current machine-learning approaches 
capture important evidence behind NER problem 
much less effectively than human experts who 
handcraft the rules, although machine-learning 
approaches always provide important statistical 
information that is not available to human experts. 

As defined in [McDonald96], there are two kinds 
of evidences that can be used in NER to solve the 
ambiguity, robustness and portability problems 
described above. The first is the internal evidence 
found within the word and/or word string itself 
while the second is the external evidence gathered 
from its context. In order to effectively apply and 
integrate internal and external evidences, we 
present a NER system using a HMM. The approach 
behind our NER system is based on the 
HMM-based chunk tagger in text chunking, which 
was ranked the best individual system [Zhou+00a] 
[Zhou+00b] in CoNLL'2000 [Tjong+00]. Here, a 
NE is regarded as a chunk, named "NE-Chunk". To 
date, our system has been successfully trained and 
applied in English NER. To our knowledge, our 
system outperforms any published 
machine-learning systems. Moreover, our system 
even outperforms any published rule-based 
systems.  

The layout of this paper is as follows. Section 2 
gives a description of the HMM and its application 
in NER: HMM-based chunk tagger. Section 3 
explains the word feature used to capture both the 
internal and external evidences. Section 4 describes 
the back-off schemes used to tackle the sparseness 
problem. Section 5 gives the experimental results of 
our system. Section 6 contains our remarks and 
possible extensions of the proposed work. 

2 HMM-based Chunk Tagger 

2.1  HMM Modeling 

Given a token sequence n
n gggG L211 = , the goal 

of NER is to find a stochastic optimal tag sequence 

n
n tttT L211 =  that maximizes                     (2-1) 
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The second item in (2-1) is the mutual 
information between nT1  and nG1 . In order to 
simplify the computation of this item, we assume 
mutual information independence:  
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Applying it to equation (2.1), we have: 
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The basic premise of this model is to consider 
the raw text, encountered when decoding, as though 
it had passed through a noisy channel, where it had 
been originally marked with NE tags. The job of our 
generative model is to directly generate the original 
NE tags from the output words of the noisy channel. 
It is obvious that our generative model is reverse to 
the generative model of traditional HMM1, as used 
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in BBN's IdentiFinder, which models the original 
process that generates the NE-class annotated 
words from the original NE tags. Another 
difference is that our model assumes mutual 
information independence (2-2) while traditional 
HMM assumes conditional probability 
independence (I-1). Assumption (2-2) is much 
looser than assumption (I-1) because assumption 
(I-1) has the same effect with the sum of 
assumptions (2-2) and (I-3)2. In this way, our model 
can apply more context information to determine 
the tag of current token. 

From equation (2-4), we can see that: 
1) The first item can be computed by applying 

chain rules. In ngram modeling, each tag is 
assumed to be probabilistically dependent on the 
N-1 previous tags.  

2) The second item is the summation of log 
probabilities of all the individual tags. 

3) The third item corresponds to the "lexical" 
component of the tagger.  
We will not discuss both the first and second 

items further in this paper. This paper will focus on 

the third item∑
=

n

i

n
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1
1 )|(log , which is the main 

difference between our tagger and other traditional 
HMM-based taggers, as used in BBN's IdentiFinder. 
Ideally, it can be estimated by using the 
forward-backward algorithm [Rabiner89] 
recursively for the 1st-order [Rabiner89] or 2nd 
-order HMMs [Watson+92]. However, an 
alternative back-off modeling approach is applied 
instead in this paper (more details in section 4). 

2.2 HMM-based Chunk Tagger 
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Then we assume conditional probability 
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For NE-chunk tagging, we have 
token >=< iii wfg , , where n

n wwwW L211 =  is the 
word sequence and n

n fffF L211 =  is the 
word-feature sequence. In the meantime, NE-chunk 
tag it  is structural and consists of three parts: 
1) Boundary Category: BC = {0, 1, 2, 3}. Here 0 

means that current word is a whole entity and 
1/2/3 means that current word is at the 
beginning/in the middle/at the end of an entity. 

2) Entity Category: EC. This is used to denote the 
class of the entity name. 

