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Abstract

This paper compares a number of gen-
erative probability models for a wide-
coverage Combinatory Categorial Gram-
mar (CCG) parser. These models are
trained and tested on a corpus obtained by
translating the Penn Treebank trees into
CCG normal-form derivations. According
to an evaluation of unlabeled word-word
dependencies, our best model achieves a
performance of 89.9%, comparable to the
figures given by Collins (1999) for a lin-
guistically less expressive grammar. In
contrast to Gildea (2001), we find a signif-
icant improvement from modeling word-
word dependencies.

1 Introduction

The currently best single-model statistical parser
(Charniak, 1999) achieves Parseval scores of over
89% on the Penn Treebank. However, the grammar
underlying the Penn Treebank is very permissive,
and a parser can do well on the standard Parseval
measures without committing itself on certain se-
mantically significant decisions, such as predicting
null elements arising from deletion or movement.
The potential benefit of wide-coverage parsing with
CCG lies in its more constrained grammar and its
simple and semantically transparent capture of ex-
traction and coordination.

We present a number of models over syntac-
tic derivations of Combinatory Categorial Grammar
(CCG, see Steedman (2000) and Clark et al. (2002),
this conference, for introduction), estimated from

and tested on a translation of the Penn Treebank
to a corpus of CCG normal-form derivations. CCG
grammars are characterized by much larger category
sets than standard Penn Treebank grammars, distin-
guishing for example between many classes of verbs
with different subcategorization frames. As a re-
sult, the categorial lexicon extracted for this purpose
from the training corpus has 1207 categories, com-
pared with the 48 POS-tags of the Penn Treebank.
On the other hand, grammar rules in CCG are lim-
ited to a small number of simple unary and binary
combinatory schemata such as function application
and composition. This results in a smaller and less
overgenerating grammar than standard PCFGs (ca.
3,000 rules when instantiated with the above cate-
gories in sections 02-21, instead of>12,400 in the
original Treebank representation (Collins, 1999)).

2 Evaluating a CCG parser

Since CCG produces unary and binary branching
trees with a very fine-grained category set, CCG
Parseval scores cannot be compared with scores
of standard Treebank parsers. Therefore, we also
evaluate performance using a dependency evalua-
tion reported by Collins (1999), which counts word-
word dependencies as determined by local trees and
their labels. According to this metric, a local tree
with parent nodeP, head daughterH and non-head
daughterS (and position ofS relative toP, ie. left
or right, which is implicit in CCG categories) de-
fines ahP;H;Si dependency between the head word
of S, wS, and the head word ofH, wH. This measure
is neutral with respect to the branching factor. Fur-
thermore, as noted by Hockenmaier (2001), it does
not penalize equivalent analyses of multiple modi-
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Pierre Vinken ; 61 years old ; will join the board as a nonexecutive director Nov 29
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< > >
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< <

NP S[b]nNP
>

NP S[dcl]nNP
<

S[dcl]

Figure 1: A CCG derivation in our corpus

fiers. In the unlabeled casehi (where it only matters
whether worda is a dependent of wordb, not what
the label of the local tree is which defines this depen-
dency), scores can be compared across grammars
with different sets of labels and different kinds of
trees. In order to compare our performance with the
parser of Clark et al. (2002), we also evaluate our
best model according to the dependency evaluation
introduced for that parser. For further discussion we
refer the reader to Clark and Hockenmaier (2002) .

3 CCGbank—a CCG treebank

CCGbank is a corpus of CCG normal-form deriva-
tions obtained by translating the Penn Tree-
bank trees using an algorithm described by
Hockenmaier and Steedman (2002). Almost all
types of construction—with the exception of gap-
ping andUCP (“Unlike Coordinate Phrases”) are
covered by the translation procedure, which pro-
cesses 98.3% of the sentences in the training corpus
(WSJ sections 02-21) and 98.5% of the sentences
in the test corpus (WSJ section 23). The grammar
contains a set of type-changing rules similar to the
lexical rules described in Carpenter (1992). Figure
1 shows a derivation taken from CCGbank. Cate-
gories, such as((S[b]nNP)=PP)=NP, encode unsat-
urated subcat frames. The complement-adjunct dis-
tinction is made explicit; for instanceas a nonexec-
utive directoris marked up asPP-CLR in the Tree-
bank, and hence treated as a PP-complement ofjoin,
whereasNov. 29is marked up as anNP-TMPand
therefore analyzed as VP modifier. The-CLR tag
is not in fact a very reliable indicator of whether a
constituent should be treated as a complement, but
the translation to CCG is automatic and must do the
best it can with the information in the Treebank.

