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Abstract

We investigate a novel approach
to solve the problem of sparse
data through dimension reduction.
Linear algebraic technique called
LSA/SVD is wused to find co-
relationships of sparse words. Three
variant estimation methods are sug-
gested and they are evaluated for
estimating unseen noun-verb co-
occurrence probability. The model
shows possibility to be alternative
probability smoothing method.

1 Introduction

One of the most suffering difficulties in sta-
tistical language processing is so-called data
sparseness problem. No matter how large
the training set is, a substantial portion of
the data is unseen. For them, the Maxi-
mum Likelihood Estimation (MLE) probabil-
ities are zero and these zeros give us bad result
all through the statistical process.

We are interested in P(x,y) and the predic-
tion task P(y|z), that is a bigram language
modeling of word co-occurrences. P(y|z) is
the conditional probability that a pair has sec-
ond element y € Y given that its first element
is z € X. In other words, P(y|z) can be re-
garded as a measure of relationship between
word z and y. For example, for a given ob-
ject £ = beer, a verb y = drink is more re-
lated than a verb y = eat, p(drink|beer) >>
p(eat|beer). Many features can be used to
predict a relationship between two words, but
we assume here that the only information we
have are the frequencies.

To overcome the difficulty of sparse data,
a smoothing technique like Good-Turing
method is widely used. Estimator com-
bining approaches such as linear interpola-
tion and Katz’s back-off method are popular
also(Katz, 1987). They use unigram prob-
ability P(y) to estimate bigram probability
P(y|z) for unseen data pair, disregarding the
relationship between two words. If unseen bi-
grams are made up of unigrams of the same
frequency, the methods give them the same
probability, causing a problem to estimate ac-
curate probability.

In addition to the classical methods,
similarity-based schemes are successfully ap-
plied to data sparseness problem.  The
nearest-neighbors similarity-based method
uses a set of k most similar words z’ to es-
timate conditional probability P(y|z), being
said to perform almost 40% better than back-
off (Dagan et al., 1999). They use various
distributional similarity measures to find sim-
ilarity between words such as KL-divergence
or JS-divergence (Lee, 1999). For the sparse
word, however, the distribution P(y|z) itself
is sparse and it is difficult to find correct sim-
ilarity between words, since the only means
for measuring word similarity is the frequency.
The more sparse the distribution of word is,
the more difficult finding acceptable similari-
ties between words.

In this paper, we investigate a novel ap-
proach to solve the problem of sparse data
by capturing their latent relationships with
only frequency information. Through reduc-
ing dimension by linear algebraic technique
LSA/SVD!, we can eliminate zero values in

'LSA - Latent Semantic Analysis, SVD - Singular



p(y|lx) as well as we can capture relation-
ships between words. We believe that the
dimension-reduced estimation model can be
alternative probability smoothing method.

The model consists of three parts: mak-
ing a conditional probability matrix, pro-
jecting the matrix into lower space, and
estimating probabilities on reduced space.
In the third part, three variant estimat-
ing methods are suggested and they are
compared with Katz’s back-off method and
simplified nearest-neighbor similarity-based
method. We evaluated the methods in a
pseudo wrod sense disambiguation task. and
made promising result. Futher evaluation is
needed on more realistic task, though.

The optimal dimension size of subspace is
also investigated, showing the best result be-
tween 90 — 200, about 10% of the original di-
mension size. Finally, we show that the model
does not degrade performance as the sparse-
ness increases.

2 Dimension-Reduced Model

Dimension-reduced model uses linear al-
gebraic technique called LSA/SVD, which
projects a matrix into reduced space.

First of all, to apply linear algebraic tech-
nique, we need to represent conditional prob-
ability P(y|z) as a matrix form (Section 2.1).
After that, we project the matrix into lower
dimension subspace through SVD. We will
show how the resultant space represents re-
lationship between the given word = and the
predicting word y well (Section 2.2). At last,
we suggest three probability estimation meth-
ods on reduced space (Section 2.3).

2.1 Conditional Probability Matrix

Any discrete conditional probability distribu-
tions can be represented by a matrix form.
For a distribution p(y|z), given words z € X
make up row entries and predicting words
y € Y make up column entries. Each element
of matrix has estimated conditional probabil-
ity value of two words p(y|z). We define con-
ditional probability matrix and the row, col-

Value Decomposition

umn vectors:

Amxn = [aij] = [P(y;]z:)] (1)
7; = [P(y1|zi), -+, P(yn|zi)] (2)
y_]" = [P(yj‘fﬂl)a T ’P(yj‘:vm)]

where m = |X|, n = |Y] and 1 < ¢ < m,
1 < 5 < n. For example, if we use MLE
estimator, a;; = Pyre(y;|zi) = %&’Z‘w).

