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Abstract

This paper refines the analysis of co-
training, defines and evaluates a new
co-training algorithm that has theo-
retical justification, gives a theoreti-
cal justification for the Yarowsky algo-
rithm, and shows that co-training and
the Yarowsky algorithm are based on
different independence assumptions.

1 Overview

The term bootstrapping here refers to a prob-
lem setting in which one is given a small set of
labeled data and a large set of unlabeled data,
and the task is to induce a classifier. The plen-
itude of unlabeled natural language data, and
the paucity of labeled data, have made boot-
strapping a topic of interest in computational
linguistics. Current work has been spurred by
two papers, (Yarowsky, 1995) and (Blum and
Mitchell, 1998).

Blum and Mitchell propose a conditional in-
dependence assumption to account for the effi-
cacy of their algorithm, called co-training, and
they give a proof based on that conditional in-
dependence assumption. They also give an in-
tuitive explanation of why co-training works,
in terms of maximizing agreement on unla-
beled data between classifiers based on different
“views” of the data. Finally, they suggest that
the Yarowsky algorithm is a special case of the
co-training algorithm.

The Blum and Mitchell paper has been very
influential, but it has some shortcomings. The
proof they give does not actually apply directly
to the co-training algorithm, nor does it directly
justify the intuitive account in terms of classifier

agreement on unlabeled data, nor, for that mat-
ter, does the co-training algorithm directly seek
to find classifiers that agree on unlabeled data.
Moreover, the suggestion that the Yarowsky al-
gorithm is a special case of co-training is based
on an incidental detail of the particular applica-
tion that Yarowsky considers, not on the prop-
erties of the core algorithm.

In recent work, (Dasgupta et al., 2001) prove
that a classifier has low generalization error if it
agrees on unlabeled data with a second classifier
based on a different “view” of the data. This
addresses one of the shortcomings of the original
co-training paper: it gives a proof that justifies
searching for classifiers that agree on unlabeled
data.

I extend this work in two ways. First, (Das-
gupta et al., 2001) assume the same conditional
independence assumption as proposed by Blum
and Mitchell. I show that that independence as-
sumption is remarkably powerful, and violated
in the data; however, I show that a weaker as-
sumption suffices. Second, I give an algorithm
that finds classifiers that agree on unlabeled
data, and I report on an implementation and
empirical results.

Finally, I consider the question of the re-
lation between the co-training algorithm and
the Yarowsky algorithm. I suggest that the
Yarowsky algorithm is actually based on a dif-
ferent independence assumption, and I show
that, if the independence assumption holds, the
Yarowsky algorithm is effective at finding a
high-precision classifier.

2 Problem Setting and Notation

A bootstrapping problem consists of a space
of instances X , a set of labels L, a function
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Y : X ! L assigning labels to instances,
and a space of rules mapping instances to la-
bels. Rules may be partial functions; we write
F (x) = ? if F abstains (that is, makes no pre-
diction) on input x. “Classifier” is synonymous
with “rule”.
It is often useful to think of rules and labels
as sets of instances. A binary rule F can be
thought of as the characteristic function of the
set of instances fx : F (x) = +g. Multi-class
rules also define useful sets when a particular
target class ‘ is understood. For any rule F ,
we write F‘ for the set of instances fx : F (x) =
‘g, or (ambiguously) for that set’s characteristic
function.
We write F̄‘ for the complement of F‘, either
as a set or characteristic function. Note that
F̄‘ contains instances on which F abstains. We
write F‘̄ for fx : F (x) 6= ‘ ^ F (x) 6= ?g. When
F does not abstain, F̄‘ and F‘̄ are identical.
Finally, in expressions like Pr[F = +jY = +]
(with square brackets and “Pr”), the functions
F (x) and Y (x) are used as random variables.
By contrast, in the expression P (F jY ) (with
parentheses and “P”), F is the set of instances
for which F (x) = +, and Y is the set of in-
stances for which Y (x) = +.

3 View Independence

Blum and Mitchell assume that each instance x

consists of two “views” x1; x2. We can take this
as the assumption of functions X1 and X2 such
thatX1(x) = x1 andX2(x) = x2. They propose
that views are conditionally independent given
the label.