3) Word Feature: WF. Because of the limited 
number of boundary and entity categories, the 
word feature is added into the structural tag to 
represent more accurate models. 
Obviously, there exist some constraints between 

1−it  and it  on the boundary and entity categories, as 
shown in Table 1, where "valid" / "invalid" means 
the tag sequence ii tt 1−  is valid / invalid while "valid 
on" means ii tt 1−  is valid with an additional 
condition ii ECEC =−1 . Such constraints have been 
used in Viterbi decoding algorithm to ensure valid 
NE chunking. 
 0 1 2 3 

0 Valid Valid Invalid Invalid
1 Invalid Invalid Valid on Valid on 
2 Invalid Invalid Valid Valid 
3 Valid Valid Invalid Invalid

Table 1: Constraints between 1−it  and it  (Column: 
1−iBC  in 1−it ; Row: iBC  in it ) 

3 Determining Word Feature 
As stated above, token is denoted as ordered pairs of 
word-feature and word itself: >=< iii wfg , . 
Here, the word-feature is a simple deterministic 
computation performed on the word and/or word 
string with appropriate consideration of context as 
looked up in the lexicon or added to the context. 

In our model, each word-feature consists of 
several sub-features, which can be classified into 
internal sub-features and external sub-features. The 
internal sub-features are found within the word 
and/or word string itself to capture internal 
evidence while external sub-features are derived 
within the context to capture external evidence. 



3.1 Internal Sub-Features 
Our model captures three types of internal 
sub-features: 1) 1f : simple deterministic internal 
feature of the words, such as capitalization and 
digitalization; 2) 2f : internal semantic feature of 

important triggers; 3) 3f : internal gazetteer feature. 

1) 1f  is the basic sub-feature exploited in this 
model, as shown in Table 2 with the descending 
order of priority. For example, in the case of 
non-disjoint feature classes such as 
ContainsDigitAndAlpha and 
ContainsDigitAndDash, the former will take 
precedence. The first eleven features arise from 
the need to distinguish and annotate monetary 
amounts, percentages, times and dates. The rest 
of the features distinguish types of capitalization 
and all other words such as punctuation marks. 
In particular, the FirstWord feature arises from 
the fact that if a word is capitalized and is the 
first word of the sentence, we have no good 
information as to why it is capitalized (but note 
that AllCaps and CapPeriod are computed before 
FirstWord, and take precedence.)  This 
sub-feature is language dependent. Fortunately, 
the feature computation is an extremely small 
part of the implementation. This kind of internal 
sub-feature has been widely used in 
machine-learning systems, such as BBN's 
IdendiFinder and New York Univ.'s MENE. The 
rationale behind this sub-feature is clear: a) 
capitalization gives good evidence of NEs in 
Roman languages; b) Numeric symbols can 
automatically be grouped into categories. 

2) 2f  is the semantic classification of important 
triggers, as seen in Table 3, and is unique to our 
system. It is based on the intuitions that 
important triggers are useful for NER and can be 
classified according to their semantics. This 
sub-feature applies to both single word and 
multiple words. This set of triggers is collected 
semi-automatically from the NEs and their local 
context of the training data. 

3) Sub-feature 3f , as shown in Table 4, is the 
internal gazetteer feature, gathered from the 
look-up gazetteers: lists of names of persons, 
organizations, locations and other kinds of 
named entities. This sub-feature can be 

determined by finding a match in the 
gazetteer of the corresponding NE type 
where n (in Table 4) represents the word 
number in the matched word string. In stead 
of collecting gazetteer lists from training 
data, we collect a list of 20 public holidays in 
several countries, a list of 5,000 locations 
from websites such as GeoHive3, a list of 
10,000 organization names from websites 
such as Yahoo4 and a list of 10,000 famous 
people from websites such as Scope 
Systems5. Gazetters have been widely used 
in NER systems to improve performance.  

3.2 External Sub-Features 
For external evidence, only one external macro 
context feature 4f , as shown in Table 5, is captured 
in our model. 4f  is about whether and how the 
encountered NE candidate is occurred in the list of 
NEs already recognized from the document, as 
shown in Table 5 (n is the word number in the 
matched NE from the recognized NE list and m is 
the matched word number between the word string 
and the matched NE with the corresponding NE 
type.). This sub-feature is unique to our system. The 
intuition behind this is the phenomena of name 
alias.  

During decoding, the NEs already recognized 
from the document are stored in a list. When the 
system encounters a NE candidate, a name alias 
algorithm is invoked to dynamically determine its 
relationship with the NEs in the recognized list. 

Initially, we also consider part-of-speech (POS) 
sub-feature. However, the experimental result is 
disappointing that incorporation of POS even 
decreases the performance by 2%. This may be 
because capitalization information of a word is 
submerged in the muddy of several POS tags and 
the performance of POS tagging is not satisfactory, 
especially for unknown capitalized words (since 
many of NEs include unknown capitalized words.). 
Therefore, POS is discarded. 