The verbal categories in CCGbank carry fea-
tures distinguishing declarative verbs (and auxil-
iaries) from past participles in past tense, past par-
ticiples for passive, bare infinitives and ing-forms.

There is a separate level for nouns and noun phrases,
but, like the nonterminalNP in the Penn Treebank,
noun phrases do not carry any number agreement.
The derivations in CCGbank are “normal-form” in
the sense that analyses involving the combinatory
rules of type-raising and composition are only used
when syntactically necessary.

4 Generative models of CCG derivations

Expansion HeadCat NonHeadCat
P(expj : : : ) P(H j : : : ) P(Sj : : : )

Baseline P P;exp P;exp;H
+ Conj P;con jP P;exp;con jP P;exp;H ;con jP
+ Grandparent P;GP P;GP;exp P;GP;exp;H
+ ∆ P#∆L;R

P P;exp#∆L;R
P P;exp;H#∆L;R

P

Table 1: The unlexicalized models

The models described here are all extensions of
a very simple model which models derivations by a
top-down tree-generating process. This model was
originally described in Hockenmaier (2001), where
it was applied to a preliminary version of CCGbank,
and its definition is repeated here in the top row of
Table 1. Given a (parent) node with categoryP,
choose theexpansionexp of P, whereexp can be
leaf (for lexical categories),unary (for unary ex-
pansions such as type-raising),left (for binary trees
where the head daughter is left) orright (binary
trees, head right). IfP is a leaf node, generate its
head word w. Otherwise, generate the category of
its head daughterH. If P is binary branching, gen-
erate the category of itsnon-head daughterS (a
complement or modifier ofH).

The model itself includes no prior knowledge spe-
cific to CCG other than that it only allows unary and
binary branching trees, and that the sets of nontermi-
nals and terminals are not disjoint (hence the need to
include leaf as a possible expansion, which acts as a
stop probability).

All the experiments reported in this section were
conducted using sections 02-21 of CCGbank as
training corpus, and section 23 as test corpus. We



replace all rare words in the training data with their
POS-tag. For all experiments reported here and in
section 5, the frequency threshold was set to 5. Like
Collins (1999), we assume that the test data is POS-
tagged, and can therefore replace unknown words in
the test data with their POS-tag, which is more ap-
propriate for a formalism like CCG with a large set
of lexical categories than one generic token for all
unknown words.

The performance of the baseline model is shown
in the top row of table 3. For six out of the 2379
sentences in our test corpus we do not get a parse.1

The reason is that a lexicon consisting of the word-
category pairs observed in the training corpus does
not contain all the entries required to parse the test
corpus. We discuss a simple, but imperfect, solution
to this problem in section 7.

5 Extending the baseline model

State-of-the-art statistical parsers use many other
features, or conditioning variables, such as head
words, subcategorization frames, distance measures
and grandparent nodes. We too can extend the
baseline model described in the previous section
by including more features. Like the models of
Goodman (1997), the additional features in our
model are generated probabilistically, whereas in
the parser of Collins (1997) distance measures are
assumed to be a function of the already generated
structure and are not generated explicitly.

In order to estimate the conditional probabilities
of our model, we recursively smooth empirical es-
timatesêi of specific conditional distributions with
(possible smoothed) estimates of less specific distri-
butionsẽi�1, using linear interpolation:

ẽi = λêi +(1�λ)ẽi�1

λ is a smoothing weight which depends on the par-
ticular distribution.2

When defining models, we will indicate a back-
off level with a # sign between conditioning vari-
ables, eg.A;B # C # D means that we interpolate
P̂(::: j A;B;C;D) with P̃(::: j A;B;C), which is an in-
terpolation ofP̂(::: j A;B;C) andP̂(::: j A;B).

1We conjecture that the minor variations in coverage among
the other models (except Grandparent) are artefacts of the beam.

2We computeλ in the same way as Collins (1999), p. 185.