Definition 1 A pair of views x1, x2 satisfy
view independence just in case:

Pr[X1 = x1jX2 = x2; Y = y] = Pr[X1 = x1jY = y]
Pr[X2 = x2jX1 = x1; Y = y] = Pr[X2 = x2jY = y]

A classification problem instance satisfies view
independence just in case all pairs x1, x2 satisfy
view independence.

There is a related independence assumption
that will prove useful. Let us define H1 to con-
sist of rules that are functions of X1 only, and
define H2 to consist of rules that are functions
of X2 only.

Definition 2 A pair of rules F 2 H1, G 2 H2
satisfies rule independence just in case, for all
u; v; y:

Pr[F = ujG = v; Y = y] = Pr[F = ujY = y]

and similarly for F 2 H2, G 2 H1. A classi-
fication problem instance satisfies rule indepen-
dence just in case all opposing-view rule pairs
satisfy rule independence.

If instead of generating H1 and H2 from X1
and X2, we assume a set of features F (which
can be thought of as binary rules), and take
H1 = H2 = F , rule independence reduces to
the Naive Bayes independence assumption.
The following theorem is not difficult to

prove; we omit the proof.

Theorem 1 View independence implies rule
independence.

4 Rule Independence and
Bootstrapping

Blum and Mitchell’s paper suggests that rules
that agree on unlabelled instances are useful in
bootstrapping.

Definition 3 The agreement rate between
rules F and G is

Pr[F = GjF; G 6= ?]
Note that the agreement rate between rules
makes no reference to labels; it can be deter-
mined from unlabeled data.
The algorithm that Blum and Mitchell de-

scribe does not explicitly search for rules with
good agreement; nor does agreement rate play
any direct role in the learnability proof given in
the Blum and Mitchell paper.
The second lack is emended in (Dasgupta

et al., 2001). They show that, if view inde-
pendence is satisfied, then the agreement rate
between opposing-view rules F and G upper
bounds the error of F (or G). The following
statement of the theorem is simplified and as-
sumes non-abstaining binary rules.

Theorem 2 For all F 2 H1, G 2 H2 that sat-
isfy rule independence and are nontrivial predic-
tors in the sense that minu Pr[F = u] > Pr[F 6=



G], one of the following inequalities holds:

Pr[F 6= Y ] • Pr[F 6= G]
Pr[F̄ 6= Y ] • Pr[F 6= G]

If F agrees with G on all but † unlabelled in-
stances, then either F or F̄ predicts Y with er-
ror no greater than †. A small amount of la-
belled data suffices to choose between F and F̄ .
I give a geometric proof sketch here; the
reader is referred to the original paper for a for-
mal proof. Consider figures 1 and 2. In these
diagrams, area represents probability. For ex-
ample, the leftmost box (in either diagram) rep-
resents the instances for which Y = +, and
the area of its upper left quadrant represents
Pr[F = +; G = +; Y = +]. Typically, in such
a diagram, either the horizontal or vertical line
is broken, as in figure 2. In the special case in
which rule independence is satisfied, both hori-
zontal and vertical lines are unbroken, as in fig-
ure 1.
Theorem 2 states that disagreement upper
bounds error. First let us consider a lemma, to
wit: disagreement upper bounds minority prob-
abilities. Define the minority value of F given
Y = y to be the value u with least probability
Pr[F = ujY = y]; the minority probability is the
probability of the minority value. (Note that
minority probabilities are conditional probabili-
ties, and distinct from the marginal probability
minu Pr[F = u] mentioned in the theorem.)
In figure 1a, the areas of disagreement are
the upper right and lower left quadrants of each
box, as marked. The areas of minority values
are marked in figure 1b. It should be obvious
that the area of disagreement upper bounds the
area of minority values.
The error values of F are the values opposite

to the values of Y : the error value is ¡ when
Y = + and + when Y = ¡. When minority
values are error values, as in figure 1, disagree-
ment upper bounds error, and theorem 2 follows
immediately.
However, three other cases are possible. One
possibility is that minority values are opposite
to error values. In this case, the minority val-
ues of F̄ are error values, and disagreement be-
tween F and G upper bounds the error of F̄ .

Y = + Y = −

F

−

+
G

− + −
G

+

Y = + Y = −

(a) Disagreement (b) Minority Values

G
+ − + −

G

+

F

−

Figure 1: Disagreement upper-bounds minority
probabilities.