In the table, the noun ”coffee” and ”beer”
does not co-occur with the same verb and it
is difficult to find similarity between them in
this space. To find their latent relationship,
we can project each row and column vector
into lower dimension space through latent se-
mantic anaylsis.

Table 1 shows an example of MLE esti-
mating matrix. The task is predicting the
main verb with given object, that is estimat-
ing noun and verb co-occurrence probability
p(v|n) where n € N,v € V. Note that each
noun can be regarded as a point or a vector in
multi-dimensional space of which a dimension
size equal to |V|.

Table 1: An Example of Conditional Proba-
bility Matrix

N|V  |swigsipdrinkdevour eat swallow
beer 0.33 0 033 033 O 0
whiskey 0 0.5 0.5 0 0 0
coffee | 0 1 0 0 0 0
bread 0 0 0 0.33 033 0.33
sugar 0 0 0 0 05 0.5

2.2 Projection - Latent Semantic
Analysis

Latent Semantic Analysis (LSA) is known
as a theory for extracting and representing
the contextual-usage meaning of words. LSA
uses singular value decomposition (SVD).
It has been widely used in information re-
trieval task as a variant of the vector space
model(Deerwester et al., 1990)(Dumais et al.,
1997).

Given the conditional probability matrix A
and rank(A) = r, the SVD of A and the rank-



k approximation matrix Ay is defined as

n
Zzui'Ui"UiT (3)
i=1

k
Ae=USk Vil = ui-oi-v] (4
i=1

A=UxvT

where U and V contains left and right singu-
lar vectors of A, respectively, and the ¥ =
diag(o1,--- ,0p) is the diagonal matrix of
singular values of A. Truncated SVD Ay,
which is constructed from the k-largest signu-
lar triples of A, is the closest rank-k matrix to
A 2. The left singular vector ; and the right
singular vector v; corresponds to the row vec-
tor £; and the column vector ¥;, respectively.
By taking k elements of u; and v;, each given
word z and predicting word y of P(y|z) is rep-
resented as a vector in the reduced k-space.

Figure 1 is an example of SVD on the noun-
verb conditional probability matrix of Table
1. In Figure 1-D, both noun z and verb y are
represented by a vector in two dimensional
space. Nouns which occur with similar verbs
are grouped each other even if they never co-
occur with the same verb (diml: beverages,
dim2: foods). For example, noun ”coffee” and
verb ”"beer” do not co-occur with the same
verb in the original matrix (Table 1); however
they are near in two dimensional space when
measured with a cosine distance. This means
that unseen word pairs (z,y) which do not co-
occur in the training data may none the less
be near in reduced k-space. This derived rep-
resentation which captures word(z)-word(y)
associations is used for estimating probabili-
ties of unseen data.

2.3 Estimating Probabilities on
Reduced Space

Until now, we constructed word co-occurrence
probability matrix and projected the matrix
into lower dimension space. Now, we suggest

’In other words, the projection into the reduced
space is chosen such that the representations in the
original space are changed as little as possible when
measured by the sum of the squares of the differences.
One can prove that Ay is the best approximation to A
for any unitray invariant norm(Michael W. Berry and
Jessup, 1999)

three variant probability estimation methods
in dimension-reduced space. First is esti-
mating p(y|z) by computing distance between
given word z and predicting word ¥ in reduced
space. Second, we can use rank-k approx-
imation matrix. Third, the state-of-the-art
similarity-based methods can be merged to
our dimension-reduced model. Because the
first two methods are not based on statistical
theory, it should be explored

2.3.1 Method 1: Distance-based
method

Through LSA, the matrix A is factored into
the product of three matrices as in Equa-
tion 3, and u; and v; are considered as the
row vector Z; and the column vector y; in k-
dimension subspace respectively. Figure 1-D
shows 2-dimensional plot of resultant Us, V5
matrix. The distance-based method use nor-
malized distance between u; and v; for esti-
mating probability P(y;|z;):

Ply;lx;) = — -
(yjlxl) 7k 9

(5,57 Zt 1 ui(t)v; HO)
\/Zt 1 ua(t \/Zt v (t

where Zj, is normalizing factor and Dy is a
cosine distnace in k-dimensional space.