5.1 Adding non-lexical information

The coordination feature We define a boolean
feature,conj, which is true for constituents which
expand to coordinations on the head path.

S, +conj

S=NP, +conj

S=NP, �conj

S=(SnNP)

NP

IBM

(SnNP)=NP

buys

S=NP[c], +conj

conj

but

S=NP[c], �conj

S=(SnNP)

NP

Lotus

(SnNP)=NP

sells

NP

shares

This feature is generated at the root of the sentence
with P(conj j TOP). For binary expansions,conjH
is generated withP(conjH jH;S;con jP) andconjS is
generated withP(conjS j S# P;expP;H;conjP). Ta-
ble 1 shows howconj is used as a conditioning vari-
able. This is intended to allow the model to cap-
ture the fact that, for a sentence without extraction,
a CCG derivation where the subject is type-raised
and composed with the verb is much more likely in
right node raising constructions like the above.

The impact of the grandparent feature
Johnson (1998) showed that a PCFG estimated
from a version of the Penn Treebank in which
the label of a node’s parent is attached to the
node’s own label yields a substantial improvement
(LP/LR: from 73.5%/69.7% to 80.0%/79.2%).
The inclusion of an additional grandparent feature
gives Charniak (1999) a slight improvement in the
Maximum Entropy inspired model, but a slight
decrease in performance for an MLE model. Table
3 (Grandparent) shows that a grammar transfor-
mation like Johnson’s does yield an improvement,
but not as dramatic as in the Treebank-CFG case.
At the same time coverage is reduced (which might
not be the case if this was an additional feature in
the model rather than a change in the representation
of the categories). Both of these results are to be
expected—CCG categories encode more contextual
information than Treebank labels, in particular
about parents and grandparents; therefore the his-
tory feature might be expected to have less impact.
Moreover, since our category set is much larger,
appending the parent node will lead to an even more
fine-grained partitioning of the data, which then
results in sparse data problems.



Distance measures for CCG Our distance mea-
sures are related to those proposed by Goodman
(1997), which are appropriate for binary trees (un-
like those of Collins (1997)). Every node has a left
distance measure,∆L, measuring the distance from
the head word to the left frontier of the constituent.
There is a similar right distance measure∆R. We
implemented three different ways of measuring dis-
tance:∆Adjacency measures string adjacency (0, 1 or
2 and more intervening words);∆Verb counts inter-
vening verbs (0 or 1 and more); and∆Pct counts in-
tervening punctuation marks (0, 1, 2 or 3 and more).
These∆s are generated by the model in the follow-
ing manner: at the root of the sentence, generate∆L

with P(∆L j TOP), and ∆R with P(∆R j TOP;∆L).
Then, for each expansion, if it is a unary expan-
sion, ∆L

H = ∆L
P and ∆R

H = ∆R
P with a probabil-

ity of 1. If it is a binary expansion, only the∆ in
the direction of the sister changes, with a probability
of P(∆L

H j ∆L
PH#P;S) if exp= right, and analo-

gously forexp=left. ∆L
S and∆R

S are conditioned
on S and the∆ of H and P in the direction ofS:
P(∆L

S j S#∆R
P;∆R

H) andP(∆R
S j S;∆L

S#∆R
P;∆R

H).
They are then used as further conditioning variables
for the other distributions as shown in table 1.

Table 3 also gives the Parseval and dependency
scores obtained with each of these measures.∆Pct

has the smallest effect. However, our model does
not yet contain anything like the hard constraint on
punctuation marks in Collins (1999).

5.2 Adding lexical information

Gildea (2001) shows that removing the lexical de-
pendencies in Model 1 of Collins (1997) (that is,
not conditioning onwh when generatingws) de-
creases labeled precision and recall by only 0.5%.
It can therefore be assumed that the main influence
of lexical head features (words and preterminals) in
Collins’ Model 1 is on the structural probabilities.

In CCG, by contrast, preterminals are lexical cat-
egories, encoding complete subcategorization infor-
mation. They therefore encode more information
about the expansion of a nonterminal than Treebank
POS-tags and thus are more constraining.