This case is admitted by theorem 2. In the
final two cases, minority values are the same
regardless of the value of Y . In these cases,
however, the predictors do not satisfy the “non-
triviality” condition of theorem 2, which re-
quires that minu Pr[F = u] be greater than the
disagreement between F and G.

5 The Unreasonableness of Rule
Independence

Rule independence is a very strong assumption;
one remarkable consequence will show just how
strong it is. The precision of a rule F is de-
fined to be Pr[Y = +jF = +]. (We continue to
assume non-abstaining binary rules.) If rule in-
dependence holds, knowing the precision of any
one rule allows one to exactly compute the preci-
sion of every other rule given only unlabeled data
and knowledge of the size of the target concept.
Let F and G be arbitrary rules based on in-

dependent views. We first derive an expression
for the precision of F in terms of G. Note that
the second line is derived from the first by rule
independence.

P (F G) = P (F jGY )P (GY ) + P (F jGȲ )P (GȲ )
= P (F jY )P (GY ) + P (F jȲ )P (GȲ )

P (GjF ) = P (Y jF )P (GjY ) + [1¡ P (Y jF )]P (GjȲ )
P (Y jF ) = P (GjF )¡P (GjȲ )

P (GjY )¡P (GjȲ )

To compute the expression on the righthand
side of the last line, we require P (Y jG), P (Y ),
P (GjF ), and P (G). The first value, the preci-
sion of G, is assumed known. The second value,
P (Y ), is also assumed known; it can at any rate
be estimated from a small amount of labeled
data. The last two values, P (GjF ) and P (G),
can be computed from unlabeled data.



Thus, given the precision of an arbitrary rule
G, we can compute the precision of any other-
view rule F . Then we can compute the precision
of rules based on the same view as G by using
the precision of some other-view rule F . Hence
we can compute the precision of every rule given
the precision of any one.

6 Some Data

The empirical investigations described here and
below use the data set of (Collins and Singer,
1999). The task is to classify names in text
as person, location, or organization. There is
an unlabeled training set containing 89,305 in-
stances, and a labeled test set containing 289
persons, 186 locations, 402 organizations, and
123 “other”, for a total of 1,000 instances.

Instances are represented as lists of features.
Intrinsic features are the words making up the
name, and contextual features are features of
the syntactic context in which the name oc-
curs. For example, consider Bruce Kaplan,
president of Metals Inc. This text snippet con-
tains two instances. The first has intrinsic fea-
tures N:Bruce-Kaplan, C:Bruce, and C:Kaplan

(“N” for the complete name, “C” for “con-
tains”), and contextual feature M:president

(“M” for “modified by”). The second instance
has intrinsic features N:Metals-Inc, C:Metals,
C:Inc, and contextual feature X:president-of

(“X” for “in the context of”).

Let us define Y (x) = + if x is a “location”
instance, and Y (x) = ¡ otherwise. We can es-
timate P (Y ) from the test sample; it contains
186=1000 location instances, giving P (Y ) =
:186.

Let us treat each feature F as a rule predict-
ing + when F is present and ¡ otherwise. The
precision of F is P (Y jF ). The internal feature
N:New-York has precision 1. This permits us to
compute the precision of various contextual fea-
tures, as shown in the “Co-training” column of
Table 1. We note that the numbers do not even
look like probabilities. The cause is the failure
of view independence to hold in the data, com-
bined with the instability of the estimator. (The
“Yarowsky” column uses a seed rule to estimate

F Co-training Yarowsky Truth
M:chairman -12.7 .068 .030
X:Company-of 10.2 .979 .989
X:court-in -.183 1.00 .981
X:Company-in 75.7 1.00 .986
X:firm-in -9.94 .952 .949
X:%-in -15.2 .875 .192
X:meeting-in -2.25 1.00 .753

Table 1: Some data
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Figure 2: Deviation from conditional indepen-
dence.

P (Y jF ), as is done in the Yarowsky algorithm,
and the “Truth” column shows the true value
of P (Y jF ).)

7 Relaxing the Assumption

Nonetheless, the unreasonableness of view inde-
pendence does not mean we must abandon the-
orem 2. In this section, we introduce a weaker
assumption, one that is satisfied by the data,
and we show that theorem 2 holds under this
weaker assumption.