                                                      
3 http://www.geohive.com/ 
4 http://www.yahoo.com/ 
5 http://www.scopesys.com/ 



Sub-Feature 1f  Example  Explanation/Intuition 
OneDigitNum 9 Digital Number 
TwoDigitNum 90 Two-Digit year 
FourDigitNum 1990 Four-Digit year 
YearDecade 1990s Year Decade 
ContainsDigitAndAlpha A8956-67 Product Code 
ContainsDigitAndDash 09-99 Date 
ContainsDigitAndOneSlash 3/4 Fraction or Date 
ContainsDigitAndTwoSlashs 19/9/1999 DATE 
ContainsDigitAndComma 19,000 Money 
ContainsDigitAndPeriod 1.00 Money, Percentage 
OtherContainsDigit 123124 Other Number 
AllCaps IBM Organization 
CapPeriod M. Person Name Initial 
CapOtherPeriod St. Abbreviation 
CapPeriods N.Y. Abbreviation 
FirstWord First word of sentence No useful capitalization information 
InitialCap Microsoft Capitalized Word 
LowerCase Will Un-capitalized Word 
Other $ All other words 

Table 2: Sub-Feature 1f : the Simple Deterministic Internal Feature of the Words 

NE Type (No of Triggers) Sub-Feature 2f  Example Explanation/Intuition 
PERCENT (5) SuffixPERCENT % Percentage Suffix 

PrefixMONEY $ Money Prefix MONEY (298) 
SuffixMONEY Dollars Money Suffix 
SuffixDATE Day Date Suffix 
WeekDATE Monday Week Date 
MonthDATE July Month Date 
SeasonDATE Summer Season Date 
PeriodDATE1 Month Period Date 
PeriodDATE2 Quarter Quarter/Half of Year 
EndDATE Weekend Date End  

DATE (52) 

ModifierDATE Fiscal Modifier of Date 
SuffixTIME a.m. Time Suffix TIME (15) 
PeriodTime Morning Time Period 
PrefixPERSON1 Mr. Person Title 
PrefixPERSON2 President Person Designation  

PERSON (179) 

FirstNamePERSON Micheal Person First Name 
LOC (36) SuffixLOC River Location Suffix 
ORG (177) SuffixORG Ltd Organization Suffix 
Others (148) Cardinal, Ordinal, etc. Six,, Sixth Cardinal and Ordinal Numbers 

Table 3: Sub-Feature 2f : the Semantic Classification of Important Triggers 

NE Type (Size of Gazetteer) Sub-Feature 3f  Example 
DATE (20) DATEnGn Christmas Day: DATE2G2 
PERSON (10,000) PERSONnGn Bill Gates: PERSON2G2 
LOC (5,000) LOCnGn Beijing: LOC1G1 
ORG (10,000) ORGnGn United Nation: ORG2G2 
Table 4: Sub-Feature 3f : the Internal Gazetteer Feature (G means Global gazetteer) 



NE Type Sub-Feature Example 
PERSON PERSONnLm Gates: PERSON2L1 ("Bill Gates" already recognized as a person name) 
LOC LOCnLm N.J.: LOC2L2 ("New Jersey" already recognized as a location name) 
ORG ORGnLm UN: ORG2L2 ("United Nation" already recognized as a org name) 

Table 5: Sub-feature 4f : the External Macro Context Feature (L means Local document) 

4  Back-off Modeling 
Given the model in section 2 and word feature in 
section 3, the main problem is how to 

compute ∑
=

n

i

n
i GtP

1
1 )/( . Ideally, we would have 

sufficient training data for every event whose 
conditional probability we wish to calculate. 
Unfortunately, there is rarely enough training data 
to compute accurate probabilities when decoding on 
new data, especially considering the complex word 
feature described above. In order to resolve the 
sparseness problem, two levels of back-off 
modeling are applied to approximate )/( 1

n
i GtP : 

1) First level back-off scheme is based on different 
contexts of word features and words themselves, 
and nG1  in )/( 1

n
i GtP  is approximated in the 

descending order of iiii wfff 12 −− , 21 ++ iiii ffwf , 

iii wff 1− , 1+iii fwf , iii fwf 11 −− , 11 ++ iii wff , 

iii fff 12 −− , 21 ++ iii fff , ii wf , iii fff 12 −− , 1+ii ff  
and if . 