Generating a constituent’s lexical categoryc at its
maximal projection (ie. either at the root of the tree,
TOP, or when generating a non-head daughterS),
and using the lexical category as conditioning vari-

able (LexCat) increases performance of the baseline
model as measured byhP;H;Si by almost 3%. In
this model,cS, the lexical category ofSdepends on
the categoryS and on the local tree in whichS is
generated. However, slightly worse performance is
obtained forLexCatDep, a model which is identical
to the originalLexCat model, except thatcS is also
conditioned oncH , the lexical category of the head
node, which introduces a dependency between the
lexical categories.

Since there is so much information in the lexical
categories, one might expect that this would reduce
the effect of conditioning the expansion of a con-
stituent on its head wordw. However, we did find a
substantial effect. Generating the head word at the
maximal projection (HeadWord) increases perfor-
mance by a further 2%. Finally, conditioningwS

on wH, hence including word-word dependencies,
(HWDep) increases performance even more, by an-
other 3.5%, or 8.3% overall. This is in stark contrast
to Gildea’s findings for Collins’ Model 1.

We conjecture that the reason why CCG benefits
more from word-word dependencies than Collins’
Model 1 is that CCG allows a cleaner parametriza-
tion of these surface dependencies. In Collins’
Model 1, wS is conditioned not only on the local
treehP;H;Si, cH andwH, but also on the distance∆
between the head and the modifier to be generated.
However, Model 1 does not incorporate the notion
of subcategorization frames. Instead, the distance
measure was found to yield a good, if imperfect, ap-
proximation to subcategorization information.

Using our notation, Collins’ Model 1 generateswS

with the following probability:

PCollins1(wS j cS;∆;P;H;S;cH;wH) =

λ1P̂(wS j cS;∆;P;H;S;cH ;wH)

+(1�λ1)
�
λ2P̂(wS j cS;∆;P;H;S;cH)+(1�λ2)P̂(wS j cS)

�

—whereas the CCG dependency model generates
wS as follows:

PCCGdep(wS j cS;P;H;S;cH ;wH) =

λP̂(wS j cS;P;H;S;cH ;wH)+(1�λ)P̂(wS j cS)

Since ourP, H, SandcH are CCG categories, and
hence encode subcategorization information, the lo-
cal tree always identifies a specific argument slot.
Therefore it is not necessary for us to include a dis-
tance measure in the dependency probabilities.



Expansion HeadCat NonHeadCat LexCat Head word
P(expj :::) P(H j :::) P(Sj :::) P(cS j :::) P(cTOPj:::)P(wS j :::) P(wTOPj:::)

LexCat P;cP P;exp;cP P;exp;H#cP S#H;exp;P P=TOP – –
LexCatDep P;cP P;exp;cP P;exp;H#cP S#H;exp;P#cP P=TOP – –
HeadWord P;cP#wP P;exp;cP#wP P;exp;H#cP#wP S#H;exp;P P=TOP cS cP
HWDep P;cP#wP P;exp;cP#wP P;exp;H#cP#wP S#H;exp;P P=TOP cS#P;H;S;wP cP

HWDep∆ P;cP#∆L;R
P#wPP;exp;cP#∆L;R

P#wP P;exp;H#∆L;R
P#cP#wP S#H;exp;P P=TOP cS#P;H;S;wP cP

HWDepConj P;cP;conjP#wP P;exp;cP;conjP#wP P;exp;H;conjP#cP#wP S#H;exp;P P=TOP cS#P;H;S;wP cP

Table 2: The lexicalized models

Model NoParse LexCat LP LR BP BR hP;H;Si hSi hi CM on hi �2 CD
Baseline 6 87.7 72.8 72.4 78,3 77.9 75.7 81.1 84.3 23.0 51.1
Conj 9 87.8 73.8 73.9 79.3 79.3 76.7 82.0 85.1 24.3 53.2
Grandparent 91 88.8 77.1 77.6 82.4 82.9 79.9 84.7 87.9 30.9 63.8
∆Pct 6 88.1 73.7 73.1 79.2 78.6 76.5 81.8 84.9 23.1 53.2
∆Verb 6 88.0 75.9 75.5 81.6 81.1 76.9 82.3 85.3 25.2 55.1
∆Adjacency 6 88.6 77.5 77.3 82.9 82.8 78.9 83.8 86.9 24.8 59.6
LexCat 9 88.5 75.8 76.0 81.3 81.5 78.6 83.7 86.8 27.4 57.8
LexCatDep 9 88.5 75.7 75.9 81.2 81.4 78.4 83.5 86.6 26.3 57.9
HeadWord 8 89.6 77.9 78.0 83.0 83.1 80.5 85.2 88.3 30.4 63.0
HWDep 8 92.0 81.6 81.9 85.5 85.9 84.0 87.8 90.1 37.9 69.2
HWDep∆ 8 90.9 81.4 81.6 86.1 86.3 83.0 87.0 89.8 35.7 68.7
HWDepConj 9 91.8 80.7 81.2 84.8 85.3 83.6 87.5 89.9 36.5 68.6
HWDep (+ tagger) 7 91.7 81.4 81.8 85.6 85.9 83.6 87.5 89.9 38.1 69.1