There are two ways in which the data can di-
verge from conditional independence: the rules
may either be positively or negatively corre-
lated, given the class value. Figure 2a illus-
trates positive correlation, and figure 2b illus-
trates negative correlation.

If the rules are negatively correlated, then
their disagreement (shaded in figure 2) is larger
than if they are conditionally independent, and
the conclusion of theorem 2 is maintained a for-
tiori. Unfortunately, in the data, they are posi-
tively correlated, so the theorem does not apply.

Let us quantify the amount of deviation from
conditional independence. We define the condi-
tional dependence of F and G given Y = y to



be dy =

1

2

X
u;v

jPr[G = vjY = y; F = u]¡Pr[G = vjY = y]j

If F and G are conditionally independent, then
dy = 0.
This permits us to state a weaker version of
rule independence:

Definition 4 Rules F and G satisfy weak rule
dependence just in case, for y 2 f+; ¡g:

dy • p2
q1 ¡ p1

2p1q1

where p1 = minu Pr[F = ujY = y], p2 =
minu Pr[G = ujY = y], and q1 = 1¡ p1.

By definition, p1 and p2 cannot exceed 0.5. If
p1 = 0:5, then weak rule dependence reduces to
independence: if p1 = 0:5 and weak rule depen-
dence is satisfied, then dy must be 0, which is
to say, F and G must be conditionally indepen-
dent. However, as p1 decreases, the permissible
amount of conditional dependence increases.
We can now state a generalized version of the-
orem 2:

Theorem 3 For all F 2 H1, G 2 H2 that
satisfy weak rule dependence and are nontrivial
predictors in the sense that minu Pr[F = u] >

Pr[F 6= G], one of the following inequalities
holds:

Pr[F 6= Y ] • Pr[F 6= G]
Pr[F̄ 6= Y ] • Pr[F 6= G]

Consider figure 3. This illustrates the most
relevant case, in which F and G are positively
correlated given Y . (Only the case Y = + is
shown; the case Y = ¡ is similar.) We assume
that the minority values of F are error values;
the other cases are handled as in the discussion
of theorem 2.
Let u be the minority value ofG when Y = +.

In figure 3, a is the probability that G = u when
F takes its minority value, and b is the proba-
bility that G = u when F takes its majority
value.
The value r = a ¡ b is the difference. Note
that r = 0 if F and G are conditionally inde-
pendent given Y = +. In fact, we can show

r
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Figure 3: Positive correlation, Y = +.

that r is exactly our measure dy of conditional
dependence:

2dy = ja ¡ p2j+ jb ¡ p2j+ j(1¡ a)¡ (1¡ p2)j
+j(1¡ b)¡ (1¡ p2)j

= ja ¡ bj+ ja ¡ bj
= 2r

Hence, in particular, we may write dy = a ¡ b.
Observe further that p2, the minority proba-
bility of G when Y = +, is a weighted average of
a and b, namely, p2 = p1a+q1b. Combining this
with the equation dy = a¡b allows us to express
a and b in terms of the remaining variables, to
wit: a = p2 + q1dy and b = p2 ¡ p1dy.
In order to prove theorem 3, we need to show
that the area of disagreement (B [ C) upper
bounds the area of the minority value of F (A[
B). This is true just in case C is larger than A,
which is to say, if bq1 ‚ ap1. Substituting our
expressions for a and b into this inequality and
solving for dy yields:

dy • p2
q1 ¡ p1

2p1q1

In short, disagreement upper bounds the mi-
nority probability just in case weak rule depen-
dence is satisfied, proving the theorem.

8 The Greedy Agreement Algorithm

Dasgupta, Littman, and McAllester suggest a
possible algorithm at the end of their paper, but
they give only the briefest suggestion, and do
not implement or evaluate it. I give here an
algorithm, the Greedy Agreement Algorithm,



Input: seed rules F, G
loop

for each atomic rule H
G’ = G + H
evaluate cost of (F,G’)
keep lowest-cost G’

if G’ is worse than G, quit
swap F, G’

Figure 4: The Greedy Agreement Algorithm

that constructs paired rules that agree on un-
labeled data, and I examine its performance.
The algorithm is given in figure 4. It begins
with two seed rules, one for each view. At each
iteration, each possible extension to one of the
rules is considered and scored. The best one is
kept, and attention shifts to the other rule.
A complex rule (or classifier) is a list of atomic
rules H, each associating a single feature h with
a label ‘. H(x) = ‘ if x has feature h, and
H(x) = ? otherwise. A given atomic rule is
permitted to appear multiple times in the list.
Each atomic rule occurrence gets one vote, and
the classifier’s prediction is the label that re-
ceives the most votes. In case of a tie, there is
no prediction.
The cost of a classifier pair (F; G) is based
on a more general version of theorem 2, that
admits abstaining rules. The following theorem
is based on (Dasgupta et al., 2001).