» (9)

2.3.2 Method 2: Rank-k
approzximation matriz method

In LSA, we can create a rank-k approxi-
mation matrix Aj to the matrix A by set-
ting all but the k largest singular values of A
equal to zero (Equation 4). In this method,
we consider each element of a rank-k approx-
imation matrix Ay as probability distribution
of p(y|z) (Figure 1-C). To satisfy the require-
ments Xp(y|z) = 1 and p(y|z) > 0, we use the
following normalizing equation:

1 . . ..
P(yj|$z) = Z_lc [Ak(zaj) - mln'uAk(Z,]) + 5]7

= > [Ak(i, 5) — min, 44 (3, j) + 6] (6)

v

Z(x)

where Z(n) is normalizing factor and ¢ is a
smoothing constant.



A. Conditional Probability Estimation Matrix by naive frequency

swig sip drink devour eat  swallow
beer | 0.3333 0 0.3333 0.3333 0 0
hiskey 0 0.5000 0.5000 0 0 0
A=I[P ="
[P(vin)] coffee | 0 1.0000 0 0 0 0
bread 0 0 0 0.3333 0.3333 0.3333
sugar 0 0 0 0 0.5000 0.5000
B. Singular Vector Decomposition
A=UsVT =
. . ) . . diml dim?2 dim3 dim4 dimb
diml dim3 dim3 dimd dim5\ -y 44 010 o 0.02 0.06—0.42 0.31-0.84
0.09 0.16—0.81 0.33—0.42
0 0870 0 O 0.96—0.03 0.21 0.13-0.02
0.53 0.02—0.38—0.67 0.32
0 00640 O 0.25 0.07-0.71-0.62 0.13
0.84-0.04 0.33 0.38—0.16
0 0(00350 0.03 0.29-0.45 0.67 0.49
0.01 0.62—0.06 0.39 0.67
0.00 076 0.25—0.35—0 47 0 0[O0 0 0.16 0.00 0.67 0.16—0.12—0.07
' ' ' ' ' 0.00 0.67 0.16—0.12—0.07
C. Rank-2 Approximation Matrix
swig Sip drink devour eat swallow
beer |0.0119 0.0959 0.0380 0.0466 0.0981  0.0981
A = TS VT whiskey | 0.0174  0.5899  0.1598 0.0237 0.0153  0.0153
2725202 1 coffee |0.0233  0.9328  0.2470 0.0175 —0.0206 —0.0206
bread |0.0347 —-0.0079 0.0442 0.1639 0.3668  0.3668
sugar | 0.0422 —0.0206 0.0513 0.2007 0.4499  0.4499
D. Two-dimensional plot of SVD Result
08[& T T T
sugar ‘ food-related words Nouns A
k eat/swaltow Verbs
0.6 A_ﬁbread —
04 _
0.2 [~ !})P’np’r‘ngp-’r‘p]nfﬂrl 1nn'r‘rl -
0 whiske\
ip
-0.2 | | | |
0 0.2 0.4 0.6 0.8 1
Dim1

Figure 1: An Example of Singular Value Decomposition




Table 2: An Illustrative Example

MLE | Katzs | Similarity Dimension Reduced Model
back-off | -based Distance | k-Rank | DR-SIM
method -based matrix
(k=3) | (dm=2)|(=01)| (6=0)
P(swig | cof fee) 0 0.09 0 0.1627 0.0756 0.11
P(sip | cof fee) 1 1 1 0.2425 0.5536 1
P(drink | cof fee) 0 0.18 0.17 0.2359 0.1932 0.28
P(devour | cof fee) 0 0.18 0.11 0.1271 0.0726 0.11
P(eat | cof fee) 0 0.18 0.11 0.1159 0.0526 0
P(swallow | cof fee) 0 0.18 0.11 0.1159 0.0526 0

2.3.3 Method 3: Dimension-reduced
similarity-based method

The similarity-based method(Dagan et al.,
1999) and dimension reduction technique can
be merged into one model 3. Reduced dimen-
sion can be better representation space than
the original space for finding similarities be-
tween words.

This approach finds the most k& nearest
words to z in reduced space and use these
word to estimate the probability p(y|z):

Pmle(yj|wz') C(:L‘, y) >

P(yi|z;) = { 1
(7)

where S = {z%|cos(7;,%;') > 0 on k dim.},
the k is the reduced dimension size not a
count of nearest nouns. The count of nearest
nouns are determined by 6, which is threshold
of cosine value.