Table 3: Performance of the models: LexCat indicates accuracy of the lexical categories; LP, LR, BP and
BR (the standard Parseval scores labeled/bracketed precision and recall) are not commensurate with other
Treebank parsers.hP;H;Si, hSi, andhi are as defined in section 2. CM onhi is the percentage of sentences
with complete match onhi, and�2 CD is the percentage of sentences with under 2 “crossing dependencies”
as defined byhi.

The hP;H;Si labeled dependencies we report are
not directly comparable with Collins (1999), since
CCG categories encode subcategorization frames.
For instance, if the direct object of a verb has been
recognized as such, but a PP has been mistaken as
a complement (whereas the gold standard says it
is an adjunct), the fully labeled dependency eval-
uation hP;H;Si will not award a point. Therefore,
we also include in Table 3 a more comparable eval-
uation hSi which only takes the correctness of the
non-head category into account. The reported fig-
ures are also deflated by retaining verb features like
tensed/untensed. If this is done (by stripping off
all verb features), an improvement of 0.6% on the
hP;H;Si score for our best model is obtained.

5.3 Combining lexical and non-lexical
information

When incorporating the adjacency distance mea-
sure or the coordination feature into the dependency
model (HWDep∆ and HWDepConj), overall per-
formance is lower than with the dependency model

alone. We conjecture that this arises from data
sparseness. It cannot be concluded from these re-
sults alone that the lexical dependencies make struc-
tural information redundant or superfluous. Instead,
it is quite likely that we are facing an estimation
problem similar to Charniak (1999), who reports
that the inclusion of the grandparent feature worsens
performance of an MLE model, but improves per-
formance if the individual distributions are modelled
using Maximum Entropy. This intuition is strength-
ened by the fact that, on casual inspection of the
scores for individual sentences, it is sometimes the
case that the lexicalized models perform worse than
the unlexicalized models.

5.4 The impact of tagging errors

All of the experiments described above use the POS-
tags as given by CCGbank (which are the Treebank
tags, with some corrections necessary to acquire cor-
rect features on categories). It is reasonable to as-
sume that this input is of higher quality than can
be produced by a POS-tagger. We therefore ran the



dependency model on a test corpus tagged with the
POS-tagger of Ratnaparkhi (1996), which is trained
on the original Penn Treebank (seeHWDep (+ tag-
ger) in Table 3). Performance degrades slightly,
which is to be expected, since our approach makes
so much use of the POS-tag information for un-
known words. However, a POS-tagger trained on
CCGbank might yield slightly better results.

5.5 Limitations of the current model

Unlike Clark et al. (2002), our parser does not al-
ways model the dependencies in the logical form.
For example, in the interpretation of a coordinate
structure like“buy and sell shares”, shareswill head
an object of bothbuyandsell. Similarly, in examples
like “buy the company that wins”, the relative con-
struction makescompanydepend upon bothbuy as
object andwins as subject. As is well known (Ab-
ney, 1997), DAG-like dependencies cannot in gen-
eral be modeled with a generative approach of the
kind taken here3.

5.6 Comparison with Clark et al. (2002)

Clark et al. (2002) presents another statistical CCG
parser, which is based on a conditional (rather
than generative) model of the derived depen-
dency structure, including non-surface dependen-
cies. The following table compares the two parsers
according to the evaluation of surface and deep
dependencies given in Clark et al. (2002). We
use Clark et al.’s parser to generate these de-
pendencies from the output of our parser (see
Clark and Hockenmaier (2002))4.