Theorem 4 If view independence is satisfied,
and if F and G are rules based on different
views, then one of the following holds:

Pr[F 6= Y jF 6= ?] • –
„¡–

Pr[F̄ 6= Y jF̄ 6= ?] • –
„¡–

where – = Pr[F 6= GjF; G 6= ?], and „ =
minu Pr[F = ujF 6= ?].
In other words, for a given binary rule F , a pes-
simistic estimate of the number of errors made
by F is –=(„ ¡ –) times the number of instances
labeled by F , plus the number of instances left
unlabeled by F . Finally, we note that the cost
of F is sensitive to the choice of G, but the cost
of F with respect to G is not necessarily the
same as the cost of G with respect to F . To get
an overall cost, we average the cost of F with
respect to G and G with respect to F .
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Figure 5: Performance of the greedy agreement
algorithm

Figure 5 shows the performance of the greedy
agreement algorithm after each iteration. Be-
cause not all test instances are labeled (some
are neither persons nor locations nor organiza-
tions), and because classifiers do not label all
instances, we show precision and recall rather
than a single error rate. The contour lines show
levels of the F-measure (the harmonic mean of
precision and recall). The algorithm is run to
convergence, that is, until no atomic rule can
be found that decreases cost. It is interesting
to note that there is no significant overtrain-
ing with respect to F-measure. The final values
are 89.2/80.4/84.5 recall/precision/F-measure,
which compare favorably with the performance
of the Yarowsky algorithm (83.3/84.6/84.0).
(Collins and Singer, 1999) add a special final
round to boost recall, yielding 91.2/80.0/85.2
for the Yarowsky algorithm and 91.3/80.1/85.3
for their version of the original co-training algo-
rithm. All four algorithms essentially perform
equally well; the advantage of the greedy agree-
ment algorithm is that we have an explanation
for why it performs well.

9 The Yarowsky Algorithm

For Yarowsky’s algorithm, a classifier again con-
sists of a list of atomic rules. The prediction of
the classifier is the prediction of the first rule in
the list that applies. The algorithm constructs a



classifier iteratively, beginning with a seed rule.
In the variant we consider here, one atomic rule
is added at each iteration. An atomic rule F‘ is
chosen only if its precision, Pr[G‘ = +jF‘ = +]
(as measured using the labels assigned by the
current classifier G), exceeds a fixed threshold
µ.1

Yarowsky does not give an explicit justifica-
tion for the algorithm. I show here that the
algorithm can be justified on the basis of two
independence assumptions. In what follows, F

represents an atomic rule under consideration,
and G represents the current classifier. Recall
that Y‘ is the set of instances whose true label is
‘, and G‘ is the set of instances fx : G(x) = ‘g.
We write G⁄ for the set of instances labeled by
the current classifier, that is, fx : G(x) 6= ?g.
The first assumption is precision indepen-
dence.

Definition 5 Candidate rule F‘ and classifier
G satisfy precision independence just in case

P (Y‘jF‘; G⁄) = P (Y‘jF‘)

A bootstrapping problem instance satisfies pre-
cision independence just in case all rules G and
all atomic rules F‘ that nontrivially overlap with
G (both F‘ \G⁄ and F‘ ¡G⁄ are nonempty) sat-
isfy precision independence.

Precision independence is stated here so that it
looks like a conditional independence assump-
tion, to emphasize the similarity to the analysis
of co-training. In fact, it is only “half” an in-
dependence assumption—for precision indepen-
dence, it is not necessary that P (Y‘jF̄‘; G⁄) =
P (Y‘jF̄‘).
The second assumption is that classifiers
make balanced errors. That is:

P (Y‘; G‘̄jF‘) = P (Y‘̄; G‘jF‘)

Let us first consider a concrete (but hypo-
thetical) example. Suppose the initial classifier
correctly labels 100 out of 1000 instances, and
makes no mistakes. Then the initial precision is

1(Yarowsky, 1995), citing (Yarowsky, 1994), actually
uses a superficially different score that is, however, a
monotone transform of precision, hence equivalent to
precision, since it is used only for sorting.