3In the previous similarity-based work, (Dagan et
al., 1999) used the complicated estimating equation:

Z W (z,z')

z'eS(z,k) Z(.CU)

W(z,2') = 107 775@lIe)

P(y;|zi) = - P(ylz"),

where W (z,z') is a similarity measure derived from
the dissimilarity measure JS divergence. S(n,k) is
the set of k£ words with the smallest JS-divergence to
z. Here, however, we use more simplifed equation:

>

z;€S(xi,k)

N 1
P(yjlz:) = — P(y;|z})

m Zw'iES Pmle(yj|$;') C(.T,y) =0

3 An Illustrative Example

Here we use a concrete example to illustrate
effectiveness of our model. The exam-
ple is based on Table 1 and the task is
estimating noun and verb co-occurrence
probability p(v|n). There are two groups
of words, beverage-related words(/beer,
whicskey, coffee//N, [swig, sip, drink[/V)
and food-related  words(/bread,sugar//N,
[devour,eat,swallow]/ V).

In Table 1, ”coffee” is a sparsely distributed
noun and we expect P(drink|coffee) >
P(eat|cof fee). With MLE, it is not pos-
sible to rank two probabilities since they
are all 0. Katz’s back-off also fails to
distinguish them since unigram probabil-
ities p(drink) = p(eat) = 0.18. In
the similarity-based scheme we compute
JS-divergence to find similarity between
nouns and JS(p(v|beer),p(v|cof fee)) * =
JS (p(v|bread),p(v|cof fee)) = 0.6931, which
does not discriminate "beer” and ”bread”.

The distance-based model, however, solves
all these problem. When we observe the third
row in Figure 1-C, that is pre-normalized
p(v|cof fee), there are no zero values un-
like MLE. Futhermore, we can end up
with two groups of verbs: beverage-related
verbs have positive values As(sip,cof fee),
As(drink,cofee), As(swig,cof fee) > 0
and food-related verbs have negative values
As(eat, cof fee), Ay(swallow, cofee) < 0.

“JSpg) = F[DOIFY) + D(qg| L)),
D(pllg) = ¥, p(t)log22



To concrete our example, p(v|cof fee) is
constructed in Table 2 using probability es-
timation functions as described in the above
section. MLE shows five zero values, caus-
ing data sparseness problems. Katz’ back-
off methods and similarity-based method can-
not distinguish food-related verbs and drink-
related verbs. In contrast, all dimension-
reduced models resolve data sparseness prob-
lem and they cluster nouns and co-occurrence
verbs reasonably. Thus, we can expect that
dimension-reduced model will show promising
result in a real experiment.

4 Experiment

We evaluated the dimension-reduced models
on a pseudo word sense disambiguation task
as in (Dagan et al., 1999). Each method is
presented with a noun and two verbs, deciding
which verb is more likely to have the noun as a
direct object. Data preparation method and
error counting scheme are almost similar to
that of similarity-based methods (Dagan et
al., 1999)(Lee and Pereira, 1999).

Performance is measured by the error rate,
defined as

1
error rate = f(ﬂ of incorrect choices)

where T is the size of test set. Test instances
consist of noun-verb-verb triples (n,vl,v2),
where both (n,v1) and (n,v2) are both un-
seen in the training set. (m,vl) is selected
such that it appeared at least twice as of-
ten than (n,v2) in the original verb-object
pairs and p(n,vl) > p(n,v2) is a correct an-
swer. In addition, to consider Katzs back-
off method as the baseline, v2 is choosed as
frq(vl) < frq(v2) & p(vl) < p(v2), and
the error rate of back-off method is always
100% ° . Running method is three-fold cross-
validation and all results are averages over the
three test sets.

5Katz’s back-off estimator is defiend as the follow-
ing eqaution. We set a(z;) =1 here.

oy = § Pa(yilz)  fra(zi,y;) >0
Poo(yilei) = { a?m)P(w) fra(zi,yi) =0

For similarity-based method, the parameter
tuning is important to improve performance
but we use the simplified unweighted average
equation as in (Lee and Pereira, 1999) ¢ .
Since this equation is the same as our esti-
mation method in Section 2.3.3, we can say
that the comparison is fair. Number of sim-
ilar nouns k is determined such that shows
best result on test set.

4.1 Data Preparation

We prepared test sets as follows:

1. Extract transitive verb and head noun
pairs from Penn Treebank II.

2. Select the pairs for the 1,000 most fre-
quent nouns.

3. Partition the selected pairs 70% for train-
ing set and 30% for test set. (3 fold).

4. For each test set,

(a) remove seen pairs.

(b) for each (n,vl), create (n,vl,v2)
such that frq(n,vl) > 2% frq(n, v2)
and frq(vl) < frq(v2).