2) The second level back-off scheme is based on 
different combinations of the four sub-features 
described in section 3, and kf  is approximated 

in the descending order of 4321
kkkk ffff , 31

kk ff , 
41

kk ff , 21
kk ff  and 1

kf . 

5 Experimental Results 
In this section, we will report the experimental 
results of our system for English NER on MUC-6 
and MUC-7 NE shared tasks, as shown in Table 6, 
and then for the impact of training data size on 
performance using MUC-7 training data. For each 
experiment, we have the MUC dry-run data as the 
held-out development data and the MUC formal test 
data as the held-out test data.  

For both MUC-6 and MUC-7 NE tasks, Table 7 
shows the performance of our system using MUC 
evaluation while Figure 1 gives the comparisons of 
our system with others. Here, the precision (P) 

measures the number of correct NEs in the answer 
file over the total number of NEs in the answer file 
and the recall (R) measures the number of correct 
NEs in the answer file over the total number of NEs 
in the key file while F-measure is the weighted 
harmonic mean of precision and recall: 
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 with 2β =1. It shows that the 

performance is significantly better than reported by 
any other machine-learning system. Moreover, the 
performance is consistently better than those based 
on handcrafted rules. 
Statistics 

(KB) 
Training 

Data 
Dry Run 

Data 
Formal Test 

Data 
MUC-6 1330 121 124 
MUC-7 708 156 561 

Table 6: Statistics of Data from MUC-6  
and MUC-7 NE Tasks 

 F P R 
MUC-6 96.6 96.3 96.9 
MUC-7 94.1 93.7 94.5 

Table 7: Performance of our System on MUC-6 
and MUC-7 NE Tasks 

Composition F P R 
1ff =  77.6 81.0 74.1 

21 fff =  87.4 88.6 86.1 
321 ffff =  89.3 90.5 88.2 
421 ffff =  92.9 92.6 93.1 

4321 fffff =  94.1 93.7 94.5 

Table 8: Impact of Different Sub-Features 
With any learning technique, one important 

question is how much training data is required to 
achieve acceptable performance. More generally 
how does the performance vary as the training data 
size changes? The result is shown in Figure 2 for 
MUC-7 NE task. It shows that 200KB of training 
data would have given the performance of 90% 
while reducing to 100KB would have had a 
significant decrease in the performance. It also 
shows that our system still has some room for 
performance improvement. This may be because of 



the complex word feature and the corresponding sparseness problem existing in our system.  

Figure 1: Comparison of our system with others 
on MUC-6 and MUC-7 NE tasks
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Figure 2: Impact of Various Training Data on Performance

80
85
90
95

100

100 200 300 400 500 600 700 800
Training Data Size(KB)

F-
m

ea
su

re

MUC-7

Another important question is about the effect of 
different sub-features. Table 8 answers the question 
on MUC-7 NE task: 
1) Applying only 1f  gives our system the 

performance of 77.6%. 
2) 2f  is very useful for NER and increases the 

performance further by 10% to 87.4%.   
3) 4f  is impressive too with another 5.5% 

performance improvement.  
4)  However, 3f  contributes only further 1.2% to 

the performance. This may be because 
information included in 3f  has already been 
captured by 2f  and 4f . Actually, the 

experiments show that the contribution of 3f  
comes from where there is no explicit indicator 
information in/around the NE and there is no 
reference to other NEs in the macro context of 
the document. The NEs contributed by 3f  are 
always well-known ones, e.g. Microsoft, IBM 
and Bach (a composer), which are introduced in 
texts without much helpful context. 

6  Conclusion 
This paper proposes a HMM in that a new 
generative model, based on the mutual information 
independence assumption (2-3) instead of the 

conditional probability independence assumption 
(I-1) after Bayes' rule, is applied. Moreover, it 
shows that the HMM-based chunk tagger can 
effectively apply and integrate four different kinds 
of sub-features, ranging from internal word 
information to semantic information to NE 
gazetteers to macro context of the document, to 
capture internal and external evidences for NER 
problem. It also shows that our NER system can 
reach "near human performance". To our 
knowledge, our NER system outperforms any 
published machine-learning system and any 
published rule-based system.  

While the experimental results have been 
impressive, there is still much that can be done 
potentially to improve the performance. In the near 
feature, we would like to incorporate the following 
into our system: 
•  List of domain and application dependent person, 

organization and location names. 
•  More effective name alias algorithm.  
•  More effective strategy to the back-off modeling 

and smoothing. 
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