1 and recall is 0.1. Suppose further that we add
an atomic rule that correctly labels 19 new in-
stances, and incorrectly labels one new instance.
The rule’s precision is 0.95. The precision of
the new classifier (the old classifier plus the new
atomic rule) is 119/120 = 0.99. Note that the
new precision lies between the old precision and
the precision of the rule. We will show that this
is always the case, given precision independence
and balanced errors.
We need to consider several quantities: the
precision of the current classifier, P (Y‘jG‘);
the precision of the rule under consideration,
P (Y‘jF‘); the precision of the rule on the cur-
rent labeled set, P (Y‘jF‘G⁄); and the precision
of the rule as measured using estimated labels,
P (G‘jF‘G⁄).
The assumption of balanced errors implies
that measured precision equals true precision on
labeled instances, as follows. (We assume here
that all instances have true labels, hence that
Ȳ‘ = Y‘̄.)

P (F‘G‘Ȳ‘) = P (F‘G‘̄Y‘)
P (F‘G‘Y‘) + P (F‘G‘Ȳ‘) = P (Y‘F‘G‘) + P (F‘G‘̄Y‘)

P (F‘G‘) = P (Y‘F‘G⁄)
P (G‘jF‘G⁄) = P (Y‘jF‘G⁄)

This, combined with precision independence,
implies that the precision of F‘ as measured
on the labeled set is equal to its true precision
P (Y‘jF‘).
Now consider the precision of the old and new
classifiers at predicting ‘. Of the instances that
the old classifier labels ‘, let A be the num-
ber that are correctly labeled and B be the
number that are incorrectly labeled. Defining
Nt = A + B, the precision of the old classifier
is Qt = A=Nt. Let ∆A be the number of new
instances that the rule under consideration cor-
rectly labels, and let ∆B be the number that it
incorrectly labels. Defining n = ∆A+∆B, the
precision of the rule is q = ∆A=n. The precision
of the new classifier is Qt+1 = (A+∆A)=Nt+1,
which can be written as:

Qt+1 =
Nt

Nt+1
Qt +

n

Nt+1
q

That is, the precision of the new classifier is
a weighted average of the precision of the old
classifier and the precision of the new rule.
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Figure 6: Performance of the Yarowsky algo-
rithm

An immediate consequence is that, if we only
accept rules whose precision exceeds a given
threshold µ, then the precision of the new classi-
fier exceeds µ. Since measured precision equals
true precision under our previous assumptions,
it follows that the true precision of the final clas-
sifier exceeds µ if the measured precision of ev-
ery accepted rule exceeds µ.

Moreover, observe that recall can be written
as:

A

N‘
=

Nt

N‘
Qt

where N‘ is the number of instances whose true
label is ‘. If Qt > µ, then recall is bounded
below by Ntµ=N‘, which grows as Nt grows.

Hence we have proven the following theorem.

Theorem 5 If the assumptions of precision in-
dependence and balanced errors are satisfied,
then the Yarowsky algorithm with threshold µ

obtains a final classifier whose precision is at
least µ. Moreover, recall is bounded below by
Ntµ=N‘, a quantity which increases at each
round.

Intuitively, the Yarowsky algorithm increases
recall while holding precision above a threshold
that represents the desired precision of the final
classifier. The empirical behavior of the algo-
rithm, as shown in figure 6, is in accordance
with this analysis.

We have seen, then, that the Yarowsky algo-
rithm, like the co-training algorithm, can be jus-
tified on the basis of an independence assump-
tion, precision independence. It is important to
note, however, that the Yarowsky algorithm is
not a special case of co-training. Precision in-
dependence and view independence are distinct
assumptions; neither implies the other.2

10 Conclusion

To sum up, we have refined previous work on
the analysis of co-training, and given a new co-
training algorithm that is theoretically justified
and has good empirical performance.
We have also given a theoretical analysis of

the Yarowsky algorithm for the first time, and
shown that it can be justified by an indepen-
dence assumption that is quite distinct from
the independence assumption that co-training
is based on.
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