Step 2 makes p(v|n) matrix size fixed. Since
it is difficult to find (n,v1,v2) triples that sat-
isfy Step 4-(b) criteria, average test set size is
small. Hence, we used relative large portion,
30% of the pairs for building test set. Table
3 summarizes the experiment data.

Table 3: Training and Test Data.

1.Target Corpus Penn Treebank II

3.Verb-object pairs 18843 pairs

3. |N| x |V| matrix size | 1000 x 2008

4.Training set size 13040 pairs

5.Test set size 713 triples

4.2 Result

Table 4 shows the experimental error rate on
the three test sets, using Katz’s back-off as
the baseline. Two dimension-reduced meth-
ods show much better performance than other
methods.

%p(vIn) = £ Yoresinn P(0IN)



Table 4: Experimental Result (Error Rate)

Katzs Similarity Dimension Reduced Model
back-off -based Distance k-Rank | DR-SIM
(baseline) | method -based matrix
(k=20) | (dim =90) | (6§ =0.1) | (6 =0.5)
Fold 1 1.0 0.623 0.362 0.386 0.586
Fold 2 1.0 0.636 0.374 0.423 0.594
Fold 3 1.0 0.645 0.366 0.402 0.593
The reason of such a good performance is 06
that our model tries to find similarities be-
tween words toward two side (column and 0%
row space). The state-of-the-art similarity- 05
based methods find similarities toward only §
one side. For example, their well-known sim- 5 0.45 JJ\\ W
ilarity measures JS-divergence between given y L
word z; and another word z) is defined as VM v
JS(p(y|zi), p(y|z})). It means that each row 0.5
p(y|z;) is compared to another row p(y|z}) in 0.3 Llbri

Table 1. Comparisons on column side are not
performed. That’s why the similarity-based
fail to grasp true relationships on word co-
occurrences.

On the other hand, SVD which is the math-
ematical background of our model gives us
a reduced-rank basis for both column space
and the row space simultaneously (Figure
1) (Michael W. Berry and Jessup, 1999).
As we showed in the previous example in
Section 3, the dimension-reduced model ex-
tract underlying or latent structures of word
co-occurrences well. Therefore, our model
shows successful result on estimating word co-
occurrence probabilities of sparse data. futher
However, the experiment is artificial and SVD
is not directly related to the probabilty the-
ory, futher theoretical invetigation is required.

4.3 Optimal subspace and Degree of
sparseness

We also investigated the change of the perfor-
mances as subspace size and degree of sparse-
ness vary. Figure 2 shows performances of
distance-based DR model as the dimension of
subspace increase. When a dimension size is
between 90 and 200, it shows the best result.
Thus, we can conclude that the subspace of

O O O O O
™ O O o
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O O 0O O O O 0O O O O O O
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Dimension Size

Figure 2: Performance vs. Dimension size

small dimension size (90 < 1000) is sufficent
to capture latent word co-occurrence relation-
ship.

Figure 3 shows the effect of the degree of
sparseness. The 1st ranked noun appears
the most frequent times and 1000th ranked
noun appears the least frequent times, in
the training set. The average error rate
does not change much as the sparseness in-
creases. Therefore it is plausible to say that
the dimension-reduced model does not show
performance degration on very sparse data.

5 Conclusion

We proposed a mnovel approach called
dimension-reduced estimation model for deal-
ing with data sparseness problem. Three
variant models are suggested and they are
compared the performance against Katz’s
back-off method and similarity-based scheme.
Dimension-reduced model can be alternative
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Figure 3: Performance vs. Degree of sparse-
ness

probability smoothing scheme.

The ability of LSA that extracts and in-
fers latent relations of words makes it pos-
sible to estimate probabilities of sparse data
reasonably. LSA is a fully automatic math-
ematical technique.
from any given information once, we can use
the reduced matrix for estimating probabil-
ity. While the SVD analysis is somewhat
costly in terms of time for large matrix, less
expensive alternatives such as folding-in and
SVD-updating have been suggested (Michael
W. Berry and Jessup, 1999).

If we make a matrix

Further investigation is needed in both the-
oretical and experimental side. The sug-
gested model does not have deep background
over probablity theory. Hopefully, (Hofmann,
1999) suggested probabilistic LSI which is
based on a statitical latent class model for
factor analysis of count data. In addition, we
applied our model to estimate bigram proba-
bilities only. Corpus-based NLP is so mature
and the methods must be tested with more
realistic tasks. Since any conditional proba-
bility distributions can be represented by a
matrix form, we can combines other informa-
tion in a matrix, applying our model to more
general tasks, such as word sense disambigua-
tion and word clustering.
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