LP LR UP UR
Clark 81.9% 81.8% 89.1% 90.1%
Hockenmaier 83.7% 84.2% 90.5% 91.1%

6 Performance on specific constructions

One of the advantages of CCG is that it provides a
simple, surface grammatical analysis of extraction
and coordination. We investigate whether our best

3It remains to be seen whether the more restricted reentran-
cies of CCG will ultimately support a generative model.

4Due to the smaller grammar and lexicon of Clark et al., our
parser can only be evaluated on slightly over 94% of the sen-
tences in section 23, whereas the figures for Clark et al. (2002)
are on 97%.

model,HWDep, predicts the correct analyses, using
the development section 00.

Coordination There are two instances of argu-
ment cluster coordination (constructions likecost
$5,000 in July and$6,000 in August) in the devel-
opment corpus. Of these,HWDep recovers none
correctly. This is a shortcoming in the model, rather
than in CCG: the relatively high probability both of
the NP modifier analysis of PPs likein July and of
NP coordination is enough to misdirect the parser.

There are 203 instances of verb phrase coordina-
tion (S[:]nNP, with [:] any verbal feature) in the de-
velopment corpus. On these, we obtain a labeled re-
call and precision of 67.0%/67.3%. Interestingly, on
the 24 instances of right node raising (coordination
of (S[:]nNP)=NP), our parser achieves higher per-
formance, with labeled recall and precision of 79.2%
and 73.1%. Figure 2 gives an example of the output
of our parser on such a sentence.

Extraction Long-range dependencies are not cap-
tured by the evaluation used here. However, the ac-
curacy for recovering lexical categories for words
with “extraction” categories, such as relative pro-
nouns, gives some indication of how well the model
detects the presence of such dependencies.

The most common category for subject relative
pronouns,(NPnNP)=(S[dcl]nNP), has been recov-
ered with precision and recall of 97.1% (232 out of
239) and 94.3% (232/246).

Embedded subject extraction requires the special
lexical category ((S[dcl]nNP)=NP)=(S[dcl]nNP)
for verbs like think. On this category, the model
achieves a precision of 100% (5/5) and recall of
83.3% (5/6). The case the parser misanalyzed is due
to lexical coverage: the verbagreeoccurs in our lex-
icon, but not with this category.

The most common category for object relative
pronouns,(NPnNP)=(S[dcl]=NP), has a recall of
76.2% (16 out of 21) and precision of 84.2% (16/19).

Free object relatives,NP=(S[dcl]=NP), have a
recall of 84.6% (11/13), and precision of 91.7%
(11/12). However, object extraction appears more
frequently as a reduced relative (the man John saw),
and there are no lexical categories indicating this ex-
traction. Reduced relative clauses are captured by a
type-changing ruleNPnNP! S[dcl]=NP. This rule
was applied 56 times in the gold standard, and 70



S[dcl]

NP

the suit

S[dcl]nNP

S[dcl]nNP

(S[dcl]nNP)=NP

seeks

NP

a court order

(SnNP)n(SnNP)

S[ng]nNP

(S[ng]nNP)=PP

((S[ng]nNP)=PP)=NP

preventing

NP

the guild

PP

PP=(S[ng]nNP)

from

S[ng]nNP

(S[ng]nNP)=NP

(S[ng]nNP)=NP

punishing

(S[ng]nNP)=NP[c]

conj

or

(S[ng]nNP)=NP

(S[ng]nNP)=PP

retaliating

PP=NP

against

NP

Mr : Trudeau

Figure 2: Right node raising output produced by our parser.Punishingandretaliating are unknown words.

times by the parser, out of which 48 times it corre-
sponded to a rule in the gold standard (or 34 times,
if the exact bracketing of theS[dcl]=NP is taken into
account—this lower figure is due to attachment de-
cisions made elsewhere in the tree).

These figures are difficult to compare with stan-
dard Treebank parsers. Despite the fact that the
original Treebank does contain traces for move-
ment, none of the existing parsers try to gener-
ate these traces (with the exception of Collins’
Model 3, for which he only gives an overall score
of 96.3%/98.8% P/R for subject extraction and
81.4%/59.4% P/R for other cases). The only “long
range” dependency for which Collins gives numbers
is subject extractionhSBAR, WHNP, SG, Ri, which
has labeled precision and recall of 90.56% and
90.56%, whereas the CCG model achieves a labeled
precision and recall of 94.3% and 96.5% on the most
frequency subject extraction dependencyhNPnNP,
(NPnNP)=(S[dcl]nNP), S[dcl]nNPi, which occurs
262 times in the gold standard and was produced
256 times by our parser. However, out of the
15 cases of this relation in the gold standard that
our parser did not return, 8 were in fact analyzed
as subject extraction of bare infinitivalshNPnNP,
(NPnNP)=(S[b]nNP), S[b]nNPi, yielding a com-
bined recall of 97.3%.

7 Lexical coverage

The most serious problem facing parsers like the
present one with large category sets is not so much
the standard problem of unseen words, but rather the
problem of words that have been seen, but not with
the necessary category.

For standard Treebank parsers, the latter problem
does not have much impact, if any, since the Penn
Treebank tagset is fairly small, and the grammar un-
derlying the Treebank is very permissive. However,
for CCG this is a serious problem: the first three
rows in table 4 show a significant difference in per-
formance for sentences with complete lexical cover-
age (“No missing”) and sentences with missing lex-
ical entries (“Missing”).

Using the POS-tags in the corpus, we can estimate
the lexical probabilitiesP(w j c) using a linear in-
terpolation between the relative frequency estimates
P̂(w j c) and the following approximation:5

P̃tags(w j c) = ∑ t2tagsP̂(w j t)P̂(t j c)

We smooth the lexical probabilities as follows:

P̃(w j c) = λP̂(w j c)+(1�λ)P̃tags(w j c)

Table 4 shows the performance of the baseline
model with a frequency cutoff of 5 and 10 for rare
words and with a smoothed and non-smoothed lexi-
con.6 This frequency cutoff plays an important role
here - smoothing with a small cutoff yields worse
performance than not smoothing, whereas smooth-
ing with a cutoff of 10 does not have a significant
impact on performance. Smoothing the lexicon in
this way does make the parser more robust, result-
ing in complete coverage of the test set. However, it
does not affect overall performance, nor does it alle-
viate the problem for sentences with missing lexical
entries for seen words.

5We computeλ in the same way as Collins (1999), p. 185.
6Smoothing was only done for categories with a total fre-

quency of 100 or more.



Baseline, Cutoff = 5 Baseline, Cutoff = 10 HWDep, Cutoff = 10
(Missing = 463 sentences) (Missing = 387 sentences) (Missing = 387 sentences)

Non-smoothed Smoothed Non-smoothed Smoothed Smoothed
Parse failures 6 – 5 – –
hP;H;Si, All 75.7 73.2 76.2 76.3 83.9
hP;H;Si, Missing 66.4 64.2 67.0 67.1 75.1
hP;H;Si, No missing 78.5 75.9 78.5 78.6 86.6

Table 4: The impact of lexical coverage, using a different cutoff for rare words and smoothing (section 23)

8 Conclusion and future work

We have compared a number of generative probabil-
ity models of CCG derivations, and shown that our
best model recovers 89.9% of word-word dependen-
cies on section 23 of CCGbank. On section 00, it
recovers 89.7% of word-word dependencies. These
figures are surprisingly close to the figure of 90.9%
reported by Collins (1999) on section 00, given that,
in order to allow a direct comparison, we have used
the same interpolation technique and beam strategy
as Collins (1999), which are very unlikely to be as
well-tuned to our kind of grammar.

As is to be expected, a statistical model of a CCG
extracted from the Treebank is less robust than a
model with an overly permissive grammar such as
Collins (1999). This problem seems to stem mainly
from the incomplete coverage of the lexicon. We
have shown that smoothing can compensate for en-
tirely unknown words. However, this approach does
not help on sentences which require previously un-
seen entries for known words. We would expect a
less naive approach such as applying morphologi-
cal rules to the observed entries, together with better
smoothing techniques, to yield better results.

We have also shown that a statistical model of
CCG benefits from word-word dependencies to a
much greater extent than a less linguistically moti-
vated model such as Collins’ Model 1. This indi-
cates to us that, although the task faced by a CCG
parser might seem harder prima facie, there are
advantages to using a more linguistically adequate
grammar.
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